ISDS Annual Conference Proceedings 2019. This is an Open Access article distributed under the terms of the Creative Commons AttributionNoncommercial 4.0 Unported License (http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Online Journal of Public Health Informatics * ISSN 1947-2579 * http://ojphi.org * 11(1): e374, 2019 ISDS 2019 Conference Abstracts Assessing the burden of arboviral diseases using a multiplexed serological survey in French Guiana Claude Flamand1, Camille Fritzell1, Lena Berthelot1, Jessica Vanhomwegen2, Sarah Bailly1, Nathanael Hoze2, Severine Matheus1, Antoine Enfissi1, Henrik Salje2, Felix Djossou3, Sandrine Fernandes-Pellerin2, Mirdad Kazanji1, Simon Cauchemez2, Dominique Rousset1 1 Epidemiology unit, Institut Pasteur in French Guiana, Cayenne, French Guiana, 2 Institut Pasteur of Paris, Paris, France, 3 Cayenne Hospital Center, Cayenne, French Guiana Objective To assess the level of circulation of DENV, CHIKV, ZIKV, MAYV in French Guiana. Introduction Arboviral infections have become a significant public health problem with the emergence and re-emergence of arboviral diseases worldwide in recent decades [1-6]. Given the increasing number of cases, geographic spread, but also health, social and economic impact of arboviral outbreaks, estimating their true burden represents a crucial issue but remains a difficult task [7-10]. In French Guiana, the epidemiology of arboviral diseases has been marked by the occurrence several major dengue fever (DENV) outbreaks over the past few decades, recent emergences of Chikungunya (CHKV) and Zika virus (ZIKV) and the circulation of Mayaro virus (MAYV) [11-14]. Methods To assess antibody seroprevalence against DENV, CHIKV, ZIKV, MAYV a random 2-stage household cross-sectional survey was conducted among the general population. We enrolled 2,697 individuals aged 1-87 years from June 1 to 12 October 2017. We performed detection of DENV, CHIKV, ZIKV, MAYV IgG antibodies on collected blood samples using a microsphere immunoassay (MIA). Socio-economic data, environmental variables and exposure to mosquitoes, perceptions of the illness and risk of contracting arboviral infections were collected using a standardized questionnaire administrated to all individuals included in the survey. Cross-reactivity between same families of viruses was taking into account using seroneutralisation and modeling approaches. Results Overall seroprevalence rates for antibodes against DENV were 69.5% [66.4%-72.5%] and differed significantly according to age and geographical area. Seroprevalence rates of CHIKV, ZIKV and MAYV antibodies were respectively 19.3% [16.5% -22.5%], 23.1% [19.5%-27.2%] and 9.6% [8.1%-11.3%] and did not differed significantly according to gender or age. The distribution of seroprevalence rates for CHIKV, ZIKV antibodies differed from extrapolations obtained from routine surveillance systems and brings valuable information to assess the epidemic risk of future outbreaks. MAYV has been circulating in the southern part of FG, at levels that appear to be substantially higher than those estimated from epidemiological and virological surveillance. Conclusions Serological surveys provide the most direct measurement for defining the immunity landscape for infectious diseases, but the methodology remains difficult to implement particularly in the context of high cross-reactivity between flaviviruses or alphaviruses [15]. The development of reliable, rapid and affordable diagnosis tools and the use of innovative modeling approaches represent a significant issue concerning the ability of seroprevalence surveys to differentiate infections when multiple viruses co-circulate. http://ojphi.org/ ISDS Annual Conference Proceedings 2019. This is an Open Access article distributed under the terms of the Creative Commons AttributionNoncommercial 4.0 Unported License (http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Online Journal of Public Health Informatics * ISSN 1947-2579 * http://ojphi.org * 11(1): e374, 2019 ISDS 2019 Conference Abstracts Acknowledgement This study was supported by the 2014–2020 European Regional Development Fund under EPI-ARBO grant agreement (GY0008695), by the Centre National d'Etudes Spatiales and by the Regional Helath Agency of French Guiana. We also acknowledges funding from Calmette and Yersin allocated by the Pasteur Institut Department of International Affairs. References 1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, et al. 2013. The global distribution and burden of dengue. Nature. 496(7446), 504-07. PubMed https://doi.org/10.1038/nature12060 2. Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, et al. 2016. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis. 16(6), 712-23. PubMed https://doi.org/10.1016/S1473-3099(16)00026-8 3. Brathwaite Dick O, San Martín JL, Montoya RH, del Diego J, Zambrano B, et al. 2012. The history of dengue outbreaks in the Americas. Am J Trop Med Hyg. 87(4), 584-93. PubMed https://doi.org/10.4269/ajtmh.2012.11-0770 4. Petersen LR, Jamieson DJ, Powers AM, Honein MA. 2016. Zika Virus. N Engl J Med. 374(16), 1552-63. PubMed https://doi.org/10.1056/NEJMra1602113 5. Staples JE, Breiman RF, Powers AM. 2009. Chikungunya fever: an epidemiological review of a re-emerging infectious disease. Clin Infect Dis. 49(6), 942-48. PubMed https://doi.org/10.1086/605496 6. Duffy MR, Chen T-H, Hancock WT, Powers AM, Kool JL, et al. 2009. Zika Virus Outbreak on Yap Island, Federated States of Micronesia. N Engl J Med. 360(24), 2536-43. PubMed https://doi.org/10.1056/NEJMoa0805715 7. Donoso Mantke O, Lemmer K, Biel SS, Groen J, Schmitz H, et al. 2004. Quality control assessment for the serological diagnosis of dengue virus infections. J Clin Virol. 29(2), 105-12. PubMed https://doi.org/10.1016/S1386-6532(03)00110-0 8. Noden BH, Musuuo M, Aku-Akai L, van der Colf B, Chipare I, et al. 2014. Risk assessment of flavivirus transmission in Namibia. Acta Trop. 137, 123-29. PubMed https://doi.org/10.1016/j.actatropica.2014.05.010 9. Martins AC, Pereira TM, Oliart-Guzmán H, Delfino BM, Mantovani SAS, et al. 2014. Seroprevalence and Seroconversion of Dengue and Implications for Clinical Diagnosis in Amazonian Children, Seroprevalence and Seroconversion of Dengue and Implications for Clinical Diagnosis in Amazonian Children. Interdiscip Perspect Infect Dis. 2014, e703875. PubMed https://doi.org/10.1155/2014/703875 10. Conlan JV, Vongxay K, Khamlome B, Jarman RG, Gibbons RV, et al. 2015. Patterns of Flavivirus Seroprevalence in the Human Population of Northern Laos. Am J Trop Med Hyg. 93(5), 1010-13. PubMed https://doi.org/10.4269/ajtmh.15-0072 11. Flamand C, Quenel P, Ardillon V, Carvalho L, Bringay S, et al. 2011. The epidemiologic surveillance of dengue-fever in French Guiana: when achievements trigger higher goals. Stud Health Technol Inform. 169, 629-33. PubMed 12. Adde A, Roucou P, Mangeas M, Ardillon V, Desenclos J-C, et al. 2016. Predicting Dengue Fever Outbreaks in French Guiana Using Climate Indicators. PLoS Negl Trop Dis. 10(4), e0004681. PubMed https://doi.org/10.1371/journal.pntd.0004681 13. Fritzell C, Raude J, Adde A, Dusfour I, Quenel P, et al. 2016. Knowledge, Attitude and Practices of Vector- Borne Disease Prevention during the Emergence of a New Arbovirus: Implications for the Control of Chikungunya Virus in French Guiana. PLoS Negl Trop Dis. 10(11), e0005081. PubMed https://doi.org/10.1371/journal.pntd.0005081 http://ojphi.org/ https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23563266&dopt=Abstract https://doi.org/10.1038/nature12060 https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26874619&dopt=Abstract https://doi.org/10.1016/S1473-3099(16)00026-8 https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23042846&dopt=Abstract https://doi.org/10.4269/ajtmh.2012.11-0770 https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27028561&dopt=Abstract https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27028561&dopt=Abstract https://doi.org/10.1056/NEJMra1602113 https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19663604&dopt=Abstract https://doi.org/10.1086/605496 https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19516034&dopt=Abstract https://doi.org/10.1056/NEJMoa0805715 https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14747029&dopt=Abstract https://doi.org/10.1016/S1386-6532(03)00110-0 https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24865792&dopt=Abstract https://doi.org/10.1016/j.actatropica.2014.05.010 https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25548558&dopt=Abstract https://doi.org/10.1155/2014/703875 https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26304925&dopt=Abstract https://doi.org/10.4269/ajtmh.15-0072 https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21893824&dopt=Abstract https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27128312&dopt=Abstract https://doi.org/10.1371/journal.pntd.0004681 https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27802275&dopt=Abstract https://doi.org/10.1371/journal.pntd.0005081 ISDS Annual Conference Proceedings 2019. This is an Open Access article distributed under the terms of the Creative Commons AttributionNoncommercial 4.0 Unported License (http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Online Journal of Public Health Informatics * ISSN 1947-2579 * http://ojphi.org * 11(1): e374, 2019 ISDS 2019 Conference Abstracts 14. Flamand C, Fritzell C, Matheus S, Dueymes M, Carles G, et al. 2017. The proportion of asymptomatic infections and spectrum of disease among pregnant women infected by Zika virus: systematic monitoring in French Guiana, 2016. Euro Surveill. 22(44), 17-00102. PubMed https://doi.org/10.2807/1560- 7917.ES.2017.22.44.17-00102 15. Fritzell C, Rousset D, Adde A, Kazanji M, Van Kerkhove MD, et al. 2018. Current challenges and implications for dengue, chikungunya and Zika seroprevalence studies worldwide: A scoping review. PLoS Negl Trop Dis. 12(7), e0006533. PubMed https://doi.org/10.1371/journal.pntd.0006533 http://ojphi.org/ https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29113627&dopt=Abstract https://doi.org/10.2807/1560-7917.ES.2017.22.44.17-00102 https://doi.org/10.2807/1560-7917.ES.2017.22.44.17-00102 https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30011271&dopt=Abstract https://doi.org/10.1371/journal.pntd.0006533