Nova Biotechnol Chim (2020) 19(2): 138-153 DOI: 10.36547/nbc.v19i2.769  Corresponding author: roman.boca@ucm.sk Nova Biotechnologica et Chimica Thermodynamics and cooperativeness of the spin crossover Roman Boča Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius in Trnava, Trnava, SK- 917 01, Slovak Republic Article info Article history: Received: 17th July 2020 Accepted: 11th September 2020 Keywords: Cooperativeness Spin crossover Statistical analysis Thermodynamic parameters Abstract Spin transition – a passage from the low-spin electronic state to the high-spin one of Fe(III) and Fe(II) complexes is assessed from several points of view: theoretical modelling, magnetic susceptibility data, and calorimetric measurements. The concept of the cooperativeness in the solid state is discussed in detail. Thermodynamic parameters are mutually correlated for a set of analogous Fe(III) complexes by using modern statistical methods.  University of SS. Cyril and Methodius in Trnava Introduction Thermally driven passage from the low-spin electronic state to the high-spin one is usually termed the spin crossover though also spin transition, spin conversion, and spin equilibrium is frequently used in this content and confused in their meaning. This phenomenon can be considered as a kind of unimolecular reaction where the conversion from L (low-spin) to H (high-spin) states is an process driven by entropy. For such a case S > 0 and H ~ kBT > 0 hold true so that there exists a critical temperature given by the ratio T1/2 = H/S; above T1/2 the change in Gibbs T E n e rg y 0 G  T 1/2 1/T ln K 0 HS LS T 1/2 Fig. 1. Schematic representation of the spin crossover as entropy driven unimolecular reaction. energy alters to G < 0 so that the conversion progresses spontaneously. Thermal development of the high-spin mole fraction xH can be used in monitoring conversion degree; the equilibrium constant is expressed as K = xH/(1 – xH). In an ideal case the lnK vs 1/T dependence is a straight line (Fig. 1). The spin conversion is often explained using the orbital diagram, as presented in Fig. 2 for mononuclear Fe(II) and Fe(III) complexes. Electrons promoted from the non-bonding orbitals t2g into the antibonding orbitals eg cause a softening of the adiabatic potential E = f(R) (force constants k(H) < k(L) with its minimum lying at higher High-spin 5T2g eg t2g Low-spin 1A1g eg t2g High-spin 6A1g eg t2g Low-spin 2T2g eg t2g Fe(II) Fe(III) Fig. 2. Orbital diagram showing a difference between the low-spin and high-spin complexes Fe(II) and Fe(III) in an octahedral geometry. mailto:roman.boca@ucm.sk Nova Biotechnol Chim (2020) 19(2): 138-153 139 LS HS Distance E n e rg y R L RH k H k L Fig. 3. Interrelation of the adiabatic potentials for the low- spin and high-spin states. metal-ligand distances, R0(H) > R0(L) (Fig. 3). The electronic contribution to the transition entropy is given by the spin multiplicities as follows Sel = Rln[(2SH+1)/(2SL+1)]; this amounts to 9.1 and 13.4 J K-1 mol-1 for Fe(III) and Fe(II) complexes, respectively. A softer adiabatic potential for the HS state implies denser vibrational energy levels which enhances the vibrational contribution to the transition entropy: Svib(H) > Svib(L). Generalized crystal field theory In explaining the spin crossover phenomenon often an orbital picture is utilized. However, this simple approach abstracts from the mutual repulsion of energy and also the spin-orbit coupling. Therefore, there is a need of a more sophisticated approach to the spin crossover by using quantum- chemical calculations. Herein the generalized crystal field theory (GCF) has been applied for such a purpose with numerical outputs (Boča 2006). The interelectron repulsion is involved by considering the set of atomic terms labelled by the orbital and spin quantum numbers, i.e. , , , , L S L S M M . A passage to the complex belonging to a point group G requires considering a set of crystal-field (CF) terms , , , , S S M   (like 2T2g, 6A1g, etc.) where g is the component of the multidimensional irreducible representation G. The spin-orbit interaction (SOI) splits the CF- terms into a set of crystal-field multiplets , ,    ; they need be classified using the irreducible representations of the respective double group (1 through 8 for O’ in Bethe notation). In terms of the GCF, a theoretical modelling has been done for Fe(III) [and Fe(II)] systems by involving the interelectron repulsion via Racah parameters B = 1,122 [897] cm-1 and C = 4.2 B, crystal-field poles for individual ligands F4(L), spin orbit interaction with the coupling constant  = 460 [400] cm-1, orbital-Zeeman and spin-Zeeman interactions (Boča and Herchel 2015). The overall interaction matrix (Eq. 1): ee cf soi oZ sZ 4 diagonalization { ( , ) ( ) ( ) ( ) ( )} ( ) i V B C V F V V B V B E B      (1) is diagonalized and the calculated Zeeman levels Ei(B) form the partition function (Eq. 2): B ( , ) exp[ ( ) / ] i i Z B T E B k T  (2) Finally, the formulae of the statistical thermo- dynamics can be utilized in order to calculate magnetization and magnetic susceptibility (Eq. 3 and 4): mol ln ( , ) T F Z M B T RT B B                 (3) 0 mol mol 0 ( , ) ( ) B M B T T B          (4) Since the mapping of ( ) i k E B proceeds for discrete field values Bk, numerical derivatives are required that, in fact, are provided after a parabolic fit (Eq. 5). (0) (1) ( 2) 2 , , , ( ; ) Δ Δ k m k m k m k k m k Z B T c c B c B   (5) Effective magnetic moment constructed from the magnetic susceptibility displays a thermal development that strongly depends upon the crystal field strengths – see Fig. 4 for an octahedral Fe(III) system. In a narrow interval of the crystal-field strengths the spin crossover occurs: for the pole strength F4 = 17,700 cm -1, the ground state is high- spin 6A1g but for F4 = 18,200 cm -1 it is low-spin 2T2g. A delicate situation exists for the intermediate crystal field (Fig. 5): with F4 = 18,000 cm -1 the ground CF-term is high-spin 6A1g so that the spin crossover would not apply. However, the close-lying excited CF-term 2T2g(×6) is split due to the spin-orbit interaction by a rather high Nova Biotechnol Chim (2020) 19(2): 138-153 140 T/K 0 50 100 150 200 250 300 350 400  e ff /  B 0 1 2 3 4 5 6 7 17500 17700 17800 17900 17950 18000 18100 18200 18500 F 4 /cm  14 000 Fe(III)6A 1g 2 T 2g Fig. 4. Calculated temperature evolution of the effective magnetic moment for octahedral Fe(III) systems having various crystal-field strengths F4 = 6(Dq). amount (SOI = 690 cm -1) that overcomes the inter- term gap (0 = 425 cm -1). Consequently, the ground crystal-field multiplet is the component 7(×2) ← 2T2g that it is doubly degenerate: g(7) = 2. Thus, the change of the electronic entropy (Eq. 6): 1 7 Δ ln[ (A ) / (Γ )] ln[6 / 2] 0 g S R g g R   (6) is positive so that the spin crossover develops according to the bold curve drawn in Fig. 4. For Fe(II) systems the situation is different in several aspects (Fig. 6). With a weaker crystal field strength F4 = 12,800 cm -1 (10Dq = 7,680 cm-1), the effective magnetic moment corresponds to the high-spin state with a typical course passing through a round maximum on heating. With a bit higher crystal field of F4 = 12,870 cm -1, the ground state is low-spin and on heating the effective magnetic moment increases from zero to the value eff ~ 5.0 B at the room temperature. A typical spin-crossover behaviour proceeds at F4 = 12,900 cm -1. For F4 = 13,000 cm -1 E n e rg y / c m   -400 -200 0 200 400 600 800  8  8  7  7 2 T 2g (x6)  0  SOI 6 A 1g (x6) E n e rg y / c m   -200 0 200 400 600 800  3  5  4  5 5 T 2g (x15)  4 1  0  SOI 1 A 1g (x1) Fig. 5. Left – energies of the lowest crystal-field terms and crystal-field multiplets for F4 = 18,000 cm -1 in Fe(III); right – for F4 = 12,900 cm -1 in Fe(II); calculations involve SOI. T/K 0 50 100 150 200 250 300 350 400  ef f/  B 0 1 2 3 4 5 6 12800 12850 12860 12870 12900 12950 13000 13100 14000 F 4 /cm  14 000 Fe(II) 5 T 2g 1 A 1g Fig. 6. Calculated temperature evolution of the effective magnetic moment for octahedral Fe(II) complexes having various crystal-field strengths F4 = 6(Dq). the spin conversion is apparently incomplete (it continues to the completeness at the much higher temperature). With F4 = 14,000 cm -1 t he spin transition occurs far above the room temperature and only a “temperature-independent paramagnetism” is visible until T = 400 K. The excited crystal-field term 5T2g is split due to the spin-orbit interaction into three groups of the crystal-field multiplets 5, {3 + 4} and {1 + 4 + 5}. This means that four groups of energy levels are involved in the spin crossover of an octahedral Fe(II) system (Fig. 6). In octahedral systems the electron repulsion and the crystal field strength are interrelated by the Tanabe- Sugano (TS) diagrams where the term energy (not involving SOI) is plotted versus Dq/B parameter ( = 10Dq = (10/6)F4) – Fig. 7. These diagrams are helpful in identifying the critical ratio when the high-spin complex turns to the low-spin one. For Fe(II) systems, the crossover of the terms 5T2g ↔ 1A1g exists at the ratio Dq/B = 2.38; this implies Dq = 2,135 cm-1 and F4 = 12,809 cm -1. The last value matches the “observed” on-set of the spin transition. Analogously for Fe(III), the crossover 6A1g ↔ 2T2g appears at Dq/B = 2.70 giving rise Dq = 3,029 cm-1 and F4 = 18,176 cm -1; this again matches the region in which the spin crossover is observed. The octahedral geometry, however, is rather hypothetical for real spin crossover systems and at least tetragonal and/or trigonal distortions would be more close to the reality. A two-dimensional map of the lowest crystal field terms is presented in Fig. 8 and it can be considered as a generalized Nova Biotechnol Chim (2020) 19(2): 138-153 141 Dq/B 0.0 0.5 1.0 1.5 2.0 2.5 3.0 E /B 0 10 20 30 40 50 60 2 T 2g 6 A 1g 6 A 1g 2 T 2g 4 T 1g 4 T 2g 4 A 1g Dq/B 0.0 0.5 1.0 1.5 2.0 2.5 3.0 E /B 0 10 20 30 40 50 60 1 A 1g 1 T 1g 3 T 1g 3 T 2g 5 T 2g5 T 2g 5 E g 1 A 1g Fig. 7. Tanabe-Sugano diagrams for octahedral Fe(III) and Fe(II) complexes (experimental B and C parameters were used in calculations). F 4 (xy) 5000 10000 15000 20000 F 4 (z ) 5000 10000 15000 20000 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 Eg A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 Eg A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 Eg Eg A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 Eg Eg A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 Eg Eg A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 B2 T2 Eg A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 B2 B2 B2 T2 F 4 (xy) 5000 10000 15000 20000 5000 10000 15000 20000 T1 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 Eg T1 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 Eg Eg T1 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 Eg Eg Eg T1 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 Eg Eg Eg Eg T1 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 Eg Eg Eg Eg Eg T1 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 Eg Eg Eg Eg Eg Eg T1 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 Eg Eg Eg Eg Eg Eg Eg Eg T1 A2 A2 A2 A2 A2 A2 A2 A2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T1 A2 A2 A2 A2 A2 A2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T1 A2 A2 A2 A2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T1 A2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg B2 T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg B2 B2 B2 T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg B2 B2 B2 B2 T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg B2 B2 B2 B2 B2 B2 T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg B2 B2 B2 B2 B2 B2 B2 T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg B2 B2 B2 B2 B2 B2 B2 B2 Eg T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg B2 B2 B2 B2 B2 B2 B2 A1 Eg Eg T2 F 4 (xy) 5000 10000 15000 20000 5000 10000 15000 20000 T1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T2 Eg Eg Eg Eg Eg A1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T2 Eg Eg Eg Eg A1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T2 Eg Eg A1 B2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T2 Eg B2 B2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T2 B2 B2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T2 B2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T2 F 4 (xy) 5000 10000 15000 20000 F 4 (z ) 5000 10000 15000 20000 T2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 Eg T2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 Eg Eg T2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 A1 Eg Eg Eg T2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 A1 A1 Eg Eg Eg Eg T2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 A1 A1 A1 Eg Eg Eg Eg Eg T2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 A1 A1 A1 Eg Eg Eg Eg Eg Eg T2 B2 B2 B2 B2 B2 B2 B2 B2 A1 A1 A1 A1 Eg Eg Eg Eg Eg Eg Eg T2 B2 B2 B2 B2 B2 B2 A1 A1 A1 A1 A1 Eg Eg Eg Eg Eg Eg Eg Eg T2 B2 B2 B2 B2 A1 A1 A1 A1 A1 A1 Eg Eg Eg Eg Eg Eg Eg Eg Eg T2 B2 B2 B2 A1 A1 A1 A1 A1 A1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T2 B2 A1 A1 A1 A1 A1 A1 A1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg A1 A1 A1 A1 A1 A1 A1 A1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg A1 A1 A1 A1 A1 A1 A1 A1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg A1 A1 A1 A1 A1 A1 A1 A1 A1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg A1 A1 A1 A1 A1 A1 A1 A1 A1 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg A1 A1 A1 A1 A1 A1 A1 A1 A1 Eg Eg Eg Eg Eg Eg Eg Eg Eg A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 Eg Eg Eg Eg Eg Eg Eg Eg Eg A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 Eg Eg Eg Eg Eg Eg Eg Eg A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 F 4 (xy) 5000 10000 15000 20000 5000 10000 15000 20000 T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg A1 A1 A1 A1 Eg T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg A1 A1 A1 A1 Eg Eg T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg A1 A1 A1 B2 Eg Eg Eg T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg A1 A1 A1 B2 B2 Eg Eg Eg Eg T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg A1 A1 B2 B2 B2 Eg Eg Eg Eg Eg T2 Eg Eg Eg Eg Eg Eg Eg Eg A1 A1 B2 B2 B2 Eg Eg Eg Eg Eg Eg T2 Eg Eg Eg Eg Eg Eg A1 A1 B2 B2 B2 B2 Eg Eg Eg Eg Eg Eg Eg T2 Eg Eg Eg Eg Eg A1 B2 B2 B2 B2 B2 Eg Eg Eg Eg Eg Eg Eg Eg T2 Eg Eg Eg A1 B2 B2 B2 B2 B2 B2 Eg Eg Eg Eg Eg Eg Eg Eg Eg T2 Eg Eg A1 B2 B2 B2 B2 B2 B2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T2 Eg B2 B2 B2 B2 B2 B2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T2 B2 B2 B2 B2 B2 B2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T2 B2 B2 B2 B2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T2 B2 B2 B2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T2 B2 B2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg A2 T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg A2 A2 A2 T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg A2 A2 A2 A2 A2 T2 F 4 (xy) 5000 10000 15000 20000 5000 10000 15000 20000 T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg B2 T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg B2 B2 T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg B2 B2 B2 T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg B2 B2 B2 B2 T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg B2 B2 B2 B2 B2 T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg B2 B2 B2 B2 B2 B2 T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg B2 B2 B2 B2 B2 B2 B2 T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg B2 B2 B2 B2 B2 B2 B2 B2 T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg Eg B2 B2 B2 B2 B2 B2 B2 B2 B2 T2 Eg Eg Eg Eg Eg Eg Eg Eg Eg B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 T2 Eg Eg Eg Eg Eg Eg Eg Eg B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 T2 Eg Eg Eg Eg Eg Eg Eg B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 A1 Eg T2 Eg Eg Eg Eg Eg Eg B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 Eg Eg Eg T2 Eg Eg Eg Eg Eg B2 B2 B2 B2 B2 B2 B2 B2 B2 A1 Eg Eg Eg Eg T2 Eg Eg Eg Eg B2 B2 B2 B2 B2 B2 B2 B2 A1 A1 Eg Eg Eg Eg Eg T2 Eg Eg Eg B2 B2 B2 B2 B2 B2 B2 A1 A1 Eg Eg Eg Eg Eg Eg Eg T2 Eg Eg B2 B2 B2 A2 A2 A2 A2 A1 A1 Eg Eg Eg Eg Eg Eg B2 B2 T2 Eg A2 A2 A2 A2 A2 A2 A2 A1 Eg Eg Eg Eg Eg Eg Eg B2 B2 B2 T2 Fig. 8. Generalized Tanabe-Sugano diagrams showing three lowest energy levels for equ ax 4 2 [FeL L ] bipyramidal complex: top – d6, bottom – d5 system; left panel – ground state, centre (right) – first (second) excited state or a component of the degenerate state. Solid line passes through the octahedral arrangement and separates the elongated and compressed tetragonal bipyramid. Nova Biotechnol Chim (2020) 19(2): 138-153 142 TS-diagram (SOI not involved) allowing a bordering of the spin crossover. When the pole strengths F4(z) = F4(xy), the diagram collapses to the TS one. In the TS diagram the crossover point refers to a situation when the LS and the HS state are accidentally degenerate. According to Fig. 3, the metal-ligand distances obey rL < rH. In Fe(II) complexes, these typically are rL ~1.96 - 2.00 Å and rHL= rH - rL ~ 0.16 - 0.21 Å. This shift manifest itself into the ligand field strengths owing to the relationship R= (10DqL/10DqH) = (rH/rL) 5. This ratio amounts to R ~ (2.2/2.0)5 = 1.6 so that on passing from HS to LS, the ligand strength increases approximately by a factor of 2 and vice versa. In the TS diagram of iron(II) spin crossover compounds 10DqH will be situated at the left and 10DqL to the right of the crossover point. It must be emphasized that the above modelling refers to electronic factors only and they completely ignore the important contribution of the molecular vibrations to the spin crossover. Also, vertical excitations in electronic transitions are assumed instead of the adiabatic ones. The spin crossover can appear also for Mn(III) systems (SL = 0 to SH = 2 transition) as well as Co(II) complexes (SL = 1/2 to SH = 3/2 crossover). Master equation For description of the spin crossover, a number of different theoretical models have been developed so far (Wajnflasz 1970; Bari and Sivardiére 1972; Slitcher and Drickamer 1972; Sorai and Seki 1974; Zimmermann and König 1977; Rao et al. 1981; Spiering et al. 1982; Adler et al. 1987; Bousseksou et al. 1995; Cantin et al. 1999; Boča et al. 2003). Their attempt is to simulate a development of the high-spin mole fraction xH under the thermal propagation: xH = f(T). One of these models is the regular solution & domain model based upon general principles of thermodynamics. The first step in the regular solution model is consideration of mixing entropy Smix; this results from the distribution of the LS and HS molecules within the system of N molecules that is simplified by exploiting the Stirling formula for factorials (Eq. 7): mix B B ! ln ( )![(1 ) ]! { ln (1 ) ln(1 )} N S k xN x N k N x x x x        (7) Here, we utilized that xN molecules are in the HS state and (1 – x)N in the LS one. Let us consider domains of like spin and of uniform size. Then the number of molecules per domain is /n N D and the mixing entropy alters to (Eq. 8): mix B B ! ln ( )![(1 ) ]! { ln (1 ) ln(1 )} D S k xD x D k D x x x x        (8) The molar mixing entropy becomes expressed as follows (Eq. 9): mix ( / ){ ln (1 ) ln(1 )}S R n x x x x     (9) where A B R N k is the ideal gas constant. The second contribution in the play is intermolecular interactions with energy int E constituted as follows (Eq. 10): 2 2 int HH LH LL 2 0 1 2 2 (1 ) (1 )E E x E x x E x J J x J x         (10) where HH LH LL , ,E E E are the interaction energies between HS-HS, LS-HS and LS-LS pairs, respectively. To this end, a rearrangement offers (Eq. 11): 0 LL 1 LH LL 2 LL HH LH 2( ) 2 J E J E E J E E E           (11) The molar Gibbs energy adopts the form (Eq. 12): H L mix int (1 ) x G xG x G TS E     (12) where L G and H G refer to the molar Gibbs energies for the LS and HS units, respectively. The equilibrium condition requires (Eq. 13): H L , 1 2 ( / ) ln 1 2 0 x T p G x G G R n T x x J J x                   (13) which yields the equation for the mole fraction of the high-spin species (Eq. 14):    1 1 2 1 exp (Δ Δ 2 ) /x n H T S J J x RT       (14) An alternative expression is (Eq. 15): Nova Biotechnol Chim (2020) 19(2): 138-153 143 1/[1 ( )]x f x  (15) with the factor (Eq. 16):  1 2( ) exp [(Δ ) Δ 2 ] /f x H J T S J x n RT    (16) Such an implicit equation requires solution by an iterative procedure. The entropic term contains two contributions: electronic and vibrational (Eq. 17). The partition function of a set of m = 3N – 6 harmonic oscillators (m = 15 for a hexacoordinate complex) is L, B vib,L 1 L, B L, B 1 1 L, B exp( / 2 ) 1 exp( / ) 1 exp ( / 2 ) 1 exp( / ) m i i i mm i i i i h k T z h k T h k T h k T                       and analogously for the HS state. Then, in the approximation of an averaged (Einstein) modes L h and H h the entropic term becomes (Eq. 18): el,H vib,H el vib el,L vib,L H L B L H B Δ Δ Δ ln 2 1 1 exp( / ) ln 2 1 1 exp( / ) m Z z S S S R Z z S h k T R S h k T                           (18) and the enthalpic one is (Eq. 19): 0 HS LS Δ Δ ( )/ 2H E m h h    (19) Now the Eqs. 15 – 16 need be solved by an iterative process starting with a trial set of parameters n, H + J1, Lh , Hh and J2 for each temperature point. Finally, the equilibrium constant is expressed as (Eq. 20): H H 1 2 H ln ln 1 [( ) 2 ] / x K x H J T S J x n RT          (20) The effect of the individual parameters to the conversion curve and/or equilibrium constant is presented in Fig. 9. The condition for the equilibrium (Eq. 13), defines the transition temperature T1/2 at which the high- spin and low-spin mole fractions are equal, or H 0.5x  (Eq. 21): 1 / 2 H L 1 2 0 0 T T G G J J       (21) T/K 0 100 200 300 x H S 0.0 0.5 1.0 (1/T)/K  0.00 0.01 0.02 ln K -5 0 5 T/K 0 100 200 300 x H S 0.0 0.5 1.0 (1/T)/K  0.00 0.01 0.02 ln K 0 5 a) b) c) d) Fig. 9. Conversion curves modelled by the master equation: a) change of the enthalpy H/R = 100 K (short dashed), 500 K (long dashed) and 1000 K (solid) for fixed T1/2 = H/S = 150 K and J = 0; b) effect of the domain size n = 1 (solid), 5 (long dashed), 50 (short dashed) for fixed H/R = 500 K and T1/2 = 150 K – steepness of the transition; c) effect of the solid-state cooperativeness J/R = 0 (solid), 100 K (long dashed), 300 K (short dashed) for fixed H/R = 500 K and S/R = 5 – deviations from the linearity in the van’t Hoff plot; d) effect of molecular vibrations HS B /h k  140 K (solid), 160 K (dashed), 180 K (dot-dashed) for fixed LS HS 1.5  , e e HS LS / 5g g  , and 0/kB = 600 K. The transition temperature (Eq. 22): 1/2 1 2 ( ) /T H J J S     (22) includes also two cooperativity factors; a cancellation of 1 2 W J J  can be assumed in the theoretical model. One can overcome the two-body interactions (Koudriavtsev 1999) by considering there-body ones producing a third-order term 3 3 H J x in Eq. 10; this yields an additional term 1/2 3 (3 / 4) /T J S   in Eq. 22. Cooperativeness Within the regular solution model, the interaction term involves the solid-state cooperativity factor – cooperativeness  through the expression (Eq. 23): int (1 )E x x  (23) (17) Nova Biotechnol Chim (2020) 19(2): 138-153 144 This formula originates in the intercentre interaction (Eq. 24): 2 int 0 1 2 2 LL LH LL LL HH LH 2( ) ( 2 ) E J J x J x E E E x E E E x          (24) which yields the relationship valid for the regular solution&domain model (Eq. 25): int 1 2 1 2 2 2 ( ) (1 2 ) (1 2 ) E J J x J J J x x W x            (25) The remainder (Eq. 26): 1 2 HH LL W J J E E    (26) can be absorbed into the effective parameter of the site formation, or it is omitted (Eq. 27): eff 1 2 ΔH J J    (27) Then the factor entering the iteration process (Eq. 14) relaxes to (Eq. 28):  eff( ) exp [ Δ (1 2 )] /f x T S x n RT     (28) Finally, the cooperativeness becomes expressed in the form (Eq. 29): 2 LH LL HH 2J E E E      (29) This expresses a tendency for molecules of one type to interact effectively with molecules of the same spin. Parameter distribution model was outlined because behaviour of the solid-state samples is non-ideal: a reduction of the cooperativeness can be described using a statistical distribution. High cooperativeness leads to the thermal hysteresis a rectangular shape of the hysteresis loop. Observed profile of the conversion curves, however, is often distorted with marked deviations from the rectangular towards angled shape (Boča et al. 2001). The parameter distribution model considers the optimum (maximum) cooperativeness J2 that drops as follows (Eq. 30): 2, 2i i J n J (30) (29), where i is the grid point (e.g. 1/100 of the optimum value opt 1n  ). To this end the equation (Eq. 31): 1/[1 ( )] i i x f x  (31) contains the factor (Eq. 32):  1 2,( ) exp [(Δ ) Δ 2 ] /i if x H J T S J x n RT    (32) (31) This equation need be solved by an iterative procedure for the trial set of parameters, for selected temperature, and for each mesh point. The iteration procedure starts with (0) 0 i x   in the heating direction, and (0) 1 i x   on the cooling path. The averaged value is given by the formula (Eq. 33): Mesh Mesh H 1 1 / i i i i i x w x w                  (33) (32), using the weights obeying the Gaussian distribution (Eq. 34): 2 opt exp[ ( ) / ] i i w n n    (34) T/K 350 400 450 x H S 0.0 0.5 1.0 T/K 350 400 450 0.0 0.5 1.0 a) b) T/K 350 400 450  e ff / B 0 1 2 3 4 5 T/K 350 400 450 0 1 2 3 4 5 a) b) Fig. 10. Parameter distribution model of the spin crossover. Distribution model width: d = 0.00001 (abrupt step) and 0.1 (gradual step). Used parameters: D0/kB = 2144 K, J/kB = 452 K, reff = 205 and gH = 2.0. Modelled using the program MIF&FIT (Boča 2016). The width of the distribution leads to the following effects (Fig. 10): Nova Biotechnol Chim (2020) 19(2): 138-153 145 1) 0  causes a sharp distribution so that the model collapses to the abrupt step on heating and cooling, respectively. The conversion curve displays a hysteresis loop possessing the rectangular walls. 2) Increased d causes that the hysteresis loop has angled walls and a decreased width. 3) With increasing d the conversion curve is less complete and visibly smoother. Thermal hysteresis originates in existence of two minima of the Gibbs energy at different temperatures so that on the heating/cooling the system falls into one of them. Cooperativeness as the chemical/physical hardness Let us reconsider pair-wise interactions among solid-state particles (Eq. 35): 2 2 int H LL H LH H H HH H ( ) (1 ) 2 (1 )E x E x E x x E x     (35) which can be rearranged into the form of a Taylor expansion (Eq. 36): 2 int H 0 1 H 2 H ( )E x J J x J x   (36) The coefficients of the Taylor series are Eq. 37 – 39 (see Fig. 11): 0 LL J E (37) int 1 LH LL H 2 2 0 E J E E x            (38) 2 int 2 LL HH LH 2 H 1 2 0 2 E J E E E x             (39) where m – the chemical potential that equals to minus absolute electronegativity (Sen and Jorgensen 1987);  – the Pearson’s chemical hardness (Sen 1993; Pearson 2005). The cooperativeness J is then expressed through an excess of the interaction energy (Eq. 40): 2 LH HH LL / 2 ( ) / 2 0J J E E E      (40) so that it interrelates to the chemical hardness. Another cooperative contribution is (Eq. 41): 1 2 HH LL 0W J J E E     (41) and it eventually can be neglected. Recall some additional definitions according to Pearson (Pearson 2005). ELL = J0 (EHH + ELL)/2 U = J 1 /2 EHH ELH W = J 1 + J 2 J = J 2 /2 Fig. 11. Interrelations of the interaction parameters. a) Electronic chemical potential (Eq. 42) – derivative of the energy with the number of electrons at the constant potential generated by a system of nuclei: E N         (42) b) Absolute electronegativity expressed (Eq. 43) as an average of the ionization energy Ei and electron affinity Eeg: i eg 2 E E       (43) c) Chemical hardness (Eq. 44): 2 2 1 2 E N         , i eg 2 E E    (44) d) Electronegativity shift for two reactants owing to a transfer of N electrons from 2 to 1 (Eq. 45 and 46): o 1 1 1 2 N     (45) o 2 2 2 2 N     (46) d) Electronegativity (chemical potential) equalization 1 2   yields (Eq. 47): o o 1 2 1 2 1 2 ( ) N         (47) Electrons move from the site of lower electronegativity to the site of higher electronegativity (Eq. 48). This causes an energy lowering: Nova Biotechnol Chim (2020) 19(2): 138-153 146 o o 1 2 1 2 1 4 ( ) E          (48) e) Bulk modulus B and compressibility  of a solid is (Eq. 49): 1 T p B V V          , [Pa] (49) f) Physical hardness becomes (Eq. 50): 02 ,T V V BV H N N           , [J mol-1] (50) where V0 – molar volume, N – number of particles. g) Fluctuations in the number of particles for a grand canonical ensemble (Eq. 51): 2 2 0, 1 1 ( ) T V N N N N V kT V H              (51) An ensemble can be crystals of identical volume but with varying numbers of component atoms, i.e. crystals which are physically soft (inverse of hard) possess large fluctuations in N. This set of equations represents a good starting point for investigation of the physical and chemical nature of the solid-state cooperativeness. Calorimetry vs. magnetometry The classical thermodynamics deals with the volume work d dw p V  and defines two heat capacities (Eq. 52 and 53): 2( , ) ln V V V V U S V Z C R T T T T                       (52) (51) 2 ( , ) ln ln ln p p V T p E S p C T Z Z R T T T T V                                (53) (52), where Z is the partition function. In the case of the magnetic work 0 d dw H M again two kinds of the heat capacities are distinguished (Eq. 54, 55): 2( , ) ln M M M M U S M Z C R T T T T                       (54) 2 ( , ) ln ln ln H H M T H E S H C T Z Z R T T T T M                                (55) (Here, enthalpy is denoted as E, not to be confused with the magnetic field strength H.) For the solid state, the appropriate formula for the molar excess- heat capacity measured in the zero field is (Eq. 56): ex 2 ln p M M M Z C C R T T T                (56) This allows a comparison of the experimental heat capacity (measured using adiabatic or differential scanning calorimeters) with that reconstructed by the theoretical model of the spin crossover (e.g. regular solution&domain model). By substituting the partition function (Eq. 57): L L L H H L L L H 0 L H 1 2 2 ( 1) [1 exp( / )] ( 1) 1 exp( / ) 1 ( 1) 1 exp( / ) exp{ [Δ ( ) / 2 ( ) (2 1)] / m m S S Z h kT S S h kT S S h kT h h m J J J x kT                                   (57) (56) into Eq. 56, explicit expression for the heat capacity along with its FORTRAN code is obtained by exploiting capabilities of the MATHEMATICA package (Wass 1999). The heat capacity and/or its weighted function then become a combination of the underlying lattice vibration functions (taken as polynomials) and the excess-heat capacity (Eq. 58 and 59): 2 3 H L L L L 2 3 ex H H H H H (1 )( ) ( ) p p C x a b T c T d T x a b T c T d T C           (58) 2 3 H L L L L 2 3 ex H H H H H ( / ) (1 )( ) ( ) ( / ) p p C T x a b T c T d T x a b T c T d T C T           (59) where only some polynomial terms need be considered. Three complexes under the investigation are characterized as follows (Fig. 12). Complex 1 – [Fe(2-pic)3]Cl2·MeOH is a non-cooperative system; its thermodynamic data were scanned by the adiabatic calorimetry (Nakamoto et al. 2001). Nova Biotechnol Chim (2020) 19(2): 138-153 147 T/K 0 50 100 150 200 250 300 350 C p /( J K -1 m o l- 1 ) 0 100 200 300 400 500 600 700 T/K 50 100 150 200 250 300 350 x H S 0.0 0.5 1.0 (1/T)/K -1 0.004 0.006 0.008 ln K -6 -3 0 3 6 1 T/K 120 150 180 210 240 (C p /T )/ (J K  2 m o l 1 ) 4 6 8 T/K 50 100 150 200 250 300 350 x H S 0.0 0.5 1.0 (1/T)/K -1 0.004 0.006 0.008 ln K -6 -3 0 3 6 100 150 200 C p /( J K -1 m o l- 1 ) 500 1000 1500 2 T/K 0 50 100 150 200 250 300 C p /( J K -1 m o l- 1 ) 0 100 200 300 400 500 600 T/K 50 100 150 200 250 300 350 x H S 0.0 0.5 1.0 (1/T)/K -1 0.004 0.006 0.008 ln K -6 -3 0 3 6 0 50 100 150 200 250 300 0 2000 4000 6000 3 Fig. 12. Experimental (open symbols) and fitted (full lines) thermodynamic functions for 1, 2, and 3. Complex 2 – [Fe(pybzim)3](ClO4)2 belongs to a medium-cooperative system. There is no structural change during the spin crossover as documented by a continuous increase of the lattice parameters. DSC technique has been applied for it (Boča et al. 2003). Complex 3 – [Fe(phen)2(NCS)2] is a strongly cooperative system. The effective magnetic moment increases abruptly near the transition temperature T1/2 and the structural changes accompany the spin transition. The thermodynamic data were collected by the adiabatic calorimetry (Sorai and Seki 1974). The data fitting by the Eq. 56 – 57 gave the set of the spin crossover parameters which are presented in Table 1. Table 1. Parameters of the spin crossover for complexes 1 through 3 from fitting the heat capacity.a Parameter b Cooperativeness 1 – small 2 – medium 3 – high Site format. energy (eff/kB) /K 1370 351 1039 Entropic parameters reff = 7545 L /h hc = 454 cm-1 H L / 1.5 h h    reff = 357 Cooperativeness (J/kB) /K 20 136 182 H /kJ mol-1 11.39 [8.88] 2.92 [3.04] 8.64 [8.60] S /J K-1 mol-1 74.2 [59.5] 19.0 [21.0] 48.9 [48.8] 1/2 /T H S   /K 153 [149] 153 [145] 177 [176] a Values in square brackets are the direct calorimetric determination. b Simplifications: eff lnS R r  , 2 / 2J J  , eff 0 L H 1 2 ( ) / 2m h h J J        . Having the experimental heat capacity curve and its temperature-weighted function at the disposal, the numerical integration offers the enthalpy (Eq. 60) and entropy (Eq. 61) of the spin transition: p max min p d d T T p p T T H C T C T     (60) p max min p ( / ) d ( / ) d T T p p T T S C T T C T T     (61) The measured Cp and Cp/T data need be corrected for the underlying lattice vibrations, for instance, by subtracting polynomial functions applied below Tmin and/or above Tmax and the integration limit contains the peak value of Tp (Fig. 13). The integration can be improved by utilizing the conversion curve xH vs T known from the measurements of the magnetic susceptibility. This enables a construction of the smooth baseline between Cmin for the LS and Cmax for the HS; the excess enthalpy Δ ( )H T (Eq. 62) associated Nova Biotechnol Chim (2020) 19(2): 138-153 148 T 3 /K 3 3e+6 6e+6 9e+6 0.5 1.0 1.5 T/K 120 140 160 180 200 C p /( k J K  1 m o l 1 ) 0.5 1.0 1.5 T/K 120 140 160 180 200 ( C p )' /( k J K -1 m o l- 1 ) 0.0 0.1 0.2 T/K 120 140 160 180 200 (C p / T )/ (J K   m o l 1 ) 5 6 7 T 2 /K 2 20000 40000 5 6 7 120 140 160 180 200 ( C p / T )' /( J K  2 m o l 1 ) 0.0 0.4 0.8 with the spin crossover at the given temperature is: min min 3 LS LS HS max min Δ ( ) [ ( )]d ( )d T p T T T H T C a b T T x C C T        (62) The excess entropy at the given temperature Δ ( )S T can be evaluated in an analogous way. A direct fitting of the magnetic susceptibility data (T) is possible by considering three contributions in the form of a Curie-Weiss law, namely for the low-spin species, high-spin system, and eventual paramagnetic impurity (Eq. 63, 64, and 65): 2 L 0 L L L L L ( 1) / 3( )C g S S T     (63) 2 H 0 H H H H H ( 1) / 3( )C g S S T     (64) 2 PI 0 PI PI PI PI PI ( 1) / 3( )C g S S T     (65) where the reduced Curie constant consists of the physical constants, 2 0 A 0 B B /C N k  . For Fe(II) centres (SL = 0, SH = 2, SPI = 5/2) the appropriate set of magnetic parameters consists of L, gH, H, gPI = 2, PI, and PI. For Fe(III) centres (SL = 1/2, SH = 5/2) the active set is gL, L, aL, gH = 2.0 and H. Some of these parameters can be fixed or omitted in order to avoid an overparametrization. In addition, there are four parameters of the spin crossover that enter evaluation of the conversion curve xH(T), i.e. eff, J, Lh and Hh (the last again can be fixed). Then the susceptibility is balanced as follows (Eq. 66): H PI L H H PI PI ( ) (1 )T x x x x        (66) and the equilibrium constant (Eq. 67) is: H H PI / (1 )K x x x   (67) The enthalpy of the spin transition (Eq. 68) is calculated as a temperature–independent quantity: 0 A eff eff B Δ ( / )H N R k   (68) which absorbs the site formation energy, zero-point vibration correction, and eventually the cooperati- veness parameters (Eq. 69): eff 0 H L 1 2 Δ ( ) / 2 ( )E h h m J J       (69) The entropy of the transition (Eq. 70) is a temperature-dependent quantity which at the transition temperature is: 1/2 L B 1/2H L H B 1/2 1 exp( / )2 1 (Δ ) ln 2 1 1 exp( / ) m T h k TS S R S h k T                (70) This can be approximated through an effective degeneracy ratio (Eq. 71): Fig. 13. Heat capacity analysis for [Fe(pybzim)3](ClO4)2: a) raw data; b) data for subtraction of underlying lattice vibrations; c) data for numerical integration yielding H and S. a) b) c) Nova Biotechnol Chim (2020) 19(2): 138-153 149 (1/T)/K -1 0.004 0.006 0.008 0.010 ln K -5 0 5 T/K 50 100 150 200 250 300 x H S 0.0 0.5 1.0 Susceptibility Susceptibility, fitted DSC, fitted Fig. 14. Comparison of magnetic and calorimetric data for [Fe(pybzim)3](ClO4)2. Empty points – experimental data, lines – fitted. eff Δ lnS R r (71) where reff is subjected to the fitting procedure. The fitting of the magnetic data and calorimetric data is compared in Fig. 14 on the common basis – temperature evolution of the high-spin mole fraction (left) and the van’t Hoff plot (right). Statistical analysis A number of organic species H2L, acting as pentadentate ligands L2-, has been prepared (Fig. 15) by a Schiff condensation between the substituted salicylaldehyde (R-sal) and the asymmetric or symmetric triamine (pet or dpt). T/K 0 50 100 150 200 250 300 x H 0.0 0.5 1.0 T/K 0 50 100 150 200 250 300  e ff / B 0 2 4 6 B = 0.1 T T 1/2 Fig. 16. Magnetic data for [Fe(napet)NCS]: left – temperature dependence of the effective magnetic moment, right – a temperature evolution of the calculated high-spin fraction (right); grey circles – experimental data, solid line – fitted. Analogously, a set of Schiff-base ligands was obtained using the naphthyl skeleton. They were complexed with Fe(III) salts yielding hexacoordinate [FeIIILX] complexes. Thermal evolution of the effective magnetic moment showing spin crossover is exemplified in Fig. 16 along with the fitted curve based upon the regular solution model. In a series of hexacoordinate [FeIIIL5X] complexes, the transition temperature T1/2 of the spin crossover can be modified by appropriate coligands X (Fig. 17) (Šalitroš et al. 2009; Nemec et al. 2011; Krüger et al. 2013, 2015; Masárová et al. 2015). This is affected by the enthalpic and entropic terms since T1/2 = H/S holds true. It is expected that N OH N OH NH N OH N OH NH N OH N OH NH N OH N OH NH OEt EtO N OH Cl N OH NH Cl N OH MeO N OH NH OMe N OH N OH NH N OH N OH NH Cl Cl N OH N OH NH napet 2anapet 1anapet salpet 5Cl-salpet 3EtO-salpet saldpt 5Cl-saldpt 3MeO-saldpt Fig. 15. Sketch of the related pentadentate ligands H2L 5. Nova Biotechnol Chim (2020) 19(2): 138-153 150 Fe (III) N O N O R1 R1 NH X R2 R2 Fig. 17. General form of the [Fe(R-salpet)X] type complexes; coligands X = Cl, N3 , NCO, NCS, NCSe, and CN. the value of H can be altered by varying the crystal field strength of involved ligands. However, the factors influencing the value of S are more complex as they include electronic (net spin), vibrational, and other contributions. Temperature evolution of the effective magnetic moment for related complexes is shown in Fig. 18 and 19. It can be concluded that an increase of the crystal field strength 10Dq of the coligand X causes a switch of the spin states of complexes T/K 0 50 100 150 200 250 300  e ff / B 0 1 2 3 4 5 6 [Fe(saldpt)py](BPh 4 ) 2 , SC [Fe(5Cl-saldpt)py](BPh 4 ) 2 , SC [Fe(3MeO-saldpt)py](BPh 4 ) 2 , SC SC SC Fig. 19. Spin crossover in complexes of [FeIII(R-saldpt)py] (BPh4)2 type. from the high-spin state (X = Cl–, NCO–), through the spin crossover (X = NCS–, NCSe–), to the low- spin state (X = CN–). In order to unhide latent correlations among thermodynamic parameters influencing the spin crossover, modern multivariate methods were utilized for processing data listed in Table 2: Pearson correlation (PC), cluster analysis (CA) and the principal component analysis (PCA) (Augustín and Boča 2015). T/K 0 50 100 150 200 250 300  e ff / B 0 1 2 3 4 5 6 [Fe(Cl-salpet)Cl], HS [Fe(Cl-salpet)NCO], HS [Fe(Cl-salpet)NCS], SC [Fe(Cl-salpet)NCSe], SC [Fe(Cl-salpet)CN], LS T/K 0 50 100 150 200 250 300 0 1 2 3 4 5 6 [Fe(Br-salpet)NCS], HS [Fe(Br-salpet)N 3 ], SC [Fe(Br-salpet)NCSe], SC HS SC LS HS SC  e ff / B SC T/K 0 50 100 150 200 250 300  e ff / B 0 1 2 3 4 5 6 [Fe(5Br-salpet)NCS], HS [Fe(3EtO-salpet)NCS], SC * [Fe(5Cl-salpet)NCS], SC T/K 0 50 100 150 200 250 300 0 1 2 3 4 5 6 -[Fe(1anapet)NCS], HS -[Fe(1anapet)NCS], SC * [Fe(2anapet)NCS], SC [Fe(napet)NCS].MeCN, SC  e ff / B HS HS SC SC SC SC SC Fig. 18. Comparison of the spin states in complexes of [FeIIIL5X] type. Top – fixing the Schiff-base ligand and varying coligand; bottom – varying the Schiff-base ligand and fixing the coligand NCS-. HS – high spin, SC – spin crossover, LS – low spin. For details consult Table 2. Nova Biotechnol Chim (2020) 19(2): 138-153 151 Table 2. Retrieved thermodynamic parameters for spin crossover systems.a Compound T1/2 H S J 1h [Fe(3EtO-salpet)NCS] 84 82 0.9 12 98 2 [Fe(5Br- salpet)N3]·MeOH 142 1.6 11 76 3 [Fe(5Cl-salpet)NCS] 280 5.8 21 180 4 [Fe(5Cl-salpet)NCSe] 293 6.5 22 197 5 [Fe(5Br-salpet)NCSe] 326 6.0 18 215 6 [Fe(salpet)atz] 416 15 37 284 7i,h -[Fe(1anapet)NCS] 44 40 1.6 4 82 8 [Fe(2anapet)NCS] 114 1.6 14 52 9h [Fe(napet)N3]MeOH 122 117 1.5 11 99 10 [Fe(napet)NCS]MeCN 151 1.9 12 87 11 [Fe(napet)NCO] 155 2.5 16 102 12 [Fe(napet)NCSe]MeC N 170 2.3 13 99 13 [Fe(napet)NCS] 186 3.3 18 150 14i [Fe(5Cl-saldpt)py]BPh4 78 0.4 6 63 15 [Fe(3MeO-saldpt)py] BPh4 273 4.5 17 90 16 [Fe(saldpt)py]BPh4 310 5.4 17 150 a Spin crossover between S = 1/2 and S = 5/2; h – spin crossover with hysteresis; i – spin crossover between intermediate spin S = 3/2 and S = 5/2. Data of 6 and 7 was omitted in the statistical analysis. Units: T1/2/K; H/kJ mol-1;S/J K-1 mol-1; (J/kB)/K. Taken from (Boča et al. 2000; Šalitroš et al. 2009; Nemec et al. 2011; Krüger et al. 2013, 2015; Masárová et al. 2015). The results obtained by the cluster analysis are shown in Fig. 20. It can be seen that the complexes under study span two clusters: the cluster 1 is formed by complexes for which below-room temperature spin crossover was observed (No. 1, 2, Dendrogram Ward's Method,Squared Euclidean 0 3 6 9 12 15 18 D is ta n c e 1 2 3 4 589 1 0 1 1 1 2 1 3 1 4 1 5 1 6 Fig. 20. Dendogram of the cluster analysis (using Ward’s method and squared Euclidean distance) for complexes numbered according to Table 2. 8, 9, 10, 12 and 14). The remaining complexes span the cluster No 2 and they show near- or above- room temperature spin transition. The PCA analysis yields the biplots of principal components shown in Fig. 21. It is seen that the transition temperature T1/2 closely relates to the enthalpy and entropy of the spin transition whereas a correlation with cooperativeness J does not exist. The biplot on the right shows the objects spanning into individual clusters which are well separated between two principal components. Finally, the Pearson correlation evaluates the correlation coefficients for each pair of variables. It is found that T1/2 – H pair possesses a high correlation coefficient r = 0.97. As already indicated by CA and PCA analysis, the correlation of the cooperativeness with the remaining parameters is weak. The transition temperature and the transition entropy are plotted vs the transition enthalpy along with the regression curve. H J Biplot -4 -2 0 2 4 Component 1 -1.5 -1 -0.5 0 0.5 1 1.5 C o m p o n e n t 2 Tc S Component 1 C o m p o n e n t 2 Plot of PCOMP_2 vs PCOMP_1 -4 -2 0 2 4 -1.5 -1 -0.5 0 0.5 1 1.5 CLUSTNUMS 1 2 Fig. 21. Results of Principal component analysis. Top – a biplot with a ray diagram, bottom – individual complexes classified by the clusters. Nova Biotechnol Chim (2020) 19(2): 138-153 152 H /kJ mol -1 0 1 2 3 4 5 6 7  S / J K -1 m o l- 1 0 5 10 15 20 25 H /kJ mol -1 0 1 2 3 4 5 6 7 T 1 /2 /K 0 50 100 150 200 250 300 350 400 Fig. 22. Linear correlations T1/2 vs H and S vs H. The confidence intervals (95 %) are drawn as dashed curves. According to Fig. 22 the linear relationship is now confirmed. The aspects discussed in the present communication are only a part of the huge story, as documented by a number of alterative models and plethora of experiments about the spin crossover phenomenon. Alternative views were comprehensively presented in recent articles (Enachescu et al. 2018; Nicolazzi et al. 2018; Pavlik et al. 2018). Conclusions The spin crossover behaviour is based upon a fine tuning of the crystal field strengths balancing the interelectron repulsion. The spin orbit coupling, however, also plays an important role. Ideal thermodynamic behaviour, as described by the regular solution&domain model, is further modified by the interactions in the solid state that are considered as the solid-state cooperativeness. The role of the cooperativeness is analogous to the role of the activity in solution models: it allows using the equation for the ideal system but instead of the mole fraction xH, an effective mole fraction J·xH is in the play. The nature of the cooperativeness lies in the electronic (chemical) and nuclear (physical) hardness. Thermo-dynamic data about H and S can be obtained not only from the direct calorimetric measurements but also from an appropriate model of the spin crossover adapted to the magnetic data analysis. These parameters are mutually interrelated through the transition temperature T1/2 as proven by the multivariate statistical analysis. Acknowledgments Grant agencies of Slovakia are acknowledged for the financial support (projects VEGA 1/0013/18 and APVV 16-0039). Conflict of Interest The author declares that he has no conflict of interest. References Adler P, Wiehl L, Meibner E, Köhler CP, Spiering H, Gütlich P (1987) The influence of the lattice on the spin transition in solids. Investigations of the high spin ag low spin transition in mixed crystals of [FexM1−x(2−pic)3]C12·MeOH. J. Phys. Chem. Solids 48: 517-525. Augustín P, Boča R (2015) Magnetostructural relationships for Fe(III) spin crossover complexes. Nova Biotechnol. Chim. 14: 96-103. Bari RA, Sivardière J (1972) Low-spin-high-spin transitions in transition-metal-ion compounds. Phys. Rev. B5: 4466. Boča R (2006) Magnetic functions beyond the Spin- Hamiltonian. In Mingos DPM (Eds.), Structure and Bonding, 117, Springer, Berlin, Heidenberg, pp. 288. Boča R (2016) Program MIF&FIT. © University of SS Cyril and Methodius in Trnava, Trnava, unpublished, personal ownership. Boča R, Boča M, Dlháň K, Falk H, Fuess H, Haase W, Jaroščiak R, Papánková B, Renz F, Vrbová M, Werner R. (2001) Strong cooperativeness in the mononuclear iron(II) derivative exhibiting an abrupt spin transition above 400 K. Inorg. Chem. 40: 3025-3033. Boča R, Boča M, Ehrenberg H, Fuess H, Linert W, Renz F, Svoboda I (2003) Spin crossover in iron(II) tris(2-(2′- pyridyl)benzimidazole) complex monitored by variable temperature methods: synchrotron powder diffraction, DSC, IR spectra, Mössbauer spectra, and magnetic susceptibility. Chem. Phys. 293: 375-395. Boča R, Fukuda Y, Gembický M, Herchel R, Jarošiak R, Linert W, Renz F, Yuzurihara J (2000) Spin crossover in mononuclear and binuclear iron(III) complexes with pentadentate Schiff-base ligands. Chem. Phys. Lett. 325: 411-419. Boča R, Herchel R (2015) Program TERMS. © University Nova Biotechnol Chim (2020) 19(2): 138-153 153 of SS Cyril and Methodius in Trnava, Trnava, unpublished, personal ownership. Bousseksou A, Constant-Machado H, Varret F (1995) A simple ising-like model for spin conversion including molecular vibrations. J. Phys. I5: 747-760. Cantin C, Kliava J, Marbeuf A, Mikailitchenko D (1999) Cooperativity in a spin transition ferrous polymer: Interacting domain model, thermodynamic, optical and EPR study. Eur. Phys. J. B12: 525-540. Enachescu C, Nicolazzi W (2018) Elastic models, lattice dynamics and finite size effects in molecular spin crossover systems. C R Chim. 21: 1179-1195. Koudriavtsev AB (1999) A modified Bragg and Williams approximation of the two-step spin crossover. Chem. Phys. 241: 109-126. Krüger C, Augustín P, Dlháň Ľ, Pavlik J, Moncoľ J, Nemec I, Boča R, Renz F (2015) Iron(III) complexes with pentadentate Schiff-base ligands: Influence of crystal packing change and pseudohalido coligand variations on spin crossover. Polyhedron 87: 194-201. Krüger C, Augustín P, Nemec I, Trávníček Z, Oshio H, Boča R, Renz F (2013) Spin crossover in iron(III) complexes with pentadentate Schiff base ligands and pseudohalido coligands. Eur. J. Inorg. Chem. 2013: 902-915. Masárová P, Zoufalý P, Moncol J, Nemec I, Pavlik J, Gembický M, Trávníček Z, Boča R, Šalintoš I (2015) Spin crossover and high spin electroneutral mononuclear iron(III) Schiff base complexes involving terminal pseudohalido ligands. New J. Chem. 39: 508-519. Nakamoto T, Tan Z-C, Sorai M (2001) Heat capacity of the spin crossover complex [Fe(2-pic)3]Cl2·MeOH:  a spin crossover phenomenon with weak cooperativity in the solid state. Inorg. Chem. 40: 3805-3809. Nemec I, Herchel R., Boča R, Trávníček Z, Svoboda I, Fuess H, Linert W (2011) Tuning of spin crossover behaviour in iron(iii) complexes involving pentadentate Schiff bases and pseudohalides. Dalton Trans. 40: 10090-10099. Nicolazzi W, Bousseksou A (2018) Thermodynamical aspects of the spin crossover phenomenon. C R Chim. 21: 1060- 1074. Pavlik J, Linares J (2018) Microscopic models of spin crossover. C R Chim. 21: 1170-1178. Person RG (2005) Chemical hardness and density functional theory. J. Chem. Sci. 117: 369-377. Rao PS, Ganguli P, McGarvey BR (1981) Proton NMR study of the high-spin-low-spin transition in Fe(phen)2(NCS)2 and Fe(pic)3Cl2.(EtOH or MeOH). Inorg. Chem. 20: 3682- 3688. Šalintoš I, Boča R, Dlháň Ľ, Gembický M, Kožíšek J, Linares J, Moncoľ J, Nemec I, Perašínová L, Renz F, Svoboda I, Fuess H (2009) Unconventional spin crossover in dinuclear and trinuclear iron(III) complexes with cyanido and metallacyanido bridges. Eur. J. Inorg. Chem. 21: 3141-3154. Sen KD (1993) Chemical hardness. In Structure and bonding, Vol. 80, Springer, Berlin, Heidenberg, 257 p. Sen KD, Jorgensen CK (1987) Electronegativity. In Structure and bonding, Vol. 66, Springer, Berlin, Heidenberg, 198 p. Slichter CP, Drickamer HG (1972) Pressure‐induced electronic changes in compounds of iron. J. Chem. Phys. 56: 2142. Sorai M, Seki S (1974) Phonon coupled cooperative low-spin 1A1high-spin 5T2 transition in [Fe(phen)2(NCS)2] and [Fe(phen)2(NCSe)2] crystals. J. Phys. Chem. Solids 35: 555-570. Spiering H, Meissner E, Köppen H, Müller EW, Gütlich P (1982) The effect of the lattice expansion on high spin ⇌ low spin transitions. Chem. Phys. 68: 65-71. Statgraphics Centurion XV. © Statpoint Inc., 2006. Wajnflasz J (1970) Etude de la transition „Low Spin”-„High Spin” dans les complexes octaédriques d'ion de transition. J. Phys. Stat. Sol. 40: 537-545. Wass JA (1999) Mathematica 4.0. Science 286, p. 2291. Zimmermann R, König E (1977) A model for high-spin/low spin transitions in solids including the effect of lattice vibrations. J. Phys. Chem. Solids 38: 779-788.