PS 9 2016 WWW.pdf 65PRZEGLĄD  SPAWALNICTWA       Vol. 88 9/2016 Calculation of Thermodynamically Optimized  Temperature-/Time-Cycles  in Nickel-Based Brazing Joints Optymalizacja temperatury/cykli czasowych w lutowaniu twardym poprzez obliczenia termodynamiczne Prof. Wolfgang H. Müller; Dipl.-Ing. Benjamin Schmorl – TU Berlin, Fachgebiet Kontinuumsmechanik und Materialtheorie, Institut für Mechanik; Prof. Johannes Wilden; Oliver Stahn, M.Sc.– Hochschule Niederrhein, Krefeld. Autor korespondencyjny/Corresponding author: oliver.stahn@hs-niederrhein.de Streszczenie Lutowanie materiałów z wykorzystaniem lutów na osno- wie niklu jest już procesem znanym i opanowanym. W tym kontekście tworzenie się w złączu kruchych faz jest istot- nym problemem. Wzrastająca ilość tych faz wpływa nega- tywnie na własności mechaniczne połączenia. Efekt ten zwiększa się jeżeli lut produkuje się w postaci taśmy i ilość kruchych faz jest wyraźnie większa. Uniknięcie formowania się kruchych faz zmusza do stosowania małych szczelin lutowniczych. Stosowana dodatkowo obróbka cieplna rów- nież częściowo redukuje ilość kruchych faz. W przedstawia- nej pracy zastosowano symulację termodynamiczną w celu określenia przemian fazowych i procesu dyfuzji w złączu lu- towanym. Symulacje wykonano przy pomocy Thermo-Calc i TC Dictra oraz modelu analitycznego. Sprawdzano różne cykle temperatura/czas aby ustalić ich wpływ na tworzenie kruchych faz. Wykonano dodatkowo wybrane badania doty- czące interesujących nas materiałów. Zastosowano metodę pomiaru nanowgłębienia do określenia lokalnego modułu Younga oraz pomiaru twardości. Badanie wytrzymałości na rozciąganie wykonano na próbkach miniaturowych. Wyniki pozwoliły ustalić wpływ ilości kruchych faz w złączu na wła- sności mechaniczne całego połączenia. Słowa kluczowe: lutowanie twarde; luty na osnowie niklu; kruche fazy; obróbka cieplna; obliczenia i symulacje teore- tyczne; badania własności połączeń Abstract Brazing with nickel-based filler materials is an estab- lished joining process. In this context the formation of brit- tle phases in the joint is a significant difficulty. An increased proportion of these phases influences the mechanical prop- erties of the joints negatively. This effect gains strong influ- ence if a continuous band of brittle phases is formed. In or- der to avoid formation of brittle phases, small brazing gaps are necessary. Subsequent heat treatment is partially able to reduce the proportion of brittle phases. In this paper thermodynamic simulations are applied in order to calcu- late phase transformations and diffusion processes dur- ing brazing of commonly used materials. The simulations are performed by using Thermo-Calc and TC Dictra, as well as an analytical model. Different temperature-/time-cycles are examined in order to characterize their influence on the formation of brittle phases. Additionally, experiments were executed with the materials of interest. Nanoindenta- tion is used to determine local values of YOUNG’s modulus and indentation hardness. Miniature tensile tests are ap- plied to examine the tensile strength. The evaluated data is used to specify correlations between the properties of brittle phases in the joint and of its global mechanical properties. Keywords: brazing; nickel-based filler materials; brittle phas- es; heat treatment; calculations and theoretical simulations; investigations of joints properties Introduction High temperature brazing with nickel-based filler mate- rials is widely applied in various sectors, e.g., aviation and aerospace engineering, medical technology and refrigera- tion industry. Tensile strengths of more than 500 MPa are achievable. The brazing process is performed in vacuum and inert gas furnaces at temperatures above 900 °C. High temperature brazing has been subject of scientific investi- gation since the 1970’s [1÷7]. The most significant obstacle is the occurrence of brittle phases in the brazing gap, which can influence the mechanical properties of the joint nega- Wolfgang H. Müller, Johannes Wilden, Benjamin Schmorl, Oliver Stahn przeglad Welding Technology Review 66 PRZEGLĄD  SPAWALNICTWA       Vol. 88 9/2016 tively. This effect is reinforced in case of continuous, band- shaped brittle phases, cf. Fig. 1., i.e., the tensile strength can be reduced to values less than 50 MPa. In order to avoid the formation of brittle phases, the width of the brazing gap must not exceed a critical value. This requires a precise and therefore cost-intensive manufacturing of the components to be brazed. It is the objective of this work to propose tem- perature/time-cycles which avoid the formation of brittle phases in larger brazing gaps. This is obtained by thermody- namic simulations. Therefore the diffusion processes dur- ing brazing can be analysed for commonly used filler materi- als, namely Ni 620, Ni 650 and B-Ni60CrPSi-980/1020. Base materials are usual steels. At first, the commercial software packages Thermo-Calc and TC Dictra are examined for simu- lation capability. Here, many difficulties occur due to limita- tions of the available databases. Their applicability to the required simulation processes is currently unfortunately strongly restricted. Therefore, another simulation approach is used, which is based on an analytical solution of FICK’s diffusion equation. Diffusion coefficients are obtained from EDX-linescans and ARRHENIUS’ equation is used to take tem- perature dependence into account. For examination of the mechanical properties of the joints, miniature tensile tests and nanoindentation tests are performed. Fig. 1. Brazed joint, brazing gap 100 µm, base material: X5CrNi18-10 (1.4301), filler: Ni 620, 90 min, 1050 °C Rys. 1. Połączenie lutowane, szczelina 100 µm, materiał rodzimy – X5CrNi18-10 (1.4301), lut – Ni620, 90 min, 1050 °C Thermo-Calc and TC Dictra Thermo-Calc and TC Dictra are software packages for thermodynamic and diffusion calculations, respectively. Among other things Thermo-Calc can be used to calculate phase and so-called property diagrams for complex alloys. Figure 2 shows a property diagram for the filler material Ni 650 calculated by Thermo-Calc. The calculations are based on experimental data available in a number of databas- es designed for a specific purpose, e.g., nickel superalloys or steels. Unfortunately there is no database specifically designed for brazing or usual brazing filler materials. There- fore one has to use a database dealing with a similar kind of material. In case of nickel-based filler materials, one can use the database for nickel superalloys with some limita- tions. These limitations concern the restricted amount of chemical elements that are available. Furthermore one need to pay close attention to the results of the calcula- tions, if the application is outside of the originally planned range of use of the database. It is possible that the cal- culations include some phases which are not found in ex- periments and are therefore not to be expected to occur in the calculations either. In order to deal with this problem, one has to suspend manually the phases in question to get a more realistic result. In addition, some elements, such as boron or phosphorus, can be a reason for unrealistic results. If an element is not represented in the used database it is impossible to include it in the calculation. This leads to a change of alloy composition and therefore the result can- not give insight into the real problem. Another point one has to take into account is the amount of the single ele- ments in the composition. Especially the boron content in nickel-based filler materials is critical. If one considers these limitations of the software one obtains diagrams containing important properties of the filler material, i.e., solidus and liquidus temperature. On the other hand TC Dic- tra offers insight into the dynamics of the brazing process. With the help of this software, one can perform diffusion calculations using experimental thermodynamic and mobil- ity data in specific TC Dictra databases. Nonetheless some databases are shared between Thermo-Calc and TC Dictra. Therefore some of the crucial points mentioned above have to be considered in TC Dictra calculations as well. Further- more another conflict arises concerning the combination of base and filler materials studied in this paper. Since all base materials of interest are steels which are brazed using nickel-based filler materials one has to decide which data- base fits best. In contrast to the calculations with Thermo- Calc one should use the steel database in TC Dictra so that the process of diffusion in the steel is represented as best as possible in the calculation. As a result of TC Dictra calcu- lations one obtains the composition in the joint as a func- tion of space and time, cf. Fig. 3. This data can be analysed and used as new input data for Thermo-Calc allowing for the possibility to calculate which phases are present in every point in space and time. With this information one is able to determine which temperature and holding time is needed during the brazing process in order to avoid brittle phases in the joint. These temperatures and holding times are the base for new temperature-/time-cycles. However, even if one considers all of the points mentioned above there are some obstacles which are unsolvable using Thermo-Calc and TC Dictra. Most notably it is not possible to calculate any type of phase or property diagram for the filler material B-Ni60CrPSi-980/1020 due to the high phosphorus content. Phosphorus is not available in the nickel databases of Ther- mo-Calc and TC Dictra. One could use the steel database since it allows the usage of phosphorus which is recom- mended to be in the order of magnitude of parts per million. Since the filler material contains about 6 wt.-% of phospho- rus it is impossible to obtain any realistic results from Ther- mo-Calc or TC Dictra if this material is involved. Addition- ally the filler material Ni 620 needs further analysis. Some of the phases calculated by Thermo-Calc are not found in experiments. This results in solidus and liquidus tempera- tures that are higher than expected for this material. If one Fig. 2. Property diagram of Ni 650 Rys. 2. Wykres własności Ni650 brittle phase 67PRZEGLĄD  SPAWALNICTWA       Vol. 88 9/2016 excludes these phases from the calculation, the solidus and liquidus temperatures are lower but still differ from the ex- pected value by about 100 °C. Due to this fact the results need to be interpreted carefully. In order to do research on these materials we needed to find a way of calculation with- out using Thermo-Calc and TC Dictra. Therefore we started to use an experimental method based on energy dispersive x-ray analysis (EDX) and FICK’s laws of Diffusion. FICK’s laws of diffusion FICK’s first law of diffusion is an empirical equation cor- relating the flux j and the concentration gradient. The sec- ond law, the continuity equation, is a balance equation for the concentration. By combining FICK’s first and second law, one gets the diffusion equation under the assumption that D= const. where D and c are the diffusivity and the concentration, re- spectively. In order to use Equation (1) in brazing we have to formulate a proper mathematical problem. Since we are only interested in joints where the base material is the same on both sides, there is a symmetry to be used in the formula- tion, cf. Fig. 4. Fig. 3. Fraction of nickel mixed crystal in 16Mo3/Ni650 at 800 °C, 20 µm distance from the middle of the brazing gap Rys.  3. Frakcja wymieszanych kryształów dla 16Mo3/Ni650 w 800 °C, odległość od środka szczeliny lutowniczej - 20 µm 2 2 ∂ ∂ ∂ ∂ c c = D t x (1) Fig. 4. Geometric model with and without using symmetry Rys. 4. Symetryczny i asymetryczny model geometryczny By considering the differential equation, i.e., FICK’s sec- ond law, as well as proper initial and boundary conditions a well posed mathematical formulation of the problem can be derived (2) Due to the fact that in typical brazing processes l<320 199 232 261 Young’s  modulus   (103 N/mm2) base 190±13 188±13 241±20 193±7 194±10 249±25 m.c. 195±9 189±17 249±20 197±7 197±7 249±25 b.p. 211±9 220±25 270±24 225±12 217±7 247±30 indentation  hardness   (103 N/mm2) base 3.2±0.4 3.1±0.5 5±0.46 3.0±0.1 3.2±0.3 4.9±0.47 m.c. 3.6±0.3 3.6±0.3 4.8±0.4 3.6±0.3 3.3±0.2 4.9±0.5 b.p. 8.7±0.9 6.8±1.9 7.4±0.6 8.4±0.9 7.6±1.4 6.7±1.3 Table II. Mechanical properties of different brazing joints produced using the filler material B Ni60CrPSi-980/1020. Abbreviations m.c. – mixed crystal, b.p. – brittle phase. Tensile strength was measured by miniature tensile tests. Tablica II. Własności mechaniczne różnych połączeń lutowanych przy użyciu lutu B Ni60CrPSi-980/1020. Skróty m.c. – wymieszany krysz- tał, b.p. – faza krucha; Wytrzymałość na rozciąganie była mierzona na próbkach miniaturowych In case of other filler materials brittle phases can be avoided completely by the temperature-/time-cycles pre- sented in this work. Three joints Ni 620 – 1.2343, Ni 620 – 1.4301 and Ni 620 – 1.4404 are depicted in Fig. 9. It can be observed that there are no brittle phases visible in the joint. All three joints were brazed at a brazing temperature of 1075 °C with a holding time of 60 minutes. The microscopic images in Fig. 10 show the joint Ni 650 – 16Mo3, 1220 °C, 270 minutes. The figure depicts both a non-normalised and a normalised specimen. It is clearly observable that without the process of normalisation there is a very coarse grain structure in the base material. In case of the normalised specimen refined grain structure is achieved due to the heat treatment. Note that in both cases the joint is free of brittle phases and is not affected by the heat treatment. Fig. 8. Microscopic images of two joints brazed with the filler materi- al B-Ni60CrPSi-980/1020 (a) 1.4301, 1220 °C, 180 min, gap > 100 µm, (b) 1.4404, 1220 °C, 120 min, gap 50 µm Rys.  8. Mikrostruktura dwóch połączeń lutowanych – lut B-Ni60CrPSi-980/1020 (a) 1.4301, 1220 °C, 180 min, szczelina > 100 µm, (b) 1.4404, 1220 °C, 120 min, szczelina 50 µm a) b) 70 PRZEGLĄD  SPAWALNICTWA       Vol. 88 9/2016 Fig.  9. Microscopic im- ages of three different joints using the filler ma- terial Ni 620 and a brazing gap of 50 µm. The base materials are (a) 1.2343, (b) 1.4301 and (c) 1.4404 Rys.  9. Mikrostruktura trzech połączeń lutowa- nych – lut Ni 620, szcze- lina 50 µm. Materiał rodzi- my (a) 1.2343, (b) 1.4301 and (c) 1.4404 Fig.  10. Microscopic images of etched specimens. Base: 16Mo3, filler: Ni 650. (a) without normalising, (b) with normalising, 930 °C, 30 minutes Rys. 10. Mikrostruktura próbki trawionej. Materiał rodzimy – 16Mo3, lut Ni 650, a) bez normalizowania, b) po normalizowaniu 930 °C, 30 min a) b) c) b)a) Summary and outlook The main objective of this work was the development of new temperature-/time-cycles for brazing with nickel-based filler materials, Ni 620, Ni 650 and B-Ni60CrPSi-980/1020 in order to reduce brittle phases in the brazing gap. By applying the presented method, we were able to propose temperature-/time-cycles for a large variety of material combinations. Fur- thermore the experimental evaluation of the new cycles showed that it is possible to produce brazing joints using Ni 620 and Ni 650 without any brittle phases. In case of the filler material B-Ni60CrPSi-980/1020 the brittle phase Fe3P is unavoid- able. Nevertheless the proposed cycles produced joints with better mechanical properties than the original brazing process. The presented method proposes the foundation of derivation of temperature-/time-cycles in case of joints using dissimilar materials, i.e., joints with different base materials on both sides of the gap. Literature [1] H.-D. Steffens, B. Wielage: Verhalten von Hochtemperaturlötverbindun- gen bei schwingender Belastung und erhöhten Temperaturen. Z. Werk- stofftechnik 8, pp. 82–88 (1977). [2] E. Lugscheider, O. Knotek, K. Klöhn: Melting behaviour of Nickel-Chromi- um-Silicon Alloys, Thermochimica 29, pp. 323–326 (1979). [3] K.-D. Partz: Einfluss von Lötparametern auf die Zugfestigkeit stumpfge- löteter Hochtemperaturlötverbindungen – Parametercharakteristik der Lötsysteme BNi-2, BNi-5, BNi7/1.4961, 1.4550. RWTH Aachen, Dissertati- on (1981). [4] H. Krappitz: Duktilitätsverhalten hochtemperaturgelöteter Verbindungen warmfester Werkstoffe. RWTH Aachen, Dissertation (1986). [5] G.M. van Gulik, P. Heilmann: Hochtemperatur-Vakuumlöten mit anschlie- ßender Vakuum-Wärmebehandlung – eine rationelle technische Lösung. In: Hart- und Hochtemperaturlöten und Diffusionsschweißen, DVS-Be- richte 125, pp. 6–9 (1989). [6] W. Müller: Metallische Lotwerkstoffe. Deutscher Verlag für Grundstoffin- dustrie (1990). [7] B. Wielage, L. Martinez: Hochtemperaturlöten von hochlegierten Stählen mit modifizierten Standardloten, Hart- und Hochtemperaturlöten und Dif- fusionsschweißen, DVS-Berichte 212 pp. 346–349, (2001). [8] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. Vol. 7 No 6, pp. 1564–1583 (1992).