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Introduction  
Many a famous mathematician and scientist have 
described how their first encounter with Euclidean 
geometry was the defining moment in their future 
careers. Some of the most well known are probably 
Isac Newton and Albert Einstein. Often these 
encounters in early adolescence have been 
poetically described as passionate love affairs. For 
example, the mathematician Howard Eves 
describes his personal experience as follows: 
“ ...Euclid's Elements ... I leafed through the book, 
and found that, from a small handful of 
assumptions ... all the rest apparently followed by 
pure reasoning ... The experience had all the 
aspects of a romance. It was love at first sight. I 
soon realized I had in my hands perhaps the most 
seductive book ever written. I fell head over heels 
in love with the goddess Mathesis ... As the years 
have gone by I have aged, but Mathesis has 
remained as young and beautiful as ever” (in 
Anthony, 1994: xvi-xvii)  
 Perhaps noteworthy is that very few famous 
mathematicians and scientists have ever mentioned 
arithmetic or school algebra as having been as 
influential as geometry in attracting them to 
mathematics. One of the reasons may be the 
algorithmic nature of high school algebra as 
pointed out by Howard Eves as follows: “ ... I still 
think that geometry is the high school student's 
gateway to mathematics. It's not algebra, because 
high school algebra is just a collection of rules and 
procedures to be memorized” (in Anthony, 1994: 
xvii). Moreover, the fundamental mathematical 
idea of proof, and that of a deductive structure and 
of logical reasoning, is usually introduced and 
developed largely within high school geometry, 
and hardly at all in algebra. Though elementary 
number theory and algebra can provide exciting 
opportunities for some conjecturing and proof, it is 
unfortunately not common practise in high school. 
At present, it is mainly geometry that provides a 
challenging, non-routine context for creative proof 
that requires learners to explore and discover the 
logical links between premises and conclusions. 
 The current reduction of Euclidean geometry 
from the new South African school curriculum at 

the General Education and Training (GET) and 
Further Education and Training (FET) levels has 
been largely motivated by the need to introduce 
some more contemporary topics. Some of these are 
cartesian and transformation geometry, as well as a 
little non-Euclidean geometry such as spherical 
geometry, taxi-cab geometry and fractal geometry. 
However, it would seem disastrous for the future 
development of mathematicians and scientists in 
our country to argue, as some do, for the complete 
removal of Euclidean geometry from the 
curriculum. Often the argument seems a purely 
political one: learners find geometry difficult 
compared to algebra; we have to improve the pass 
rate; so let's get rid of geometry! 
 Of course, the problem of geometry education 
is a very complex one, and is not one that I will 
attempt to address in this article, though some of 
my mathematics education research and thoughts 
in this regard appear in De Villiers (1997). It is 
also not a problem limited to our country, but is 
fairly international. Suffice to say that ignoring the 
problem will not solve it, but that it has to be faced 
head on, and will require the concerted, combined 
efforts of mathematicians, mathematics educators, 
teachers and researchers. 
 This article instead modestly aims to acquaint 
the reader with some results from 17th and 19th 
century geometry, and to combat the perspective 
that geometry is dead by showing that new 
discoveries can and are still being made. 
Specifically it will discuss a possibly new 
generalisation of the Spieker circle and the 
associated Nagel line, which is parallel to that of 
the generalisation of the nine-point circle and Euler 
line discussed in De Villiers (2005). Not only 
should these results be accessible to a fair number 
of undergraduate students, prospective and 
practising high school teachers, but also to the 
more mathematically talented high school learner. 
Unlike cutting edge research in other areas of 
mathematics, the results are relatively easy to 
understand and appreciate, even without proof, 
because of their visual nature. 
 Apart from the remarkable concurrencies of the 
medians, altitudes and perpendicular bisectors of a 
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triangle mentioned in De Villiers (2005), there is a 
fourth concurrency theorem mentioned in a few 
South African textbooks, namely: 

The angle bisectors of the angles of a 
triangle are concurrent at the incentre, 
which is the centre of the inscribed circle 
of the triangle (see Figure 1). 

 
Figure 1 : Incentre 

 
 
 
Nagel point  
Many mathematics teachers are not aware that 
there are many famous special centres associated 
with the triangle, and not only the four, i.e. the 
centroid, orthocentre, circumcentre and incentre, 
normally mentioned in textbooks. In fact, Clark 
Kimberling's two websites are worth a visit, where 
over 1000 special centres are associated with the  

triangle (see Kimberling)! Antonio Gutierrez's site 
also provides some beautiful, draggable dynamic 
geometry sketches of some of the more famous 
triangle centres (see Gutierrez).  
 One such notable point is the Nagel point, 
which is the point of concurrency of the lines from 
the vertices of a triangle to the points on the 
opposite sides where they are touched by the 
escribed circles (see Figure 2). This interesting 
point is named after its discoverer, the German 
mathematician Christian Heinrich von Nagel 
(1803-1882) and some biographical information 
about him can be obtained from: 
http://faculty.evansville.edu/ck6/bstud/nagel.html 

Pascal's theorem  
The French philosopher and mathematician Blaise 
Pascal (1623-1662) discovered and proved the 
following remarkable theorem at the age of 
sixteen: All six vertices of a hexagon lie on a 
conic, if and only if, the intersections of the three 
pairs of opposite sides are collinear (lie on a 
straight line) – see Figure 3 on following page. 
This is one of the first entirely projective theorems 
discovered and proved, and does not involve any 
measurement of sides or angles. Note that when 
the opposite sides of the inscribed hexagon are 
parallel they are assumed to meet at infinity, and 
all points at infinity are assumed to lie on the line 
at infinity. Pascal's proof has unfortunately not 
survived, but he probably used classical Euclidean 
geometry, and not modern projective methods. 
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Figure 2: Nagel point 
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Spieker circle and Nagel line  
The discovery of the nine-point circle and the 
associated Euler-line has often been described as 
one of the crowning glories of post-Greek 
synthetic geometry (see De Villiers, 2005 for more 
details). However, less well known seems to be an 
interesting analogue or parallel result involving the 
Spieker circle and the Nagel line. The Spieker 
circle is named after Theodor Spieker whose 1890 
geometry  book  Lehrbuch  der  ebenen  Geometrie  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
was  one  of  the books  that  greatly  inspired   the  
young Einstein (see Pyenson, 1985). The rather 
remarkable parallelism between the nine-point 
circle and Euler line on the one hand, and that of 
the Spieker circle and Nagel line on the other hand, 
is contrasted in the table below, and illustrated in 
Figure 4. (The reader is reminded that the median 
triangle is the one formed by the midpoints of the 
sides of a triangle.) 
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Figure 4: Nine-point & Spieker circles 

Figure 3:  Pascal’s theorem 
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The nine-point circle is the circumcircle of 
ABC's median triangle and has radius half 
that of circumcircle of ABC. 

The Spieker circle is the incircle of ABC's 
median triangle and has radius half that of 
incircle of ABC. 

The circumcentre (O), centroid (G) & 
orthocentre (H) of any triangle ABC are 
collinear (Euler line), GH = 2GO and the 
midpoint of OH is the centre of the nine-
point circle (P) so that HP = 3 PG. 

The incentre (I), centroid (G) & Nagel point 
(N) of any triangle are collinear (Nagel line), 
GN = 2GI and the midpoint of IN is the 
centre of the Spieker circle (S) so that NS = 3 
SG. 

The nine-point circle cuts the sides of ABC 
where the extensions of the altitudes through 
the orthocentre meet the sides of ABC. 

The Spieker circle touches the sides of the 
median triangle where they meet the lines 
from the Nagel point to the vertices of ABC. 

The nine-point circle passes through the 
midpoints of the segments from the 
orthocentre to the vertices of the triangle. 

The Spieker circle touches the sides of the 
triangle whose vertices are the midpoints of 
the segments from the Nagel point to the 
vertices of ABC. 

The above observations are not new, and appear 
together with proofs in Coolidge (1971) and 
Honsberger (1995). More generally, this is an 
example of a limited, but an interesting kind of 
duality not only between the incircles (and 
escribed circles) and circumcircles of triangles and 
other polygons, but also between the concepts of 
side and angle, equal and perpendicular diagonals 
(e.g. for quadrilaterals), etc. This limited duality or 
analogy is explored fairly extensively in De 
Villiers (1996) and has been useful in formulating 
and discovering several new results (see for 
example De Villiers, 2000). 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Having recently rediscovered a generalisation of 
the nine-point circle to a nine-point conic and an 
associated generalisation of the Euler line (De 
Villiers, 2005), the author wondered how one 
could generalise the Spieker circle (and the Nagel 
line) in a similar way. The following is the result 
of that investigation.  
Let us first prove the following useful Lemma that 
will come in handy a little later. The first algebraic 
proof is my own original one while the second 
geometric one was kindly sent to me by Michael 
Fox from Leamington Spa, Warwickshire, UK. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5 : Lemma 
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Lemma  
Given A', B', C' as the images of any three points 
A, B, C after a half-turn about O, then the six 
points A', B', C', A, B, and C lie on a conic. 

Algebraic proof  
Place O at the origin so that the general conic 
equation we need to determine reduces to 
ax2 + 2hxy+ by2 + c = 0. Divide through by c, 
so that only three unknowns now need to be 
determined. Due to the symmetry of the conic 
equation it follows that if (x1,y1)  satisfies the 
equation so does its image (−x1,−y1)under a half-
turn. Therefore, only three points are needed to 
find the conic, one from each symmetric pair, e.g. 
A or A', B or B', C or C'. 

Geometric proof  
Consider the hexagon AB'CC'BA' shown in Figure 
5. The image of AB' is A'B, therefore AB' // A'B; 
similarly BC' // B'C. Thus BL'B'L is a 
parallelogram, and its diagonals bisect each other. 
But the midpoint of BB' is O, hence LOL' is a 
straight line. These are the intersections of the 
opposite sides of the hexagon, so by the converse 
of Pascal's theorem, the vertices A, B, C, A', B', C' 
lie on a conic. 

Spieker conic  
Given A'B'C' as the median triangle of a triangle 
ABC, and A'D, B'E and C'F are three lines 
concurrent at N. Let L, J and K be the respective 
midpoints of A'N, B'N, and C'N, and X, Y and Z be 
the midpoints of the sides of A'B'C' as shown in 
Figure 6. For purposes of clarity, an enlargement 
of the median triangle and only the relevant points 
are shown in the bottom part of Figure 6 (see 
following page.) 

Since both XK and LZ are parallel and 
equal to half B'N, it follows that XKLZ is a 
parallelogram. Similarly JXYL and ZJKY are 
parallelograms. Let S be the common midpoint of 
the respective diagonals XL, YJ, and ZK of these 
parallelograms. Further let the intersections of AN, 
BN and CN with the sides of the median triangle be 
P, Q, and R, and their respective reflections 
through S be P', Q', and R'. If a conic is now drawn 
through any five of P, Q, R, P', Q', and R', then the 
conic cuts through the sixth point, and is inscribed 
in the median triangle (as well as the triangle 
obtained from the median triangle through a half-
turn around S). 
  
 

Proof 

Since P, Q, R, P', Q', and R' are symmetrically 
placed around S by construction, it immediately 
follows from the preceding lemma that all six 
points lie on the same conic. Furthermore, it is 
obvious that projecting the lines A'D, B'E and C'F 
onto the altitudes of the median triangle, reduces 
the conic to the Spieker circle. Since the Spieker 
circle is inscribed in the median triangle (as well as 
its half-turn around S), and since any conic and 
tangents remain a conic and tangents under 
projection, it therefore follows that the general 
Spieker conic is also inscribed in both triangles.  

Nagel line generalisation  
Given the above configuration for any triangle 
ABC, then the centre of the Spieker conic (S), the 
centroid of ABC (G) and N are collinear, and NS = 
3 SG. 

Proof  
The projection of the Spieker conic onto the 
Spieker circle, also projects S onto the the centre of 
the Spieker circle, and the point N onto the Nagel 
point, and since collinearity is preserved under 
projection, S, G and N are collinear. However, 
since ratios of segments are not necessarily 
invariant under projection, this is not sufficient to 
prove NS = 3 SG. 
 However, this follows directly from the nine-
point conic result and associated Euler 
generalisation discussed in De Villiers (2005). In 
Figure 6, the nine-point conic result implies that X, 
K, Y, E, L, Z, F, J, and D also lie on a conic, and 
that it has the same centre S as the Spieker conic. 
Hence, the Euler line corollary of this inscribed 
nine-point Spieker conic, directly proves the Nagel 
generalisation above, so that the centre S of this 
nine-point conic, the centroid G of ABC and the 
point of concurrency N, are collinear, and NS = 3 
SG. 

Concluding comments 
It is hoped that this article has to some extent 
expelled the myth that the ancient Greeks already 
discovered and proved everything there is to find 
and prove in geometry. Apart from these results 
being easily accessible to undergraduate students, 
they are probably also within reach of talented high 
school students, particularly those at the level of 
the Third Round of the Harmony SA Mathematics 
Olympiad. 
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Figure 6: Spieker conic 
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Moreover, this article has hopefully also 
demonstrated that possible new geometric 
discoveries such as the nine-point and Spieker 
conics discussed here can still be made. In fact, it 
is quite likely that using dynamic geometry 
software in teaching geometry at high school or 
tertiary level may enable learners and students to 
more easily make their own discoveries, as the 
author has found on several occasions when 
working with prospective and in-service 
mathematics teachers. In particular, dynamic 
geometry software encourages an experimental 
approach that enables students to make and test 
geometric conjectures very efficiently. 

In recent years there has been a general increase 
in geometry research on many fronts. We’ve seen 
the development and expansion of Knot Theory 
and its increased application to biology, the use of 
Projective Geometry in the design of virtual reality 
programs, the application of Coding Theory to the 
design of CD players, an investigation of the 
geometry involved in robotics, use of Search 
Theory in locating oil or mineral deposits, the 
application of geometry to voting systems, the 
application of String Theory to the origin, nature 
and shape of the cosmos, etc. Even Soap Bubble 
Geometry is receiving new attention as illustrated 
by the special session given to it at the Burlington 
MathsFest in 1995.  
 Even Euclidean geometry is experiencing an 
exciting revival, in no small part due to the recent 
development of dynamic geometry software such 
as Cabri,  Sketchpad and Cinderella. Indeed, Philip 
Davies (1995) already ten years ago predicted a 
possibly rosy, new future for research in triangle 
geometry. Just a brief perusal of some recent issues 
of mathematical journals like the Mathematical 
Intelligencer, American Mathematical Monthly, 
The Mathematical Gazette, Mathematics 
Magazine, Mathematics & Informatics Quarterly, 
Forum Geometricorum, etc. easily testify to the 
greatly increased activity and interest in traditional 
Euclidean geometry involving triangles, 
quadrilaterals and circles. Of note too is a specific 
Yahoo discussion group which is specifically 
dedicated to current research in triangle geometry 
and traditional Euclidean geometry. Readers are 
invited to visit:  
http://groups.yahoo.com/group/Hyacinthos/ 

It is therefore unfortunate that, with the 
exception of a handful of South African 
universities, hardly any courses are offered in 
advanced Euclidean, affine, projective or other 
geometries. In this respect, we seem to be lagging 
behind some leading overseas universities where 
there is a resurgence of interest in geometry not 

only at the undergraduate, but also at the 
postgraduate and research level. Not only does this 
tendency in South Africa narrow the potential field 
of research for a young mathematical researcher, 
but especially impacts negatively on the training of 
future mathematics teachers, who then return to 
teach matric geometry, having studied no further 
than matric geometry themselves.  
 In contrast to the present South African tertiary 
scene, the Mathematics Department at Cornell 
University, for example, is currently running more 
geometry courses at the graduate level (our 
postgraduate level) than any other courses 
(according to a personal communication to the 
author from David Henderson about four or five 
years ago). Moreover, Peter Hilton, one of the 
leading algebraic topologists (now retired from 
Binghamton University), is well known for 
frequently publicly stating that geometry is a 
marvelous and indispensable source of challenging 
problems, though algebra is often needed to solve 
them. It is also significant that the recent proof of 
Fermat's Last Theorem by Wiles relied heavily on 
many diverse fields in mathematics, including 
fundamental geometric ideas (see Singh, 1997). 

Note: A Dynamic Geometry (Sketchpad 4) sketch 
in zipped format (Winzip) of the results discussed 
here can be downloaded directly from: 
http://mysite.mweb.co.za/residents/profmd/spieker.zip 
 (This sketch can also be viewed with a free 
demo version of Sketchpad 4 that can be 
downloaded from:  
http://www.keypress.com/sketchpad/sketchdemo.html) 
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At the age of 12, I experienced a second wonder of a totally 
different nature: in a little book dealing with Euclidean plane 
geometry, which came into my hands at the beginning of the 
school year. Here were assertions, as for example the 
intersection of the three altitudes of a triangle in one point, 
which -- though by no means evident -- could nevertheless be 
proved with such certainty that any doubt appeared to be out 
of the question. This lucidity and certainty made an 
indescribable impression on me. 
 
     – Albert Einstein (Autobiographical Notes)  


