Peruvian Journal of Agronomy 4(3): 121–133 (2020) ISSN: 2616-4477 (Versión electrónica) DOI: http://dx.doi.org/10.21704/pja.v4i3.1495 http://revistas.lamolina.edu.pe/index.php/jpagronomy/index © The authors. Published by Universidad Nacional Agraria La Molina Received for publication: 04 September 2020 Accepted for publication: 20 November 2020 Fall armyworm (Spodoptera frugiperda): A threat in crop production in Africa and Asia El cogollero del maíz (Spodoptera frugiperda): Una amenaza en producción de cultivos en Africa y Asia Kripa Adhikari1*; Sudip Bhandari1; Laxmi Dhakal1; Jiban Shrestha2 *Corresponding author: kripaadhikary9@gmail.com https://orcid.org/0000-0002-3179-8559 Abstract Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), Fall Armyworm (FAW) is a crop pest with more than 80 host species causing severe damage to maize cereals. FAW, native to the tropical and subtropical region of America, has rapidly spread worldwide. The larvae and adults of FAW damage young leaves, leaf whorls, tassels or cobs of maize. Under heavy infestation of FAW cause 50-80% yield loss in maize crop. This pest is capable of rapidly breeding, migrating and feeding on a large variety of host plants, making it very difficult to monitor. However, there are several control measures reported in various countries. Integrated pest management (cultural, chemical, and biological) is widely used to control this pest. Because the pest has become resistant to many insecticides, its use is not recommended at the initial stages of infestation. But, the last choice for this seriously infested pest management is the use of pesticides below the economic threshold level. This review focuses on insect distribution, biology, maize damage, and possible strategies for its management. Keywords: Fall armyworm, maize, Integrated Pest Management. Resumen El cogollero del maíz (FAW, por sus siglas en inglés), Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) es la plaga esporádica que tiene más de 80 especies huéspedes y que causa graves daños al cultivo de maíz. La FAW, originaria de la región tropical y subtropical de América, se está extendiendo rápidamente en todo el mundo. Las larvas y los adultos de FAW dañan las hojas jóvenes, los verticilos de las hojas, las borlas o las mazorcas del maíz. Bajo una fuerte infestación de FAW causan 50-80% de pérdida de rendimiento en los cultivos. Esta plaga tiene la capacidad de reproducirse rápidamente, migrar y alimentarse de una amplia gama de plantas hospederas, lo que la hace muy difícil de controlar. Sin embargo, se han notificado varias medidas de control en varios países. El manejo integrado de plagas (cultural, químico y biológico) se utiliza comúnmente para controlar esta plaga. Dado que la plaga se ha hecho resistente a muchos insecticidas, no se recomienda su uso en las etapas iniciales de la infestación. Sin embargo, la última opción para su manejo en caso de infestación grave es el uso de plaguicidas por debajo del nivel de umbral económico. Esta evaluación se centra en la distribución de los insectos, la biología, los daños al maíz y las posibles estrategias de gestión. Palabras clave: Gusano cogollero del maíz, maíz, Manejo Integrado de Plagas. 1 Tribhuvan University, Institute of Agriculture and Animal Science, Prithu Technical College, Deukhuri, Dang, Nepal 2 Nepal Agricultural Research Council, National Plant Breeding and Genetics Research Centre, Khumaltar, Lalitpur, Nepal Cite this review: Adhikari, K., Bhandari, S., Dhakal, L.,& Shrestha, J. (2020). Fall armyworm (Spodoptera frugiperda): A threat in crop production in Africa and Asia. Peruvian Journal of Agronomy, 4(3), 121–133. http://dx.doi.org/10.21704/pja.v4i3.1495 Introduction Maize (Zea mays) is one of the world’s major cereal crops because of its high importance as a staple food and its stover need for animal feed and fuel (Abebe et al., 2017). Maize is also called as a queen of cereals and miracle crops because of its immense potential (Jeyaraman, 2017). The crop is rich in nutrients containing approximately 72% starch, 10% protein, and 4% fat, supplying an energy density of 365 Kcal/100 g (Ranum et al., 2014). In recent years, the productivity of maize is getting lower than its potential due to many biotic and environmental constraints. Prominent among such constraints are pests and disease which reduces the production and yield of the crop. Many insects Fall armyworm (Spodoptera frugiperda): A threat in crop production in Africa and Asia September - December 2020 122 are directly responsible for the damage and reduction in yield of maize. Fall armyworm (FAW) is considered as the most important and devastating insect pest causing severe damage to maize crops (Ayala et al., 2013). It is a noctuid moth pest native to America’s tropical and subtropical areas (Luginbill, 1928; Pogue, 2002; Early et al., 2018). The spread of the pest then began rapidly and almost all Sub Saharan African countries were invaded by 2017 (Day et al., 2017). FAW moth performs migratory habit as well as localized dispersal habit. Until oviposition, the moth will migrate over 500 km (300 miles) (Prasanna et al., 2018). The strong-flying ability of adults (100 km per night) and high reproduction rate has spread its population rapidly, hence causes serious consequences (Food and Agriculture Organization [FAO], 2019). FAW is a polyphagous insect with several hosts species (Roger et al., 2017) and has the ability to cause severe famine since its hosts are the main staple food crops (Daily Nation, 2018). It results in loss of photosynthetic area, slower or impaired reproduction, grain damage, structural damages, and lodging of the maize plant (Chimweta et al., 2019). Two strains of FAW are mostly prevalent namely the rice and the maize strains (Adamczyk et al., 1997). Among these, the maize strain is most prevalent and causes serious damage to maize. Since maize is the staple food for many people across the world, proper control and management of FAW are required before it does great damage to the crop fields. Despite heavy concerns of scientists, fall armyworm is spreading rapidly in many countries all over the world for the last two years (FAO, 2018). Thus, proper knowledge of insect biology, host range and management practices are needed to control the insect (Rwomushana et al., 2018). Therefore, the main aim of this review is to highlight the status and control measures in maize field of this devastating and challenging pest. Distribution of FAW Fall Armyworm is a threatening pest and a major concern for the researchers worldwide. The global distribution of fall armyworm in different continents is given is Table 1. Being native to America, FAW was first recorded in early 2016 in Central and Western Africa (Goergen et al., 2016). In Asia, Indian state of Karnataka at College of Agriculture, recorded the new invasive pest FAW in May, 2018 (Kalleshwaraswamy et al., 2018). In July 2018, 70% of maize fields in Chikkabalpura district of Karnataka were affected with FAW as reported by the Indian Council of Agricultural Research (ICAR). The infestation was seen in maize and sugarcane in other five states namely: Tamil Nadu, Telangana, Andra Pradesh, Maharashtra and West Bengal within less than five months of infestation in Karnataka (Bhosale, 2018). In June, 2018 FAW larvae were first identified in Srilanka in Damana area of Ampara district of Eastern Province. In Bangladesh the FAW larvae were firstly recorded for in different districts in two different crops cabbage and maize by the Bangladesh Agriculture Research Institute. In Nepal, the first case of Fall Armyworm was documented from Nawalparasi district on 9 May, 2019 and then it was seen in the neighboring district Chitwan (Bajracharya & Bhat, 2019). After a few months the infestation was also seen in the districts like Kavre, Sarlahi, Sindupalchowk, and Bhojpur. By early 2019, it subsequently appeared in additional Asian countries: Myanmar, Thailand, China, Vietnam, Malaysia, Japan and Indonesia. Japan reported the presence of FAW in July 2019 (FAO, 2019). FAW Hosts A huge number of cultivated plant species are threatened by Spodoptera frugiperda (Casmuz et al., 2010). Severe infestation is caused on its primary hosts, maize and sorghum and other monoculture crops like soybean and cotton (Pitre & Hogg, 1983; Bueno et al., 2011). Serious invasion is caused on the cereals and forages and FAW caterpillars feed on about 186 plant species from 42 diverse families (Casmuz et al., 2010). It causes severe damage to maize (Zea mays L.), sorghum (Sorghum bicolor L., Moench), rice (Oryza sativa), cotton (Gossypium hirsutum L.), potato (Solanum tuberosum L.), vegetables, as well as other cultivated and wild plant species (Goergen et al., 2016). The favourite hosts of FAW are bermuda grass (Cynodon dactylon L., Pers.) and Peanut (Arachis hypogea L.) (Sparks, 1979) (Table 2). Biology of FAW Spodoptera frugiperda is a holometabolous insect with a high rate of reproduction. Warm, humid temperature with heavy rainfall is suitable for survival and multiplication as the insect cannot develop below 10°C. Its life-cycle composes four advancement stages viz. egg, six larval instars, pupae and adult, and is completed within about a month in summer, but 2 months in the spring and autumn, and about 3 months in the winter (Reinert & Engelke, 2010). FAW is reproductively active in tropical, where the insect can produce 10 generations per year than temperate where the generation per year is two or fewer (Chhetri & Acharya, 2019; Metcalf et al., 1965). The life cycle of FAW begins when the adult female lays eggs on the upper or underside of leaves, more commonly Continent Total Number of Countries per Continent No of Countries (Incidence of FAW) Africa 54 47 Asia 48 17 Europe 44 4 North America 23 23 Oceania 14 1 South America 13 13 Table 1. Global distribution of FAW. Source: CABI, 2020 K. Adhikari; S. Bhandari; L. Dhakal; J. Shrestha Peruvian Journal of Agronomy 4(3): 121–133 (2020) 123 near the base junction of leaf and stem on the underside of leaves (Jarrod et al., 2015). The number of laid eggs per mass can vary between 150 to 200 (Prasanna et al., 2018). A single female can lay from 1500 to over 2000 (maximum) eggs (Igyuve et al., 2018). The newly deposited eggs are dome shaped with flattened base measuring 0.4mm in diameter and 0.3 mm in height (Jarrod et al., 2015). Eggs are pale yellow or creamy white in color then turn to light brown before hatching where female covers the egg mass with downy materials (a layer of scales) that gives Common name Scientific name Family References Peanut Arachis hypogea L. Fabaceae Sparks (1979); Yu (1982) Bermuda grass Cynodon dactylon (L.) Pers. Poaceae Sparks (1979) Maize Zea mays L. Poaceae Paulillo et al. (2000); FAO (2018) Sweet corn Zea mays saccharata (L.) Sturt Poaceae Meagher et al. (2016); Seal (2018); Jeger et al. (2018); Chormule et al. (2019) Sugarcane Saccharaum officinarum L. Poaceae Chormule et al. (2019) Sorghum Sorghum bicolor (L.) Moench Poaceae Fuller et al. (1997); Chormule et al. (2019) Rice Oryza sativa L. Poaceae Stout et al. (2009); Whitford et al. (2015), FAO (2017) Wheat Triticum aestivum L. Poaceae Murúa et al. (2008); Pitre et al. (1983) Millet Pennisatum americanum L. Poaceae Ríos-Díez and Saldamando-Benjumea (2011), FAO (2017) Oat Avena sativa L. Poaceae Silva et al. (2017) Barley Hordeum vulgare L. Poaceae Alfonso et al. (1997) Rye grass Lolium perenne L. Poaceae Pitre and Hogg (1983) Para grass Brachiaria mutica L. Poaceae Ashley et al. (2006); de Sa et al. (2009) Cotton Gossypium hirsutum L. Malvaceae Hardke et al. (2015) Cowpea Vigna unguiculata (L.)Walp Fabaceae Yu (1982) Soybean Glycine max (L.) Merril Fabaceae Yu (1982) Chickpea Cicer arietinum L. Fabaceae Montezano et al. (2018) Potato Solanum tuberosum L. Solanaceae Yu (1982) Cucumber Cucumis sativus L. Cucurbitaceae Yu (1982); Montezano et al. (2018) Cabbage Brassica oleracea var. capitata L. Brassicaceae Montezano et al. (2018) Mustard Brassica juncea L. Brassicaceae Yu (1982) Turnip Brassica rapa L. Brassicaceae Yu (1982) Onion Allium cepa L. Amaryllidaceae Fernandes et al. (2012) Beet Beta vulagris var. vulagaris L. Amaranthaceae Montezano et al. (2018) Sweet Potato Ipomoea batatas (L.) Lam. Convolvulaceae Montezano et al. (2018) Alfalfa Medicago sativa L. Fabaceae Murúa et al. (2008) Tobacco Nicotiana tabacum Solanaceae Leal-Bertioli et al. (2003); Martinelli et al. (2007) Tomato Solanum lycopersicum (L.) Mill. Solanaceae Rojas et al. (2003) Table 2: Common feeding host of Spodoptera frugiperda. Fall armyworm (Spodoptera frugiperda): A threat in crop production in Africa and Asia September - December 2020 124 moldy appearance (Kalleshwaraswamy et al., 2018) The pre-oviposition period of this insect ranges from 3-4 days depending on temperature. The incubation period of the egg was found to be only 2 days at 30°C (Garcia et al., 2017). Depending upon temperature and climatic conditions, during the summer, larva completes its stage in about 14 days and 30 days during winter (Capinera, 2002). Young larvae are generally greenish with black head turning to brownish body with reddish brown head of the sixth instars. The mature larvae also contain a white inverted ‘Y’shaped mark in the face (Oliver & Chapin,1981). Rearing the larvae at 25°C, mean development of instar from first to sixth stage takes 3.3, 1.7, 1.5, 2.0 and 3.7 days respectively (Pitre & Hogg, 1983). Pupation typically occurs at a depth 2 to 8 cm below the soil (Capinera, 2002) but also can take place in the reproductive part of maize such as mature maize ears. The larvae create a cocoon, oval in form and length of 20-30mm, by adding silk to soil particles after eating voraciously for 2-3 weeks. A reddish brown pupae of 14 to 18 mm length and 4.5 mm width dwells inside the cocoon (Igyuve et al., 2018). The pupal stage is completed in 9-12 days (Rwomushana et al., 2018). Debora et al. (2017) reported the pupal period of S. frugiperda on maize was found to be 8.54 days. Adult female is larger than male with a body length of 1.7 cm a wingspan of 3.8 cm. The males have the body length of 1.6 cm and 3.7 cm wingspan. The male forewing is mottled with a discal cell having straw color on three quarters and dark brown on one quarter of the area having triangular white spots at the tip and near the middle of the wing (Bhushal & Chapagain, 2020). The females forewing are less distinctly marked, ranging from a uniform greyish brown to a little grey brown mottling. Both male and female contain hindwing with straw colour having dark brown margin (Igyuve et al., 2018). Economic importance and damage of FAW Spodoptera frugiperda, being a major pest of the maize field, have been responsible for 40-70% of overall maize yield loss in Africa (Day et al., 2017). Late planted fields and later maturing hybrids are more likely to become infested. The favorable environment condition with the constant fecundity of the pest leads to the severe damage of the crop (Goergen et al., 2016). Larvae are voracious feeders and feed whorls of young leaves, ears and tassels, depending on the growth stages, causing a huge damage to the host (Sarmento et al., 2002). When the larval population rises; they defoliate every plant that comes on their way (Bhushal & Chapagain, 2020). Typical damage signs of FAW larvae are the presence of holes in the maize leaves due to the feeding of epidermal tissues (Sisay et al., 2019). Larger larvae entirely section the stem seedlings (Goergen et al., 2016) and feed on the kernels and cob decreasing the yield and quality of the maize grains (Capinera, 2017). The outcome recorded by Hruska and Gould (1997) revealed that 55-100% S. frugiperda infestation during the mid-to-late corn stage resulted in 15-73 percent yield losses Nicaragua. Over 12 African countries reported the loss of 8.3-20.6 million tons of maize annually due to FAW infestation (Day et al., 2017). Similarly, America revealed about 39% yield loss in maize due to FAW damage (Cruz et al., 2012). Studies have shown that less than 1% of the total area planted with maize had been affected in China but there is an increasing risk that FAW could spread to various parts of China (FAO, 2019). In India, infestation level has been documented upto 49.2% on maize (Chormule et al., 2019; Deole & Paul, 2018; Dhar et al., 2019) except 100% infestation has been reported from Karnataka (Mallapur et al., 2018). In Srilanka, 50% of the maize-grown area was affected and 10% of originally anticipated production was lost due to FAW infestation (FAO, 2019). In Nepal, loss by fall armyworm had reached up to 70% without control measures and 20-30% with control measures (National Plant Protection Organization [NPPO], 2019). Any official estimation of losses due to FAW in many South Asian countries are not currently available. Integrated pest management of FAW IPM (Integrated Pest Management) is an integrated pest control strategy for preventing insect pests and their damage. Practice of IPM mainly incorporate the use of biological, cultural physical methods of pest control (Prasanna et al., 2018). IPM highlights the growth of healthy crop with the minimum damage to agro-ecosystems and encourages various mechanisms for natural pest control. IPM is the best option for FAW management (Day et al., 2017). The devastating loss caused by FAW forced farmers to use chemicals directly rather than the IPM methods in Nepal (Bhushal & Chapagain, 2020). However, this pest can be managed in the incidence phase by the use of IPM practices. A technical guide for IPM was published in Africa by International Maize and Wheat Improvement Center (CIMMYT, 2018). Cultural practices for managing FAW Cultural practices are most efficient for controlling FAW infestation. Avoiding late season planting, avoiding staggered planting, planting early maturing variety reduces the infestation as the maize are severely affected by FAW during late season. FFS (Farmer Field Study) in Kenya revealed high infestation of FAW during late planting maize compared to earlier planted crops, in January 2018 (Pechan et al., 2000). Invasion of FAW can also be minimized by maize intercropping and crop rotation with non-host crops like bean and sunflower (FAO, 2018). 10 days ahead of the maize plantation, the planting of the trap crops such as beans at the boundary of maize can attract FAW towards the bean and thus the main crop will be protected. The main cultural practices include: ploughing properly, maintenance of good soil health and adequate moisture, clean cultivation, proper weeding. Use of Push-pull strategy has been proven best K. Adhikari; S. Bhandari; L. Dhakal; J. Shrestha Peruvian Journal of Agronomy 4(3): 121–133 (2020) 125 that controls the pest population. Intercropping of maize with pest-repellent “Push crop (Desmodium uncinatum and Desmodium intortum) and planting pest-attractive “pull crop” (Pennisetum purpureum or Brachiaria spp) around it comes under this strategy (Dively, 2018). Some of the farmers in Kenya, Tanzania, Uganda, adopted climate- smart-push-pull technique which showed the depletion of FAW larvae by 82.7% per plant and subsequently plant damage reduced by 86.7% per plot (Khan et al., 2018). Pest monitoring for managing FAW The effective implementation of IPM also depends upon the pest monitoring. Most effective monitoring tools of FAW management are Pheromones and Light traps. Mating disruption is possible (Shorey et al., 1994) by using sex pheromone for S. frugiperda which includes (Z)-9-Tetradecenyl acetate (Z-9-14: OAca) that is similar to Trichoplusia ni, S. exigua and Agrotis ipsilon exigua (Klun et al., 1996). Sex pheromones attract the males as the pheromones are similar to the chemicals produced by females and aggregation pheromones are also used in monitoring of S. frugiperda (Prasanna et al., 2018). Since adult FAW show nocturnal behaviour, it is easier to control them through black light traps (Hunt et al., 2001; Qureshi et al., 2006). However, for detecting and monitoring adult FAW, pheromone traps were found more effective than black light traps (Starratt & McLeod, 1982). During regular monitoring, hand collection of the egg masses and destroying under small scale can be effective. This method was found to be ‘somewhat successful’ by the majority of farmers (Rwomushana et al., 2018). For the management of S. frugiperda in Ethiopia, 15 percent farmers practice handpicking (Kumela et al., 2019). In addition to handpicking, destruction of eggs and larvae, and keeping the mixture of sand with lime or ash in the whorl of the attacked maize can kill the larvae in Ethiopia (Gebreziher, 2020). Biological measures for managing FAW Biological control method is the alternative pest control measures providing environmentally safe and sustainable plant protection by the use of natural enemies of the pest (Bhushal & Chapagain, 2020) . In this method of pest management, the population of FAW is decreased by the use of antagonist natural enemies [parasitoids (Table 3), predators (Table 4) and pathogens (Table 5)]. The most important biological control agent for to control FAW in maize and vegetables is Telenomus remus (Pomari et al., 2012). As a part of IPM programme, T. remus had been released to the maize field in Venezuela that has caused the FAW parasitism up to 90% showing the high biocontrol capability for S. frudiperda (Ferrer, 2001). Various predators like Calosoma granalatum (Prasanna et al., 2018), assasin and flower bug (Van Waddill & Whitcomb, 1982), earwigs (Romero-Sueldo et al., 2014; Silva et al., 2018), ladybird beetle, ant etc. attack the FAW at various stages. The enthomopathogen like Spodoptera frugiperda, Nucleo polyhidroxy virus Parasitic Natural Enemy Host Stage Attacked Crop References Archytas incertus Larva Maize Virla et al. (1999) Archytas marmoratus Larva/Pupae Maize/Sorghum Van Waddill and Whitcomb (1982) Charops ater Larvae Maize Sisay et al. (2018) Chelonus curvimaculatus Eggs/Larva Maize Valicente and Barreto (1999) Chelonus insularis Eggs/Larva Maize/Sorghum Virla et al. (1999); Bahena and García (1991) Coccygidium luteum Larvae Maize Sisay et al. (2018) Cotesia icipe Larva Maize Sisay et al. (2018) Cotesia marginiventris Larva Maize Alam (1978) Cotesia ruficrus Larva Maize Yaseen (1979) Euplectrus platyhypenae Larva Maize Alam (1978) Palexorista zonata Larvae Maize Sisay et al. (2018) Telenomus remus Nixon Egg Maize/Vegetables Kenis et al. (2019) Trichogramma rojasi Egg Maize Behle & Popham (2012) Trichogramma spp Egg Maize Luginbill (1928) Table 3: Parasitoid Natural Enemies of Fall Armyworm Natural Enemy Life Stage Calleida decora Larva Calosoma alternans Larva Calosoma sayi Larva Carabidae Larva/pupa Table 4: Predators of FAW larva and pupa in maize Source: CABI, 2020 Fall armyworm (Spodoptera frugiperda): A threat in crop production in Africa and Asia September - December 2020 126 (Sf NPV), Metarhizium anisopilae, Beauveria bassiana, and Bacillus thuringiensis are useful to decrease FAW population (Molina-Ochoa et al., 2003). FAO (2018) suggests options such as spraying sugar water to attract and maintain populations of ants and other natural enemies. It also recommends “recycling pathogens” by collecting caterpillars killed by disease, and using them to prepare a solution for spraying on plants. Technique of biological control not only controls the pest population but also benefits the environment and human health (Parra, 2010). Botanicals for managing FAW The plant extracts of Azadirachta indica, Nicotina tabacum, Chrysanthemum cinerariifollium, Tephrosia vogeli are used for controlling FAW population. Botanicals like Azadirachta indica, Phytolacca dodecandra, and Schinnus molle were found most effective against FAW larvae causing the highest mortality (96%) (Sisay et al., 2019). 5% Neem Seed Kernel emulsion was found to have repelling property against FAW (Lamsal et al., 2020). Research in feeding bioassay revealed the highest FAW larval mortality by the use of L. javanica (62%) and N. tabacum (60%) with highest concentration evaluated at 10% w/v (Phambala et al., 2020). Similarly, tobacco leaf extracts at 50% concentration are found effective against FAW (Sakadzo et al., 2020). Methanolic extracts of Melia azedarach seed (1% and 10%) caused FAW larval mortality because of decline in feeding (Bullangpoti et al., 2012). The use of ethanolic extracts of Argemone ochroleuca also reduced larval feeding activity (Martínez et al., 2017). Also, biopesticides from the extracts of weed like Water lettuce reduced the survival rate of FAW by 14% while hydrilla and duckweed caused 11% and 9% reduction of FAW growth, respectively (Fu et al., 2020). Zingiber officinale and Malva sylvestris were effective causing mortality for caterpillars of FAW (Rioba & Stevenson, 2020). Biopesticides for managing FAW Biopesticides are based on naturally occurring substances or organisms that kill pests. They are the formulations obtained from particular bacteria, fungal or viral strains (Prasanna et al., 2018) Various biopesticides like Beauveria bassiana strain R444, Baculo virus, Bacillus thuringiensis sub-species kurstaki strain SA-11 (Table 6), Cowurine, Natural Enemy Host Stage Attacked Bacillus cereus Larvae Bacillus thuringiensis Larvae Bacillus thuringiensis alesti Larvae Bacillus thuringiensis darmstadiensis Larvae Bacillus thuringiensis thuringiensis Larvae Bacillus thuringiensis kurstaki Larvae Beauveria bassiana Eggs/Larvae Granulosis virus Larvae Metarhizium anisopliae Eggs/Larvae Nucleopolyhedrosis virus Larvae Spodoptera frugiperda multiple nucleopolyhedrovirus Larvae Table 5: Pathogenic Natural Enemy of Fall Armyworm Source: CABI, 2020 Active substance Target Crops Countries registered Beauveria bassiana strain R444 Lepidoptera, including Spodoptera frugiperda Barley, brassica, maize, sweetcorn, sorghum, tomato, wheat South Africa (emergency approval in 2017). Bacillus thuringiensis subspecies kurstaki strain SA- 11 Lepidoptera, including Spodoptera frugiperda Maize, sweetcorn, sorghum, wheat South Africa (emergency approval in 2017) Baculovirus Spodoptera frugiperda Unspecified Pending, Brazil S F M N P V - B a c u l o v í r u s Spodoptera frugiperda Spodoptera frugiperda Cereals, Cotton, Sweetcorn, sorghum, Turf Brazil (monograph B51), USA Table 6. Biopesticides registered to control Spodoptera frugiperda. Source: FAO, 2018 K. Adhikari; S. Bhandari; L. Dhakal; J. Shrestha Peruvian Journal of Agronomy 4(3): 121–133 (2020) 127 bacterial fermentation products like Spinetoram and Spinosad are helpful to control FAW (Prasanna et al., 2018). Baculovirus is extremely host-specific, non-pathogenic for beneficial insects and other non-target organisms, and best suited for integrated pest management. Neem-based biopesticides are similarly effective as insecticides to fight against fall armyworm (CABI, 2020). Chemical control for managing FAW Synthetic pesticides are hazardous in sustainable agriculture and use of the pesticides are not considered good in IPM technology. However, chemicals are used under the economic threshold level in severe condition (Khan et al., 2018). Chemicals like cypermethrin, Lamda, Cyhalothrin, Bifenthrin, Beta Cyfluthrin, Deltamethrin were effective in reducing the populations of FAW worldwide (FAO, 2018). ICAR-Indian Institute of Maize Research has recommended some pesticides like emamectin benzoate, spinosad and chlorantraniliprole having reducing property against FAW (Lamsal et al., 2020). Furthermore,chemicals like Radient, Tracer, Karate, Ampligoposses were found to have efficacy causing 90% mortality of FAW larvae at 72 h of application (Sisay et al., 2019). The different insecticides used for control of fall armyworm is given in Table 7. Conclusion FAW (Spodoptera frugiperda) infestation causes the greatest economic loss to a top rank cereal, maize and affects millions of people worldwide. It has the ability to breed rapidly and migrate to new territory due to its strong-flying nature. It possesses the potential of causing approximately 100% crop loss in maize if not managed in time. FAW was reported firstly in central and western Africa in 2016 followed by five Asian countries possessing threat to south America in the last 3-4 years. If the necessary precautions are not taken with the ongoing pest distribution, it can Active ingredient Chemical class IRAC classification (Mode of Action) Benfuracarb/Fenvalerate Carbamate/Pyrethroid 1A/3A Acetylcholinesterase (AChE) inhibitors/ Sodium channel modulators Carbosulfan Carbamate 1A Acetylcholinesterase (AChE) inhibitors Chlorantraniliprole Diamides 28 Ryanodine receptor modulators Chlorpyrifos Organophosphate 1B Acetylcholinesterase (AChE) inhibitors C h l o r o p y r i f o s / Cypermethrin O r g a n o p h o s p h a t e / Pyrethroid 1B/3A Acetylcholinesterase (AChE) inhibitors/Sodium channel modulators C h l o r a n t r a n i l i p r o l e / Lamda-cyhalothrin Diamides/Pyrethroid 28/3A Ryanodine receptor modulators/Sodium channel modulators Emamectin benzoate Avermectin 6 Glutamate-gated chloride channel (GluCl) allosteric modulators Flubendiamide Diamides 28 Ryanodine receptor modulators Indoxacarb Oxadiazine 22A Voltage-dependent sodium channel blockers Lufenuron Benzoylureas 15 Inhibitors of chitin biosynthesis, type 0 Mercaptothion Organophosphates 1B Acetylcholinesterase (AChE) inhibitors Methomy Carbamate 1A Acetylcholinesterase (AChE) inhibitors Novaluron/Indoxacarb B e n z o y l u r e a s / Oxadiazine 15/22A Inhibitors of chitin biosynthesis, type 0/ Voltagedependent sodium channel blockers Profenofos Organophosphates 1B Acetylcholinesterase (AChE) inhibitors Pyridalyl dichloropropene derivative Pyridalyl UN Compounds of unknown or uncertain MoA S p i n e t o r a m / Methoxyfenozide Spinosyns / Diacylhydrazines 5/18 Nicotinic acetylcholine receptor (nAChR) allosteric modulators/ Ecdysone receptor agonists Spinetoram Spinosyns 5 Nicotinic acetylcholine receptor (nAChR) allosteric modulators Table. 7. Different modes of action on the insecticides registered for the control of Fall armyworm on maize. Source: Bezuidenhout and Nunkumar, 2017 Fall armyworm (Spodoptera frugiperda): A threat in crop production in Africa and Asia September - December 2020 128 cause major threats to agricultural crops worldwide challenging food security. Starting from the larval stage it voraciously feeds on maize cob and whorls, continuing towards stem destruction on its adult stage causing tons of damage to the crop. So necessary control strategies should be implemented to avoid the huge amount of loss. The use of pheromone traps, light traps as mechanical control, biological control and botanical control reduces the outbreak of FAW populations. Being eco friendly, these measures preserve the soil as well as environmental health protecting the crop. Chemical measures should be avoided as much as possible until and unless the infestation exceeds 50%. With the best possible strategies and measures, FAW infestation can be reduced to an extreme limit encouraging the better production of crops. References Abebe, Z., Dabala, C., & Birhanu, T. (2017). System productivity as influenced by varieties and temporal arrangement of bean in maize-climbing bean intercropping. Journal of Agronomy, 16, 1–11. https:// doi.org/10.3923/ja.2017.1.11 Adamczyk, J., Holloway, J., Leonard, B., & Graves, J. (1997). Susceptibility of fall armyworm collected from different plant hosts to selected insecticides and transgenic Bt cotton. The Journal of Cotton Science 1, 21–28. Alam, M. M. (1978). Attempts at the biological control of major insect pests of maize in Barbados, WI (No. 2019-2017-4349). Alfonso, J., Ortego, F., Sanchez-Monge, R., Garcia- Casado, G., Pujol, M., Castañera, P., & Salcedo, G. (1997). Wheat and barley inhibitors active towards α-amylase and trypsin-like activities from Spodoptera frugiperda. Journal of chemical ecology, 23(7), 1729–1741. https://doi.org/10.1023/ B:JOEC.0000006447.85514.8d Ashley, T. R., Barfield, C. S., Waddill, V. H., & Mitchell E. R. (2006). Parasitization of fall armyworm larvae on volunteer corn, bermudagrass, and paragrass. The Florida Entomologist, 66, 267–271. https://doi. org/10.2307/3494251 Ayala, O., Navarro, F., & Virla, E. G. (2013). Evaluation of the attack rates and level of damages by the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), affecting corn-crops in the northeast of Argentina. Revista de la Facultad de Ciencias Agrarias, 45(2), 1–12. https://bdigital.uncu.edu.ar/ app/navegador/?idobjeto=6006 Bahena, J. F., & Garciam, O. (1991). Enemigos naturales del gusano cogollero del maíz Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) en Morelos, México. XIV Congreso Nacional de Control Biológico, México, 54–61. Bajracharya, A. R., Bhat, B. (2019). The first record of fall armyworm Spodoptera frugiperda in Nepal. Khumaltar, Nepal. Indian Journal of Entomology, 81(4), 635–639. Behle, R. W., & Popham, H. J. (2012). Laboratory and field evaluations of the efficacy of a fast-killing baculovirus isolate from Spodoptera frugiperda. Journal of invertebrate pathology, 109(2), 194–200. Bezuidenhout, S. R., & Nunkumar, A. (2017). Chemical Control Options for fall armyworm in Maize. Research & Technology Bulletin (2016–2017). https://www. kzndard.gov.za/images/Documents/RESOURCE_ CENTRE/GUIDELINE_DOCUMENTS/Research_ and_Technology_Bulletin/Chemical-control-options- for-Fall-Armyworm-in-maize.pdf Bhosale J. (2018). Fall armyworm spreads to five states in India. The Economic Times; [Accessed 27, Aug 2020]. https://economictimes.indiatimes.com/ markets/commodities/news/fall-armyworm-spreads- to-five-states-in-india/articleshow/66128598.cms Bhushal, S., & Chapagain, E. (2020). Threats of fall armyworm (Spodoptera frugiperda) incidence in Nepal and it’s integrated management-A review. Journal of Agriculture and Natural Resources. 3(1): 345–359. https://doi.org/10.3126/janr.v3i1.27186 Bueno, R. C. O. F., Bueno, A. F., Moscardi, F., Parra, J. R., & Hoffmann-Campo, C. B. (2011). Lepidopteran larvae consumption of soybean foliage: basis for developing multiple-species economic thresholds for pest management decisions. Pest Management Science, 67, 170–174. Bullangpoti, V., Wajnberg, E., Audant, P., & Feyereisen, R. (2012). Antifeedant activity of Jatropha gossypifolia and Melia azedarach senescent leaf extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use as synergists. Pest Management Science, 68(9), 1255–1264. https://doi.org/10.1002/ ps.3291 CABI. (2020). Spodoptera frugiperda. https://www.cabi. org/isc/datasheet/29810#todistribution Capinera, J. (2017). Fall armyworm, Spodoptera frugiperda (J. E. Smith) (Insecta: Lepidoptera: Noctuidae). http:// edis.ifas.ufl.edu/in255 Capinera, J. L. (2002). Fall armyworm, Spodoptera frugiperda (JE Smith) (Insecta: Lepidoptera: Noctuidae). EDIS, 2002(7). Casmuz, A., Juárez, M. L., Socías, M. G., Murúa, M. G., Prieto, S., Medina, S., Willink, E., & Gastaminza, K. Adhikari; S. Bhandari; L. Dhakal; J. Shrestha Peruvian Journal of Agronomy 4(3): 121–133 (2020) 129 G. (2010). Revisión de los hospederos del gusano cogollero del maíz, Spodoptera frugiperda (Lepidoptera: Noctuidae). Revista de la Sociedad Entomológica Argentina, 69(3-4), 209-231. Chhetri, L. B., & Acharya, B. (2019). Fall armyworm (Spodoptera frugiperda): A threat to food security for south Asian country: Control and management options: A review. Farming & Management, 4 (1), 38–44. Chimweta, M., Nyakudya, I., Jimu, L., & Mashingaidze, A. B. (2019). Fall armyworm [Spodoptera frugiperda (J.E. Smith)] damage in maize: management options for flood-recession cropping smallholder farmers. International Journal of Pest Management, 66(2), 142–154. https://doi.org/10.1080/09670874.2019.15 77514 Chormule, A., Shejawal, N., Sharanabasappa, C. M., Asokan, R., Swamy, H. M., & Studies, Z. (2019). First report of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae) on sugarcane and other crops from Maharashtra, India. Journal of Entomology and Zoology Studies, 7, 114–117. Cruz, I., Figueiredo, M. D. L. C., Silva, R. B. D., Silva, I.F. D., Paula, C.D., & Foster, J.E. (2012). Using sex pheromone traps in the decision-making process for pesticide application against fall armyworm (Spodoptera frugiperda [Smith] [Lepidoptera: Noctuidae]) larvae in maize. International Journal of Pest Management, 58(1), 83–90. https://doi.org/10.10 80/09670874.2012.655702 Daily Nation (2018) Armyworms are ravaging hundreds of farms; here’s how to defeat them. Kenya. [Accessed 27, Aug 2020]. https://www.nation. co.ke/kenya/business/seeds-of-gold/armyworms-are- ravaging-hundreds-of-farms-here-s-how-to-defeat- them-382766 Day, R., Abrahams, P., Bateman, M., Beale, T., Clottey, V., Cock, M., Colmenarez, Y., Corniani, N., Day, R., Early, R., Godwin, J., Gomez, J., Moreno, P. G., Murphy, S. T., Oppong-Mensah, B., Phiri, N., Pratt, C., Silvestri, S., & Witt, A. (2017). Fall armyworm: impacts and implications for Africa. Outlooks on Pest Management, 28(5), 196–201. https://doi. org/10.1564/v28_oct_02 de Sa, V. G., Fonseca, B. V., Boregas, K. G., & Waquil, J. M. (2009). Survival and larval development of Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) on alternatives host. Neotropical entomology, 38(1), 108–115. 10.1590/s1519- 566x2009000100012 Deole, S., & Paul, N. (2018). First report of fall armyworm, Spodoptera frugiperda (JE Smith), their nature of damage and biology on maize crop at Raipur, Chhattisgarh. Journal of Entomology and Zoology Studies, 6, 219–221. Dhar, T., Bhattacharya, S., Chatterjee, H., Senapati, S. K., Bhattacharya, P. M., Poddar, P., Ashika, T., & Venkatesan, T. (2019). Occurrence of Fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) on maize in West Bengal, India and its field life table studies. Journal of Entomology and Zoology Studies, 7(4), 869–875. Dively, G. (2018). Management of fall armyworm (Spodoptera frugiperda) with emphasis on Bt Transgenic Technology. https://usunrome.usmission. gov Early, R., González-Moreno, P., Murphy, S. T., & Day, R. (2018). Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. Neobiota 40, 25–50. https://doi. org/10.3897/neobiota.40.28165 Fernandes, F. L., Diniz, J.F., Alves, F.M., & Silva, L.O. (2012). Injury and spatial distribution of Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) in onion Allium cepa (Alliaceae) in Alto Paranaíba, Minas Gerais, Brazil. Entomological News, 122(3), 257–260. https://doi.org/10.3157/021.122.0307 Ferrer, F. (2001). Biological control of agricultural insect pests in Venezuela; advances, achievements, and future perspectives. Biocontrol News and Information, 22(3), 67N–74N. Food and Agriculture Organization (2017). Sustainable management of the fall armyworm in Africa. Food and Agriculture Organization of the United Nations (October), pp. 1–34. http://www.fao.org/3/a-bt417e. pdf Food and Agriculture Organization (2018). Integrated management of the fall armyworm on maize a guide for farmer field schools in Africa. http://www.fao.org/ faostat/en/ Food and Agriculture Organization (2019). A mobile app and a global platform for managing fall armyworm. [Accessed 27, Aug 2020]. http://www.fao.org/3/ CA3544EN/ca3544en.pdf Food and Agriculture Organization (2019). Global action for fall armyworm control. [Accessed 27, Aug 2020]. http://www.fao.org/fall-armyworm/monitoring-tools/ faw-map/en/ Fu, Y., Bhadha, J. H., Rott, P., Beuzelin, J. M., & Kanissery, R. (2020). Investigating the use of aquatic weeds as biopesticides towards promoting sustainable agriculture. PloS One, 15(8), e0237258. https://doi. org/10.1371/journal.pone.0237258 Fall armyworm (Spodoptera frugiperda): A threat in crop production in Africa and Asia September - December 2020 130 Fuller, B. W., Reagan, T. E., Flynn, J. L., & Boetel, M. A. (1997). Predation on fall armyworm (Lepidoptera: Noctuidae) in sweet sorghum. Journal of agricultural entomology (USA). Garcia, A. G., Godoy, W. A. C., Thomas, J. M. G., Nagoshi, R.N., & Meagher, R.L. (2017). Delimiting strategic zones for the development of fall armyworm (Lepidoptera: Noctuidae) on Corn in the State of Florida. Journal of Economic Entomology, 111(1), 120–126. https://doi.org/10.1093/jee/tox329 Gebreziher, H. G. (2020). Review on management methods of fall armyworm (Spodoptera frugiperda JE Smith) in Sub- Saharan Africa. International journal of Entomology Research, 5(2), 9-14. Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A., & Tamò, M. (2016). First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PloS One, 11(10), e0165632. https://doi.org/10.1371/journal.pone.0165632 Hardke, J. T., Jackson, R. E., Leonard, B. R., & Temple, J. H. (2015). Fall armyworm (Lepidoptera: Noctuidae) development, survivorship, and damage on cotton plants expressing insecticidal plant-incorporated protectants. Journal of economic entomology, 108(3), 1086–1093. https://doi.org/10.1093/jee/tov092 Hruska, A., & Gould, F. (1997). Fall Armyworm (Lepidoptera: Noctuidae) and Diatraea lineolata (Lepidoptera: Pyralidae): Impact of Larval Population Level and Temporal Occurrence on Maize Yield in Nicaragua. Journal of Economic Entomology, 90(2), 611–622. https://doi.org/10.1093/jee/90.2.611 Hunt, T. E., Higley, L. G., Witkowski, J. F., Young, L. J., & Hellmich, R. L. (2001). Dispersal of adult European corn borer (Lepidoptera: Crambidae) within and proximal to irrigated and non-irrigated corn. Journal of Economic Entomology, 94(6), 1369–1377. https:// doi.org/10.1603/0022-0493-94.6.1369 Igyuve, T. M., Ojo, G. O. S., Ugbaa, M. S., & Ochigbo, A. E. (2018). Fall armyworm (Spodoptera frugiperda); it’s biology, impact and control on maize production in Nigeria. Nigerian Journal of Crop Science, 5, 70– 79. International Maize and Wheat Improvement Center (2018). New technical guide to help farmers protect against fall armyworm. https://www.cimmyt.org/tag/ fall-armyworm/ Jarrod, H., Lorenz, G., & Billyroger, L. (2015). Fall Armyworm (Lepidoptera: Noctuidae) ecology in south-eastern cotton. Journal of Integrated Pest Management, 6(1), 10. https://doi.org/10.1093/jipm/ pmv009 Jeger, M., Bragard, C., Caffier, D,, Candresse, T., Chatzivassiliou, E., Dehnen-Schmutz, K., Gilioli, G., Gregoire, J-C., Jaques Miret, J.A., Navarro, M.N., Niere, B., Parnell, S., Potting, R., Rafoss, T., Rossi, V., Urek, G., Van Bruggen, A., Van der Werf, W., West, J., Winter, S., Day, R., Early, R., Hruska, A., Nagoshi, R., Gardi, C., Mosbach-Schultz, O., & MacLeod, A. (2018). Pest risk assessment of Spodoptera frugiperda for the European Union. European Food Safety Authority (EFSA) Journal, 16(8), e05351. https:// doi.org/10.2903/j.efsa.2018.5351 Jeyaraman, S. (2017). Field Crops Production and Management Vol I. New Delhi: Oxford and IBH Publishing Co. Pvt Ltd. Kalleshwaraswamy, C. M., Asokan, R., Swamy, H. M., Maruthi, M. S., Pavithra, H. B., Hegbe, K., & Goergen, G. E. (2018). First report of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Management in Horticultural Ecosystem, 24(1), 23–29. Kenis, M., Du Plessis, H., Van den Berg, J., Ba, M. N., Goergen, G., Kwadjo, K. E., Baoua, I., Tefera, T., Buddie, A., Cafà, G., Offord, L., Rwomushana, I., & Polaszek, A. (2019). Telenomus remus, a candidate parasitoid for the biological control of Spodoptera frugiperda in Africa, is already present on the continent. Insects, 10(4), 92. https://doi.org/10.3390/ insects10040092 Khan, Z. R., Pittchar, J. O., Midega, C. A., & Pickett, J. A. (2018). Push-pull farming system controls fall armyworm: lessons from Africa. Outlooks on Pest Management, 29(5), 220–224. https://doi. org/10.1564/v29_oct_09 Klun, J. A., Potts, W. J., & Oliver, J. E. (1996). Four species of noctuid moths degrade sex pheromone by a common antennal metabolic pathway. Journal of Entomological Science, 31(4), 404–413. https://doi. org/10.18474/0749-8004-31.4.404 Kumela, T., Simiyu, J., Sisay, B., Likhayo, P., Mendesil, E., Gohole, L., & Tefera, T. (2019). Farmers’ knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya. International Journal of Pest Management, 65(1), 1–9. https://doi.org/10.1080/09 670874.2017.1423129 Lamsal, S., Sibi, S., & Yadav, S. (2020). Fall Armyworm in South Asia: Threats and management. Asian journal of advances in agricultural research, 13(3), 21–34. https://doi.org/10.9734/ajaar/2020/v13i330106 Leal‐Bertioli, S. C., Pascoal, A. V., Guimarães, P. M., De Sá, M. F. G., Guimarães, R. L., Monte, D. C., & Bertioli, D. J. (2003). Transgenic tobacco plants expressing K. Adhikari; S. Bhandari; L. Dhakal; J. Shrestha Peruvian Journal of Agronomy 4(3): 121–133 (2020) 131 Tarin 1 inhibit the growth of Pseudomonas syringae pv. tomato and the development of Spodoptera frugiperda. Annals of applied biology, 143(3), 349–357. https://doi.org/10.1111/j.1744-7348.2003. tb00304.x Luginbill, P. (1928) The Fall Armyworm. Technical Bulletin No. 34 K. U. S. Department of Agriculture, Bureau of Entomology, Washington, DC, USA. Mallapur, C. P., Naik, A. K., Hagari, S., Prabhu, S. T., & Patil, R. K. (2018). Status of alien pest fall armyworm, Spodoptera frugiperda (JE Smith) on maize in Northern Karnataka. Journal of Entomology and Zoology Studies, 6, 432–436. Martinelli, S., Clark, P.L., Zucchi, M. I., Silva-Filho, M. C., Foster, J. E., & Omoto, C. (2007). Genetic structure and molecular variability of Spodoptera frugiperda (Lepidoptera: Noctuidae) collected in maize and cotton fields in Brazil. Faculty Publications: Department of Entomology, 164. Martínez, A. M., Aguado-Pedraza, A. J., Viñuela, E., Rodríguez-Enríquez, C. L., Lobit, P., Gómez, B., & Pineda, S. (2017). Effects of ethanolic extracts of Argemone ochroleuca (Papaveraceae) on the food consumption and development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Florida Entomologist, 100(2), 339–345. https://doi. org/10.1653/024.100.0232 Meagher Jr, R. L., Nuessly, G. S., Nagoshi, R. N., & Hay-Roe, M. M. (2016). Parasitoids attacking fall armyworm (Lepidoptera: Noctuidae) in sweet corn habitats. Biological Control, 95, 66–72. https://doi. org/10.1016/j.biocontrol.2016.01.006 Metcalf, C. L., Flint, W. P., & Metcalf, R. L. (1965). Insectos destructivos e insectos útiles: sus costumbres y su control (No. Sirsi) (SBUV003901). Compañía Editorial Continental. Molina-Ochoa, J., Lezama-Gutierrez, R., Gonzalez- Ramirez, M., Lopez-Edwards, M., Rodriguez-Vega, M. A., & Arceo-Palacios, F. (2003). Pathogens and parasitic nematodes associated with populations of fall armyworm (Lepidoptera: Noctuidae) larvae in Mexico. Florida Entomologist, 86(3), 244–253. https:// doi.org/10.1653/0015-4040(2003)086[0244:PAPNA W]2.0.CO;2 Montezano, D. G., Specht, A., Sosa-Gómez, D. R., Roque- Specht, V. F., Sousa-Silva, J. C., Paula-Moraes, S. D., Peterson, J. A., & Hunt, T. E. (2018). Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology, 26(2), 286–300. https://doi.org/10.4001/003.026.0286 Murúa, M. G., Vera, M. T., Abraham, S., Juarçz, M. L., Prieto, S., Head, G. P., & Willink, E. (2008). Fitness and mating compatibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from different host plant species and regions in Argentina. Annals of the Entomological Society of America, 101(3), 639–649. https://doi.org/10.1603/0013- 8746(2008)101[639:FAMCOS]2.0.CO;2 National Plant Protection Organization. (2019). American Fall armyworm and it’s Management. http://www. npponepal.gov.np/ Oliver, A. D., & Chapin, J. B. (1981). Biology and illustrated key for the identification of twenty species of economically important noctuid pests [Louisiana agriculture]. Bulletin-Louisiana Agricultural Experiment Station (USA), 733. Parra, J. R. P. (2010). Egg parasitoids commercialization in the New World. In F.L. Consoli, J. Parra, & R. Zucchi (Eds), Egg parasitoids in agroecosystems with emphasis on Trichogramma (pp. 373–388). Springer, Dordrecht. Paulillo, L. C. M., Lopes, A. R., Cristofoletti, P.T., Parra, J.R. P., Terra, W.R., & Silva-Filho, M.C. (2000). Changes in midgut endopeptidase activity of Spodoptera frugiperda (Lepidoptera: Noctuidae) are responsible for adaptation to soybean proteinase inhibitors. Journal of Economic Entomology, 93(3), 892–896. https://doi.org/10.1603/0022-0493- 93.3.892 Pechan, T., Ye, L., Chang, Y. M., Mitra, A., Lin, L., Davis, F.M., W. Paul Williams, W.P., & Luthe, D.S. (2000). A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other Lepidoptera. The Plant Cell, 12(7), 1031–1040. https://doi.org/10.1105/ tpc.12.7.1031 Phambala, K., Tembo, Y., Kasambala, T., Kabambe, V. H., Stevenson, P.C., & Belmain, S.R. (2020). Bioactivity of common pesticidal plants on fall armyworm Larvae (Spodoptera frugiperda). Plants, 9(1), 112. https:// doi.org/10.3390/plants9010112 Pitre, H. N., & Hogg, D. B. (1983). Development of the fall armyworm on cotton, soybean and corn (Spodoptera frugiperda). Journal of the Georgia Entomological Society, 18, 182–187. Pitre, H. N., & Hogg, D. B. (1983). Development of the fall armyworm on cotton, soybean and corn [Spodoptera frugiperda]. Journal of the Georgia Entomological Society, 18(2), 182-183. Pitre, H. N., Mulrooney, J. E., & Hogg, D. B. (1983). Fall armyworm (Lepidoptera: Noctuidae) oviposition: crop preferences and egg distribution on plants. Journal of Economic Entomology, 76(3), 463–466. https://doi.org/10.1093/jee/76.3.463 Fall armyworm (Spodoptera frugiperda): A threat in crop production in Africa and Asia September - December 2020 132 Pogue, M. G. (2002). A world revision of the genus Spodoptera guenée (Lepidoptera: Noctuidae). In Memoirs of the American Entomological Society. No. 43. (pp. 1–222). Pomari, A. F., Bueno, A. D. F., Bueno, R. C.O. D. F., & Menezes, A. D. O. (2012). Biological characteristics and thermal requirements of the biological control agent Telenomus remus (Hymenoptera: Platygastridae) reared on eggs of different species of the genus Spodoptera (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 105(1), 73–81. https://doi.org/10.1603/AN11115 Prasanna, B. M., Huesing, J. E., Eddy, R., & Peschke, V.M. (2018). Fall armyworm in Africa: a guide for integrated pest management. 1st ed.; CIMMYT: Edo Mex, Mexico. https://repository.cimmyt.org/xmlui/ bitstream/handle/10883/19204/59133.pdf Qureshi, J. A., Buschman, L. L., Throne, J. E., & Ramaswamy, S.B. (2006). Dispersal of adult Diatraea grandiosella (Lepidoptera: Crambidae) and its implications for corn borer resistance management in Bacillus thuringiensis maize. Annals of the Entomological Society of America, 99(2), 279–291. https://doi.org/10.1603/0013- 8746(2006)099[0279:DOADGL]2.0.CO;2 Ranum, P., Pena-Rosas, J. P., & Garcia-Casal, M. N. (2014). Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312(1), 105–112. https://doi.org/10.1111/ nyas.12396 Reinert, J. A., & Engelke, M. C. (2010). Resistance in zoysiagrass (Zoysia spp.) to the fall armyworm (Spodoptera frugiperda) (Lepidoptera: Noctuidae). Florida Entomologist, 93(2), 254–259. https://doi. org/10.1653/024.093.0216 Rioba, N. B., & Stevenson, P. C. (2020). Opportunities and scope for botanical extracts and products for the management of fall armyworm (Spodoptera frugiperda) for smallholders in Africa. Plants, 9(2), 207. https://doi.org/10.3390/plants9020207 Ríos-Díez, J. D., & Saldamando-Benjumea, C. I. (2011). Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from central Colombia to two insecticides, methomyl and lambda-cyhalothrin: A study of the genetic basis of resistance. Journal of economic entomology, 104(5), 1698–1705. https:// doi.org/10.1603/EC11079 Rojas, J. C., Virgen, A., & Cruz-López, L. (2003). Chemical and tactile cues influencing oviposition of a generalist moth, Spodoptera frugiperda (Lepidoptera: Noctuidae). Environmental Entomology, 32(6), 1386– 1392. https://doi.org/10.1603/0046-225X-32.6.1386 Romero-Sueldo, G. M., Dode, M., & Virla, E. G. (2014). Depredación de Doru luteipes y D. lineare (Dermaptera: Forficulidae) sobre Rhopalosiphum maidis (Hemiptera: Aphididae) en condiciones de laboratorio. Acta Zoológica Lilloana, 58, 73–79. https://ri.conicet.gov.ar/handle/11336/17140 Rwomushana, I., Bateman, M., Beale, T., Beseh, P., Cameron, K., Chiluba, M., Clottey, V., Davis, T., Day, R., Early, R., Godwin, J., Gonzalez-Moreno, P., Kansiime, M., Kenis, M., Makale, F., Mugambi, I., Murphy, S., Nunda. W., Phiri, N., Pratt, C., Tambo, J. (2018). Fall armyworm: Impacts and Implications for Africa. Outlooks on Pest Management, 28(5), 196–201. Sakadzo, N., Makaza, K., & Chikata, L. (2020). Biopesticidal properties of aqueous crude extracts of tobacco (Nicotiana Tabacum L.) against fall armyworm (Spodoptera Frugiperda J.E Smith) on maize foliage (Zea Mays L.) diets. Agricultural Science, 2(1), 47–55. https://doi.org/10.30560/ as.v2n1p47 Sarmento, R. D. A., Aguiar, R.D.S., Aguiar, R.A.S.S., Vieira, S.M.J., de Oliveira, H.G., & Holtz, A.M. (2002). Biology review, occurrence and control of Spodoptera frugiperda (Lepidoptera, Noctuidae) in corn in Brazil. Bioscience Journal, 18(2), 41–48. Seal, D. R. (2018). Control of Fall armyworm and cucumber beetle in sweet corn. Arthropod Management Tests, 43(1), tsx120. https://doi.org/10.1093/amt/tsx120 Shorey, H. H., Summers, C. G., Sisk, C. B., & Gerber, R. G. (1994). Disruption of pheromone communication in Spodoptera exigua (Lepidoptera: Noctuidae) in tomatoes, alfalfa, and cotton. Environmental entomology, 23(6), 1529–1533. https://doi. org/10.1093/ee/23.6.1529 Silva, D., Bueno, A., Andrade, K., Stecca, C., Neves, P., & Oliveira, M. (2017). Biology and nutrition of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on different food sources. Scientia Agricola, 74(1), 18– 31. https://doi.org/10.1590/1678-992x-2015-0160 Silva, G. A., Picanço, M. C., Ferreira, L. R., Ferreira, D. O., Farias, E. S., Souza, T. C., Rodrigues-Silva, N. & Pereira, E. J. G. (2018). Yield losses in transgenic Cry1Ab and non-Bt corn as assessed using a crop- life-table approach. Journal of economic entomology, 111(1), 218–226. https://doi.org/10.1093/jee/tox346 Sisay, B., Simiyu, J., Malusi, P., Likhayo, P., Mendesil, E., Elibariki, N., Wakgari, M., Ayalew, G., & Tefera, T. (2018). First report of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), natural enemies from Africa. Journal of Applied Entomology, 142(8), 800–804. https://doi.org/10.1111/jen.12534 K. Adhikari; S. Bhandari; L. Dhakal; J. Shrestha Peruvian Journal of Agronomy 4(3): 121–133 (2020) 133 Sisay, B., Tefera, T., Wakgari, M., Ayalew, G., & Mendesil, E. (2019). The efficacy of selected synthetic insecticides and botanicals against fall armyworm, Spodoptera frugiperda, in maize. Insects, 10(2), 45. https://doi.org/10.3390/insects10020045 Sparks, A. N. (1979). A Review of the Biology of the fall armyworm. The Florida Entomologist, 62(2), 82–87. https://doi.org/10.2307/3494083 Starratt, A. N., & McLeod, D. G. R. (1982). Monitoring fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), moth populations in southwestern Ontario with sex pheromone traps. The Canadian Entomologist, 114(7), 545–549. https://doi. org/10.4039/Ent114545-7 Stout, M. J., Riggio, M. R., & Yang, Y. (2009). Direct induced resistance in Oryza sativa to Spodoptera frugiperda. Environmental entomology, 38(4), 1174– 1181. https://doi.org/10.1603/022.038.0426 Valicente, F. H., & Barreto, E. M.R. (1999). Levantamento dos inimigos naturais da lagarta do cartucho do milho, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), na regiao de Cascavel, PR. Anais da Sociedade Entomológica do Brasil, 28, 333–337. Van Waddill, H., & Whitcomb, W. H. (1982). Release of Telenomus remus [Hym. scelionidae] against Spodoptera frugiperda [Lep.: Noctuidae] in Florida, USA. Entomophaga, 27(2), 159–162. https://doi. org/10.1007/BF02375224 Virla, E. G., Colomo, M. V., Berta, D. C., & Valverde, L. (1999). The parasitoid complex of the maize “fall armyworm”, Spodoptera frugiperda, in the Argentine Republic (Insecta, Lepidoptera). Neotropics , 45, 113- 114. Whitford, F., Quisenberry, S. S., & Moellenbeck, D. J., (2015). Nutritional response by rice and corn fall armyworm (Lepidoptera: Noctuidae) strains to dietary component substitution in artificial diets. Journal of Economic Entomology, 85, 1491-1496. https://doi. org/10.1093/jee/85.4.1491 Yaseen, M. (1979). Introduction of exotic parasites for control of Spodoptera and Heliothis in Trinidad. Proceedings of the Caribbean Food Crops Society- Symposium on maize and peanut, Paramaribo, Suriname, 15, 136–141. Yu, S. J. (1982). Host plant induction of glutathione S-transferase in the fall armyworm. Pesticide Biochemistry and Physiology, 18(1), 101–106. https:// doi.org/10.1016/0048-3575(82)90092-X