201502_PSaw.pdf 37Przegląd sPawalnictwa Vol. 87  2/2015 Case studies of steel and their welded joint failures caused by liquid metal embrittlement LME Analiza przypadków pęknięć stalowych złączy spawanych wywołanych obecnością cieczy metalicznej Peter Bernasovský Peter Brziak Prof. Peter BERNASOVSKÝ Ph.D., Ing. Peter BRZIAK Ph.D., Ing. Ľuboš Mráz Ph.D. – Welding Research Institute – Industrial Institute of Slovak Republik, Bratislava, Slovakia. Autor korespondencyjny/Corresponding author: bernasovskyp@vuz.sk Abstract Liquid metal embrittlement (LME) is a phenomenon, where liquid (molten) metal is mostly intergranulary (but not only) penetrated into solid metal and causes its brit- tle fracture. The LME is usually related to low melting metals (zink, tin , cadmium) ,which are in the contact with higher molten ones (steels, Ni alloys). Cases of LME as a Cu penetration into pipeline welded joint of 15G2S steel ,a hot temperature corrosion in the cement works shell plate made of AISI 310 stainless steel attacted by Ni3S2 (Ts = 644 °C) and a vanadium corrosion in the boiler vessel (10CrMo9-10 steel) due to V2O5 + Na2SO4 eutecti- cum (~600 °C) are concerned. Keywords: hot crack, liquid metal embrittlement Streszczenie Kruchość stali wywołana obecnością cieczy meta- licznej (ang. LME – liquid metal embrittlement) zachodzi podczas oddziaływania i w konsekwencji penetrowania granic ziaren (stali oraz stopów Ni) niskotopliwych me- talami (cu, Zn, Col Sn), w warunkach działania naprężeń rozciągających. W artykule przeanalizowano przypadki LME wynikające z penetrowania Cu złączy spawanych rurociągów ze stali 15G29 oraz wysokotemperaturowej erozji płyt ze stali 310 wg ALSI wywołanej działaniem Ni3S2 (Ts-644 °C) oraz erozji kotła ze stali 10CrMo9-10 wywołanym oddziaływaniem w wysokiej temperaturze V2O5 + Na2SO4. Słowa kluczowe: pęknięcie gorące, kruchość, ciecz metaliczna Introduction Liquid metal embrittlement (LME) is a phenomenon, where certain ductile metals show drastic loss in ten- sile ductility or undergo brittle fracture when occured in the presence of specific liquid metals. Generally, a tensile stress, either externally applied or internally present, is needed to induce embrittlement [1]. Liquid metal embrittlement is caused by a combi- nation of two factors [2]. These are 1) The presence of a specific liquid (molten)metal in contact with the affected component or structure, and 2) An applied or residual tensile stress acting on the affected com- ponent or structure while in contact with the liquid metal. When these two conditions occur, the liquid metal is absorbed in the components´ grain bound- 38 Przegląd sPawalnictwa Vol. 87 2/2015 aries in a manner similar to the capillary action. A liquid-metal filled crack is produced as the boundary between grains absorbs the molten metal and breaks the bond between adjacent grains. The general rules for the possible occurrence of liq- uid metal embrittlement are [3]: – Low mutual solubility between the liquid and solid metals. – Absence of intermetallic compound formation be- tween the solid-liquid couple. The hardness and deformation behavior of the solid metal affect its susceptibility to LME. Generally, harder metals are more severely embrittled. Grain size greatly influences LME. Solids with larger grains are more se- verely embrittled. The interfacial energy between the solid and liquid metals and the grain boundary energy of the solid met- al greatly influence LME. These energies depend upon the chemical composition of the metal couple. Dihe- dral angle of liquid between grain boundaries is low- est, when an interfacial energy between solid grains is double to an interfacial energy between the solid grain and the liquid. Some significant examples of embrittling couples include: steel - Cu, stainless steel - Zn, aluminium - Hg. LME occurs at melting point of liquid metal dur- ing heat treatment, hot rolling, brazing, soldering and welding. The welded joints are more susceptible to LME, because of higher hardness, larger grains and notches of stress concentration. In the literature there are a wide variety of LME couples [4], but all are related to liquid phases of the pure elements. In this contribution besides of Cu we propose to include among liquids which may cause LME of steels also low melting compounds like Ni3S2 and V2O5+Na2So4. Gas pipeline failures Slovakia belongs to the countries with the dens- est network of high pressure transmission gas pipelines. Four large diameter lines are already pass- ing through its territory, whereas the 5th line is be- ing completed at present. The oldest gas pipelines are in service for almost four decades and though they are inspected periodically, from time to time some fail- ures of pipelines occur. This case occurred on the 1st international gas pipeline which was built in 1965. This line, made of an old Russian steel 15 G2S (type L380N) low al- loyed with Si (see Table I) is the most problematic one at present. In this line low ductility and toughness of steel have met together with the poor workmanship. In this case (spirally welded pipe OD 720x8 mm) 1.8 m long crack was running along the spiral weld (Fig. 1). The initiation point was in the place where the spiral weld meets the tie strip weld. The spi- ral weld which exhibits very high misalignment of both linear and opposite runs is shown in Fig. 2. The crack was initiated by LME (liquid metal em- brittlement) of remelted copper during repair weld- C Mn Si P S Cr Ni Cu Ti 0,14-0,15 1,37-1,45 1,07-1,08 0,014 0,029 0,06 0,05 0,08 0,032 Re, MPa Rm, MPa A5, % ChV FATT, 50 J.cm 2 Upper shelf 387-404 591-612 22-27 +14 °C 55 j.cm-2 Table I. Chemical composition [wt%] Tablica I. Skład chemiczny [wag.%] Fig. 1. A crack along the spirally weld joint Rys. 1. Pęknięcie wzdłuż spoiny spiralnej rury Fig. 2a. Linear and opposite runs misalignment – poor workmanship Rys. 2a. Mikrostruktura złącza rurowego z wyraźnym przesadzeniem rur – niska jakość wykonania złącza spawanego Fig. 2b. Liquid metal embrittlement by Cu in the HAZ of repair weld. EDX (wt%):Cu-81,29; Fe-17,50 and Si-1,21 Rys. 2b. Kruchość wywołana ciekłą miedzią w SWC naprawianego złącza. EDX (wag.%): Cu-81,29; Fe-17,50 oraz Si-1,21 39Przegląd sPawalnictwa Vol. 87  2/2015 Fig. 3. Wall thickness reduction Rys. 3. Redukcja grubości ściany na skutek erozji Fig. 4. High temperature attack of AISI 310 steel Rys. 4. Wysokotemperaturowa degradacja stali 310 wg AISI Fig. 5. EDX microanalysis of corrosion products Rys. 5. Analiza EDX produktów korozji ing (Fig. 3). Cu came from abrading of Cu electric contact rods which were applied at manufacturing of spiral welds at that time [5]. Cement works Shortly after combustion of new wastes (pneuma- tic tyres, plastics) the shell plates of the cement fur- nace were expressively attacked by hot temperature corrosion [6]. The steel AISI 310 (1.4841 by EN) was concerned (Table II). C Mn Si P S Cr Ni Atest VÚZ 0,058 0,99 0,58 0,024 0,014 23,94 19,45 A I S I 310 ax. 0,20 ax. 1,50 ax. 1,0 ax. 0,045 ax. 0,030 4 26 9 22 Table II. Chemical composition of AISI 310 steel [wt%] Tablica II. Skład chemiczny stali AISI 310 [mas.%] An original wall thickness of 4 mm was reduced almost to 0,4 mm (Fig. 3). Grain coarsening of the plate surface (dST=max. 1000 ηm) and grain boundary liquation are visible in Fig. 4. A scale thickness reached almost 900 μm. An EDX microanalysis of the corrosion products sho- wed very high content of S and P (Fig. 5). Both are present like compounds of the nickel sulphide and the iron phosphide. The AISI 310 is a heat-resisting steel up to 1100 °C (tolerance loss of thickness is 2 mm/104 hours), but the steel is not suitable for the reduction gas medium, which contains S, where its range of application is re- duce down to 644 °C, what is a solidus temperature of Ni3S2 (LME attack). C Mn Si P S AI N Cr Cu Mo Analysis VÚZ 0,131 0,45 0,22 0,019 0,005 0,005 – 2,23 0,103 0,89 10CrMo9-10 EN 10028 -2 0,08 0,14 0,40 0,80 ax. 0,50 ax. 0,020 ax. 0,030 – max. 0,012 2,00 2,50 max. 0,30 0,90 1,10 Table III. Chemical composition [wt%] Tablica III. Skład chemiczny [wag.%] Boiler vessel Bolier tubes OD 33,7x5 mm made of 10CrMo9-10 steel (see Table III) are concerned [7]. The tube broke after 8200 hs exposition at 575 °C and 11 MPa pres- sure (Fig. 6). As a fuel of the boiler was used a black oil (mazout). 40 Przegląd sPawalnictwa Vol. 87 2/2015 Fig. 6. Failure of the tube Rys. 6. Awaria rurociągu Fig. 7. Crack on fire side of tube Rys. 7. Pęknięcie płomiennicy od strony paleniskowej S Na V Fe Cr Mn Si 1 16,73 2,76 56,6 23,90 – – – 2 2,67 0,43 28,08 67,87 – – – 3 – – 0,69 97,00 1,21 0,78 0,31 Table IV. Results of EDX microanalysis (wt%) Tablica IV. Wynik analizy EDX [wag.%] References [1] D.G. Kolman.: Environmentally Induced Cracking, Liquid Metal Embrittlement, ASM Handbook, Volume 13A, Corro- sion: Fundamentals, testing and Protection, ASM Interna- tional, Materials Park, OH pp. 381-392 (2003). [2] Liquid metal embrittlement, Metallurgical minutes, MAI, Summer 2004. [3] TWI Technical knowledge, Great Abington, UK, 2000. [4] D.G. Kolman.: Environmentally Induced Cracking, Solid Metal Embrittlement, ASM. Handbook, Volume 13A, Corro- sion: Fundamentals, testing and Protection, ASM Interna- tional, Materials Park, OH pp. 393 - 397 (2003). It is quite a common phenomenon in boilers burn- ing black oil like mazout, that vanadium, sulfur and sodium compounds present in the combustion gases cause accelerated corrosion on fire side of boiler tubes. This phenomenon is called vanadium corrosion. Above mentioned compounds usually form molten salts (fluxes). Fire side corrosion is observed at about 550 °C. Eutecticum temperature of 6V2O5-Na2SO4 system is about 600 °C, but some mixed oxides like 5NaO- -V2O5-10V2O5 melts at 545 °C [8]. Molten salts at opera- tion tem perature penetrate to the steel mostly inter- granulary. So the vanadium corrosion has features of LME. See a crack in Fig. 7 and 8 with EDX microanalysis in Table IV. Fig. 8. Crack of vanadium corrosion Rys. 8. Pęknięcie wywołane oddziaływaniem wanadu Conclusion The contribution dealt with case studies of failu- res in the high pressure gas pipeline, cement works and boiler, which were caused by liquid metal em- brittlement (LME). As a molten phase acted Cu, low melting Ni3S2 and V2O5+Na2SO4 eutecticum. [5] Bernasovský, P.-Brziak, P.: Case study of 15G2S grade gas pipeline. Technical. report, VÚZ-PI SR, ME 103, Bratislava, June 2003. [6] Bernasovský, P.- Brziak, P.: Analysis of AISI 310 steel plate. Technical report, VÚZ-PI. SR, ME 148,Bratislava, 31.5.2007. [7] Mráz, Ľ. et al.: Analysis of 33,7x5 mm pipe made of 10VrMo 9-10 steel in boiler K3. Technical report , VÚZ - PI SR, ME 068, Bratislava, 13.4.2012. [8] Andijani, J.-Malik, A.U.: Sulfur and vanadium induced hot corrosion of boiler tubes. Chemistry & Industry Conferen- ce, Riyadh, Dec. 11-15, 2004.