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In this paper | claim that modelling should be seen as the first stage of the proving process. | discuss an
experiment conducted with grade 10 (15 year old) learners in a small suburb in South Africa. There is
little emphasis placed on modelling in our schools and it is just beginning to make an appearance in our
new Outcomes Based Curriculum. The research shows that as a result of the modelling process learners
felt the need to know why the result was true. There is ample evidence that a lot of work on a similar topic
has been done elsewhere in the world, but not much has been done in South Africa. The research was
conducted using Sketchpad as a mediating tool. This in itself was a difficult task because our learners

have not really been exposed to dynamic geometry environments.

Introduction
Proof is often only seen as a means of si

verifying the truth of mathematical statements.
Although proof should be seen as serving many
functions, it would seem that establishing certainty
its main functipn.

in a statement has been

of the most effective contexts for
introducing and eliciting proof. Real-
world problems are commonly used as
vehicles to introduce or deepen students'
understanding of mathematical concepts
and relationships.

ply

According to Davis and Hersh (1981: 249) this gaHlodgson and Riley's argument that real-world

be traced back to the Greek mathematicians
saw the proof process as that of validation
certification. A survey conducted in 1984 by I
Villiers (1999: 18) revealed that more than 50 %
Higher  Education Diploma  students
mathematics education agreed that the (@
function of proof was that of “making sure”, th
is, the verification of the truth of the results.

This is a perception that is common
propagated in mathematics classrooms, wh
teachers focus on the verifying of mathemati
truths that are being investigated. Seldom is the
link established between mathematical modell
of real-world problems and proving. This is al
the finding of Hodgson and Riley (2001: 724), w
state that that "proof and real-world proble
solving are typically considered to be separate
distinct endeavours”. It has always been difficulf
gauge the relationship between real-wo
problem-solving and proof, yet the clear value
real-world problem-solving in the process
proving cannot be underestimated.

Hodgson and Riley (2001: 724) further stg
that:

our experience has been that real-world

problems supply an important ingredient

that seems to be missing from typical
classroom instruction on proof. As such,

ipooblems could be the basis for mathematical proof
retems from one step in the modelling process,
Denamely, the testing of the solution. They believe
ahat it is essential for students to ask "why is the
nstatement true?" after they have arrived at a
niolution. In their experiment the students found
htthat their solution was incorrect and this initiated
the desire for an explanation. It is my contention
lythat had they not gone through the process of
emeodelling, it is unlikely that they would have
cavanted an explanation.

re a Similarly, Klaoudatos and Papastavridis (2001)
ndiscuss a teaching experiment basedGuontext
sdriented Teaching (COT). According to
nalaoudatos and Papastavridis, COT is “a model
mbased on a problem solving framework and on the
aseélection of the appropriate task context” (p. 1).
tdhey observe that COT provides the student who
rithas little understanding of the mathematics
ahvolved in solving a particular problem, with a
oftarting point and a sense of direction. Essentially,
they conclude that starting with a Context Oriented
t@uestion  (which is an adapted real-world
question), the learners use Context Oriented
Heuristics to develop Context Oriented Concepts.
Context Oriented Conjectures are formulated,
which leads to Context Oriented Proofs. Despite
framing their arguments within the idea of

real-world problems may actually be one
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contexts, they still show that the modelling activ
serves as a starting point for this proof.

A further significant argument which show
this direct link between modelling and proof
made by Blum (1998) when he states t
applications in mathematics (solving of real-wo
problems) provide contexts for what he refers td
reality-related proofsHe clearly points out that:

formal proofs are mostly the final stage

in a genetic development — historically as

well as epistemologically as well as

psychologically. (p. 4)

However, Klaoudatos and Papastavridis (2001
well as Blum (1998) discuss proving in relation
modelling in teaching situations which have be
explicitly designed so as to connect the two. T
question still remains whether the modelli
activity will still serve as a starting point for pro
if the specific modelling activity is not constructg
with the intention of arriving at a proo
Furthermore, it is relevant to ask whether {
experiences gained from the European conts
will be similar in South African classrooms, wit
different traditions, and teacher-learn
relationships and numbers. | address both th
guestions below.

Real-world problems

The direct connection between classro
mathematics and real-world mathematics is|
tenuous one, because it is often difficult to rel
classroom mathematics to what happens in the
world. If the word “real” in this instance is ng
only interpreted as a connection to the real wo
but as a reference to the problem situations whk
appear to be real in the learner's mind, then
relationship between real-world and classro
mathematics becomes a bearable one. Furthern
if mathematics is to be related to reality, not only
reference being made to real-world problems
also to the fact that the mathematics must m
sense to children. It must remain as close
possible to the concepts that children already h
and know. The work they do must appeal to th
within the frames of reference that th
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tyClearly, the problem presented precedes the
abstract mathematics that is to be learned.
s According to Van den Heuvel-Panhuizen
i1998):
hat The reason ... why the Dutch reform of
Id mathematics education was called
as ‘realistic’ is not just the connection with

the real-world, but is related to the

emphasis that RME [Realistic

Mathematics Education] puts on offering

the students problem situations which

they can imagine. (p. 1)
dhe Realistic Mathematics educators place
tommense emphasis on the idea of making a
emathematical idea real in the mind of the learner.
'he So when working with real-world problems the
ndearner should first be exposed to a problem
pfsituation that they are familiar with and it must
rcBppear to be real. This then allows them to use
. their previous experiences to interact and engage
hwith the problem at hand. It is this interaction with
xasfamiliar situation that leads to the development of
ha predetermined mathematical concept. Through
efurther interrogation of the problem situation and
legse results the learner develops a better
understanding of the concept (Zulkardi, 2003: 6).

Although it may be difficult to replicate real-
world conditions in a mathematics classroom, it is
brassential to expose learners to different real-world
scenarios so that they learn mathematics in
ateontexts that are familiar to them. Bonotto (2004)
resthtes that:
)t progressive mathematization should lead to
rid, algorithms, concepts and notations that are
ich rooted in a learning history which starts with
the students’ informal  experientially  real
bm knowledge. In our approach everyday-life
nore,experience and formal mathematics, despite
is their specific differences, are not seen as two
but disjunctive and independent entities. Instead, a
ake process of gradual growth is aimed for, in
as which formal mathematics comes to the fore as
ave a natural extension of the students’ experiential
em reality. (p. 42)
eyBesides the ideal

of showing learners how

understand. Selden and Selden (1999) state thatmathematics is related to the real world it also

from the perspective of Realistic
Mathematics Education, students learn
mathematics by mathematizing the
subject matter through examining
'realistic’ situations, i.e., experientially
real contexts for students that draw on
their current mathematical
understandings. (p. 9)

serves to increase interest in the subject matter.
Bowman (1997: 8) states that after allowing his

students to work with real-world problems in his

class the level of student interest increased to the
extent that “they were especially excited about
being able to solve a mathematics problem that
even the so-called ‘math geniuses’ in calculus
could not solve”.
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The process of modelling and its
relationship to proving
In order to understand the relationship betwg
proof and modelling, one needs to have sd
knowledge of the processes involved in modelli
Modelling is not an easy task. It often involveg
process of creating a miniature problem, which
analogous to the larger problem, but enables
modeller to draw exact conclusions, which can
extrapolated to the original real-life probler
Although a model attempts to simulate the origi
problem it cannot truly replicate all the constrail
that might be imposed by the problem itself.

Modelling usually begins with a real-lif
situation which may be relatively controlled (f
example, determining the profit of a manufacturi
company), or sometimes in environments in wh
the modeller cannot control all the conditions (1
example determining the population increase
fish in a river). In all cases the modeller is hopi
to predict future behaviour of the system un
prevailing conditions.

This research was based on the followi
diagrammatic explanation of the modelling proc;

In evaluating a model and its results the
modeller begins to asWwhy does the result hold
ranue? (or everwhy does the resultot hold true?).
me is this question that clearly defines the
ngelationship between modelling and proving.

a Askingwhy indicates a desire to seek some sort
isf explanation. It is also clear that the question is
timet whether the result is true because the modeller
bieas already convinced him/herself that the result is
ntrue during the interpretative stage. Once
nalonvinced the modeller develops a certain curiosity
ntas to why the result is true and possible under such
conditions. In attempting to answer this question
b the modeller begins to develop an explanation for
prthe observed result and hence establishes a proof
ngaluable in increasing the understanding of the
chroblem.
or

athe purpose of this study and the
n¢heoretical framework
leFhe purpose of this study was to determine
whether Sketchpad could be useful as a
nghathematical tool when teaching children to
egmodel. Furthermore, this study tested curriculum

of Michael Olnick (1978:4). Refer to Figure 1.

material that was developed (De Villiers, 1999)

abstraction _
Real world > Mathematical system
experiments logical argument
Real-world conclusions <4+— - Mathematical conclusions
interpretation

Figure 1. Diagrammatic representatio

n of Olnick’s modelling process

The model depicted in Figure 1 was adapted tand refined as a result of previous empirical and

include other technologies

in the modellingheoretical research. The material in the form of

process. For the purposes of this research|th@rksheets allowed the learner to work through the
technology used was the computer softwangroblem by guiding the child through stages that

packageSketchpadRefer to Figure 2.

are easy and practical. As the child progressed

De Villiers (1993: 3) describes three differgnthrough the worksheets, the child was allowed to

categories of model application namelgirect

record his/her conclusions and conjectures and this

application (‘immediate recognition of a model {oled to an explanation (proof).

be used’)analogical application(‘development of
a model that is similar to an existing model’),

creative application(‘a completely new model i
created using new techniques and concepts’).

The theoretical and empirical part of this
desearch focused on the following major research
guestions:
tie What is the role and function of mathematical

experiment described below is entrenched in [the modelling in mathematical sciences, and its

creative application.
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abstraction
Real world > Mathematical system
experiments logical argument
Real-world conclusions | 4 Mathematical conclusions
interpretation
; simulation
conclusions
Computer model <4— | Computer software - Sketchpad
manipulation

Figure 2. Sketchpad modelling process

Can learners acquire knowledge ab
geometric concepts and shapes such
equidistance, perpendicular bisectors
concurrency via creative modelling?

Are secondary school learners able to cre
and wuse mathematical models to so
geometric problems in the real world witho
the use ofSketchpad If so, what strategies d
they use?

. Are learners able to use the providatchpad
sketches effectively to arrive at reasona
solutions?

Do learners display greater understanding of
real-world problems under question when us
Sketchpad?

My one-to-one task-based interviews we
analysed using qualitative methods. This met
made it easier to document the high level
information that individual children display whe
working through a specific problem. Furthermo
this method allowed the researcher greater cor
to observe and take note of how each leal
answered questions based on the comp
manipulation they experienced.

The tasks used in the interviews had bé
conceptualised within an action research paradi
These tasks were conceptualised mainly a
means of teaching children the different functid
of proof developed by de Villiers (1999), and al
included aspects of modelling. This reseal
attempted to determine how well they coped w

[e

buheanings as conceptualised, and whether they
amuld be able to mathematically model a solution.
inBased on initial trials the tasks had to be
redesigned in order to achieve the predetermined
rag@als of the learning activity. In other words,
vaction research acted as a guiding methodology.
ut The task that the learners had to work through
owas based on a relevant real-world topic. All
learners were exposed to the different media in
South Africa and from prior gquestioning it was
blestablished that all learners were aware of the
seriousness of the water born iliness called cholera.
thearners were also aware that cholera was mainly
ngoncentrated in rural areas, particularly in areas
where no fresh water was available. Hence,
redentification with the problem was not new and
nadifficult.
of All the Sketchpadsketches were presented as
nready-made models to the learners. The task of
reconstructing such models is also an essential
tnolodelling skill and would be an interesting task to
nask of learners. For example, it would require them
utemoosing and implementing a reasonable scale and
utilising Sketchpad’sools to accurately construct a
regiynamic scale drawing. The decision to present the
gisketches directly to them was based on the
5 fallowing reasons:
ne The construction of accurate, dynamic
S0 Sketchpadsketches requires a fairly high level
rch of technical expertise.
ith Even if learners had had a sufficiently high

the tasks provided, whether they constr

pct level of expertise, it would have been very time
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consuming to construct the sketches.
The research was aimed at ascertaining whe
learners could use these giveBketchpad
sketches effectively to solve real-wor
problems, and not on their ability to constry
such sketches themselves.

Moreover, the research was aimed
investigating whether learners could, throu
using these given sketches, acqu
understanding of important concepts such
bisector, circumcentre, circum-circle, cycl
guadrilateral, and some properties of these.
All of the activities were entrenched in th
constructivist belief that "the learners have th
own ideas, that these persist despite teaching
that they develop in a way characteristic of 1
person and the way they experience things, le
inevitably to the idea that, in learning, peof
construct their own meaning" (Brookes, 1994: 1
There is little doubt that children ent;
mathematics classes with views and ideas
certain mathematical occurrences that th
experience in real life. They, for example, may

is often the starting point for proof

Learning is a social process and the learner

ther acquires new knowledge through interaction
with other learners and educators.

d Research conducted by the Research Unit for

cMathematics Education at the University of

Stellenbosch (Olivier, Murray and Human, 1992)

aghowed that the:

gh majority of children invent powerful non-

ire standard algorithms alongside school-

as taught standard algorithms; that they

c prefer to use their own algorithms when
allowed to do so and that their success

e rate when using their own algorithms is

eir significantly higher than the success rate

andof children who use the standard

he algorithms or when they themselves use

ads standard algorithms. (p. 33)

Ighis research clearly contributed to the general

2y.onstructivist theory of children creating their own

brknowledge from their own experiences and not

ffom the experiences of the educator or textbook

eguthor.
be

aware that water reservoirs are gener

Ilyhe research itself

constructed at the top of the highest hill in a villggé a modelling experiment conducted with grade
because the pressure required to feed the waterltdlearners to teach concepts such as perpendicular
large distances must be great. They may be awdnisectors and concurrency, it was found that these
that in order to establish the height of a mountaitearners displayed a definite desire for a proof. |
it is basically impossible to start from the top of thénitially envisaged that it would not be necessary to

mountain with a

tape measure and wgrklevelop and pursue the actual proof of their

downwards towards the foot of the mountain. Thegliscovery, because the aim of the investigation

may not know how the height is calculated,
they could have a sense that mathematics w
play a role. Often, mathematics educators m
the flawed assumption that learners are em
vessels into which knowledge must be poured. ]
constructivist view is completely opposite and
based on the theory that learning is an ac
process and that learners construct their (
meaning. This therefore implies that learng
themselves are responsible for their own learnin
Closely linked to this socio-constructivi
theory is theProblem-Centred Learning (PCL)
approach, developed in South Africa in the n
1980s by researchers at the University
Stellenbosch. The PCL approach is based o
socio-constructivist theory of the nature
knowledge and learning and hinges on
following (Olivier, Murray and Human, 1992: 33)
The learner is active in the process of acquir
knowledge.
In acquiring this knowledge, the learner mak
use of past experiences and existing knowled
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wimply was to determine wheth8ketchpad could
bd¢ used as a modelling tool in developing new
alkwncepts (such as concurrency and perpendicular
pbisectors). Later, | felt that it was useful and
recessary to investigate whether learners could
isictually be guided to a simple proof based on their
iveodelling activity. The proof was based on
wnaterials developed by De Villiers (1999: 32).

brs A real-world problem was given to the students,
gcontextualised within the South African rural
stbackground. The question was:

In a developing country like South

nid Africa, there are many remote villages

of where people do not have access to safe,

n a clean water and are dependent on nearby

of streams or rivers for their water supply.

he With the recent outbreak of cholera in

these areas, untreated water from these
streams and rivers has become
dangerous for human consumption.
Suppose you were asked to determine the

site for a water reservoir and purification

plant so that it would be the same
distance away from four remote villages.

ng

es
ge.
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Where would you recommend the
building of this plant?

The
constructed diagrams usingketchpad as
mediating tool. The diagrams were constructed
way that allowed the students to eventually mo
a solution to the above question. After the stude
had gone through the process of working or
dynamic quadrilateral and discovering that only
perpendicular bisectors of a cyclic quadrilate
were concurrent, they were asked a sim
guestion related to three villages. They read
conjectured that perpendicular bisectors would
concurrent for only those triangles that were cyc
They were enormously surprised when they u
the drag function oSketchpad to discover that tf
perpendicular bisectors ofll triangles were
concurrent.

When asked if they wanted to know why this|
true all students gave the impression that t
wanted an explanatioin order to extract som
understanding from it. The proof was not
required because they doubted the result but
only because they felt that it would satisfy some
innate curiosity around the reason for the
result.

An example of a learner’s proving process
and strength of conviction
Only one example of the proving process is Ci

to convey the gist of what transpired after the

learners felt the need for an explanation.

TEACHER Look at this triangle on the scre
again. Construct the perpendici
bisector of any side.

DESIGAN Can | do it for AB?

TEACHER Yes. @fter the constructionDesigar
what can you tell me about all -
points on this perpendicular bisector

DESIGAN Itis equidistant from A and B.

TEACHER What is equidistant? triying tc
ascertain for sure what the 'it' was

DESIGAN All the points on this lingppinting tc
the perpendicular bisecthr

TEACHER What does that really mean to you?

DESIGAN If you measure the distance from
point on this line to this A and B, t
distance will be the same.

In this segment | was simply attempting to ¢
the learner to recall the concepts of perpendic
bisector and equidistant. In a way, it was als
means of determining whether the learner actu
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understood and remembered what he had done
earlier in the interview.

students were presented with already

n TEACHER Now construct oth
na perpendicular bisector.
dEESIGAN (constructing)

NTEEACHER What can you tell about the points

a this line now?
hBESIGAN All the points are the same dista
ral away from B and C.

[aFEACHER Now look at this point of intersectic

lily What can you say about this poin

be particular?

IMESIGAN Eh ... eh...

seCEACHER Think carefully about the point.

1eDESIGAN That point therés the same distan
away from A and B and, B and C.

TEACHER A and B and, B and C?

IDESIGAN Yes, it is the same distance away f
hey A, BandC.
e TEACHER Are you sure?

DESIGAN It lies on this line so it must
equidistant from A and B and it li
on thatline so it must be equidiste
from A and C (ote the erra).

TEACHER If it lies on that line would it L
equidistant from A and C?

DESIGAN No B and C.

TEACHER So are you sure that this point
ted intersection is the same distance a
from A, B and C?

DESIGAN Yes.

any

Initially, it seemed that this learner realised that
the point of intersection was equidistant in a
fragmented way. In other words, he could see that
the point of intersection was equidistant from A
and B and B and C separately. He did not
instantaneously see the connection between all of
? the vertices to the point of intersection.

TEACHER You have to think about this ve
carefully. What can you say about
perpendicular bisector of AC?

DESIGAN All the points will be equidistant fro
A and C.

TEACHER Yes, that is correct. But look at -
other perpendicular bisectors.

DESIGAN (silence for a whilg ....Oh yes, |
must pass through the point wh

jet these two lines meepginting to th
Ular perpendicular bisecto).

b BEACHER Really?

AIDESIGAN Yesbecause if all the points on t

perpendicular bisector of AC are
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same distances away...then ... t
this point of intersection is also
same distance away .. then...

TEACHER Yes?

DESIGAN Then the line must pass through
point of intersection.

TEACHER Are you absolutely sure that t
would happen?

DESIGAN Yes, I'm positive.

TEACHER Do you want to see whether tha
true?

DESIGAN Yes.

TEACHER Construct the perpendicular biset
of AC then.

DESIGAN (after constructing) This is so easy.

TEACHER Was it really that easy?

DESIGAN | didn't take so long to get it right!

Eventually, when he realised that there wal
connection between the three vertices and the
of intersection, the rest of the explanation becs
simple. It was clear that because these learners
initially worked in the modelling process, with th
concept of equidistance, the actual proof beca
easy to understand. This is supported by the

is often the starting point for proof

VISCHALAN If the villages are situated like tl
triangle then all you have to dc
join the \villages, find th
midpoints between them &
construct the perpendicu
bisectors. The point
concurrency will be the mc
suitable point.

Do you think that it is easy to jt
join these villages and find t
perpendicular bisectors?

Yes ... you can use a map of
area.

Do you think that this would |
easy to do in real life?

My uncle told me that you can t
GPS (Global Positioning System
to find any point you want. | thir
the government has pictures
every part of the country.

TEACHER

VISCHALAN
TEACHER
VISCHALAN

5 a
oint
me
had
e It was evident from some of their responses that
\nikeselearnerswere quite capable of transposing
faefal-world problems into mathematical systems

that the learner felt that this explanation was qliitand returning to the real world as they see it.

easy, and, furthermore, he felt that he alone had
it correct. This must be attributed to the high le
of conviction that could be achieved usi
Sketchpad as a mediating tool.

It must also be pointed out that during t
modelling process itself the learner w
encouraged to find the link between the real-wg
situation and the modelling activity itself. Whe
the learners were asked what this result mear
terms of the three villages, some of the respo
were as follows:

DESIGAN You can join the three villages ¢
thenfind the perpendicular bisectc
Where they meet is the import
point for us to use.

Do you think that it is easy to just j¢
these villages and find t
perpendicular bisectors?

| don't think that it's easy ... I'm st
they can drawtion a page first ai
then do an exact drawing ... or e
use this programme to get the e
position.

Do you think that this would be et
to doin real life?

| don't know... we must consider a
of factors ... like we discussed in-
beginning.

TEACHER

DESIGAN

TEACHER

DESIGAN

got
vetonclusion
NgNithin the context of teaching a real-world
problem, the evidence presented by the learners
hénvolved in this study, indicates that there is some
pseason to believe that using modelling situations in
rd classroom may lead to mathematical proving
tNopportunities. Although it cannot be conclusively
t stated that all modelling activities will lead to the
spRoving process, this experiment does reveal that
given certain modelling opportunities, learners
may, as a result of the high levels of conviction
established, want an explanation for the results
they observe. The researcher also concedes that in
the pseudo-real-world problem that the learners
had to solve, the inductive process was made easier
by the use oSketchpad, and indeed the deductive
process was also catalysed by what the learners
could see whilst working witlsketchpad. But it is
the contention of the researcher that it is exactly
this combination which facilitated a level of
understanding not easily achieved by ordinary
pencil and paper methods. As a result of this high
level of understanding, which began with the
modelling process, the learners felt a need for an
explanation (proof).
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“The silence of infinite space terrifies me.”
Pascal
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