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This paper reports on a study of the extent to which question design affects the solution strategies 
adopted by children when solving linear number pattern generalisation tasks presented in pictorial and 
numeric contexts. The research tool comprised a series of 22 pencil-and-paper exercises based on linear 
generalisation tasks set in both numeric and two-dimensional pictorial contexts. The responses to these 
linear generalisation questions were classified by means of stage descriptors as well as stage modifiers.  
The method or strategy adopted was analysed and classified into one of seven categories. In addition, a 
meta-analysis focused on the formula derived for the nth term in conjunction with its justification. The 
results of this study strongly support the notion that question design can play a critical role in influencing 
learners’ choice of strategy and level of attainment when solving pattern generalisation tasks. An 
understanding of the importance of appropriate question design has direct pedagogical application 
within the context of the mathematics classroom. 
 
 
Introduction and background  
The connection between mathematics and the 
notion of pattern is prevalent at all levels of 
mathematical endeavour. Goldin (2002: 197) 
describes mathematics as “the systematic 
description and study of pattern” while Sandefur 
and Camp (2004: 211) suggest that patterns are 
“the very essence of mathematics, the language in 
which it is expressed.” Perhaps more generalised 
and all-encompassing, Steen (1988: 616) broadly 
defines mathematics as “the science of patterns.” 
Pattern, in a broad sense of the word, is by no 
means restricted to numeric or pictorial patterns, 
although this is the usual context of the word for 
most school Mathematics syllabi. 

Working with number patterns or number 
sequences in the classroom offers valuable 
opportunities for recognising, describing, 
extending and creating patterns (Hargreaves, 
Threlfall, Frobisher & Shorrocks-Taylor, 1999: 
67). It has been suggested that these processes 
have considerable value as a precursor to formal 
algebra (English & Warren, 1998). Searching for 
patterns is also an important strategy for 
mathematical problem-solving (Stacey, 1989: 147). 
Furthermore, in their seminal paper on an 
organising principle for Mathematics curricula, 
Cuoco, Goldenberg and Mark (1996) identify the 
search for pattern as a critical habit of mind.  

The study of pattern has become an integral 
component across all grades of the South African 
school Mathematics curriculum (Department of 
Education, 2002; Department of Education, 

2003b). In the Intermediate Phase (grades 4-6) the 
importance of number pattern activities is in 
“laying the foundation for the study of formal 
algebra in the Senior Phase while at the same time 
developing important mathematical thinking skills” 
(Department of Education, 2003a: 37). Number 
pattern activities in the Senior Phase (grades 7-9) 
are essentially an extension of the Intermediate 
Phase. However, in grades 8 and 9 there is an 
expectation that learners “use algebra and algebraic 
processes in their description of these patterns” 
(Department of Education, 2003a: 39). Within the 
Further Education and Training (FET) band 
(grades 10-12) learners will “solve problems 
related to arithmetic, geometric and other 
sequences and series” as well as “explore real-life 
and purely mathematical number patterns and 
problems which develop the ability to generalise, 
justify and prove” (Department of Education, 
2003b: 12).   

There are a variety of different number patterns 
which fall under the above framework, including: 
linear or arithmetic sequences, quadratic 
sequences, power sequences, geometric sequences, 
and Fibonacci-type sequences. While number 
patterns can be explored purely numerically – 
namely, in terms of patterns presented as a 
sequence of numerical symbols – implicit in the 
requirement that learners be able to “provide 
explanations and justifications and attempt to 
prove conjectures” (Department of Education, 
2003b: 18) is the condition that at least some of the 
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pattern questions be set in non-numeric or pictorial 
contexts. 

There are numerous pictorial and practical 
contexts in which pattern questions can be set, 
among the most obvious being dot patterns, tiling 
patterns, matchstick patterns as well as two- and 
three-dimensional building block patterns. Such 
pattern tasks usually require some form of 
generalisation of the pattern, usually in terms of 
algebraic symbols. It can be argued that setting 
pattern questions within a pictorial context should 
allow for greater scope in terms of learner 
problem-solving strategies, since a pictorial 
representation can readily be reduced to a purely 
numeric equivalent, provided the pictorial context 
has been meaningfully understood. However, 
although pattern problems presented in a pictorial 
and/or practical context have the potential to widen 
the scope of solution strategies for some learners, it 
can be argued that for others this may well create 
additional complications. An understanding of how 
question design of such pattern generalisation tasks 
is likely to influence the approach adopted by 
children would greatly assist teachers in terms of 
their choice of such activities. It is within this 
context that this paper finds both impetus and 
import. 
 
Theoretical framework  
While embracing the basic tenets of construct-
ivism, central to the broader study is the 
fundamental notion that constructivism is a 
descriptive rather than prescriptive philosophy 
(Towers & Davis, 2002: 314).  Built onto this 
philosophy is the firm belief in the use of both 
language and notation systems/representations as 
important mediators in the process of knowledge 
construction – both in terms of their contribution to 
the organisation of the thinking process itself, as 
well as the cyclical nature of reflection (Kaput, 
1991). 

The role of visualisation is also a central focus 
of the broader study. While generalisation 
problems presented in a pictorial or practical 
context have the potential to widen the scope of 
solution strategies for some learners, it is 
acknowledged that this may well create additional 
complications for others (Orton, Orton & Roper, 
1999). The types of generalisation activities 
considered purposefully in this paper include those 
presented in pictorial contexts, thus allowing for a 
possible connection to a referential context that has 
the potential to aid and enhance the generalisation 
process. Within the context of the broader study, 

justification is seen to play a central role in 
communication of mathematical understanding. 
Learners’ justifications of their generalisations are 
seen to provide “…a window to view their 
understanding of the general nature of their rules” 
(Lannin, 2005: 251). 
 
Methodology and data generation  
This paper focuses on more quantitative aspects 
within the broader study, which is based on a 
qualitative investigation framed within an 
interpretive paradigm. It attempts to interrogate 
learners’ responses to various linear generalisation 
tasks from both a technical as well as strategic 
viewpoint. More specifically, the research question 
under consideration is:  

To what extent does question design 
influence (a) strategy choice, (b) stage 
progress, (c) contextual connectivity – 
the extent to which the justification of the 
general term makes reference to the 
pictorial context – and (d) the diversity of 
expressions for the general term? 
The essential character underpinning the data 

analysis is the treatment of all responses, 
particularly those that are unexpected or 
idiosyncratic, with a genuine interest in under-
standing their character and origins – a firm 
conviction that “the constructions of others … 
have integrity and sensibility within another’s 
framework” (Confrey, 1990: 108). 

A case study methodological strategy was 
adopted and an appropriate group of research 
participants was identified – the members of a 
mixed gender, high ability grade 9 class of 24 
learners at an independent school in Grahamstown, 
South Africa. Over a period of three months, the 
24 research participants each completed a series of 
22 pencil-and-paper exercises based on linear 
generalisation tasks set in both numeric and two-

 
  

   4 ; 7 ; 10 ; 13 ; . . .  
 

 
 
Figure 1.  Number sequences. 
 
 

Position 1 2 3 4 . . . 

Number 3 5 7 9 . . . 

 
Figure 2.  Tabular form. 
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dimensional pictorial contexts. For each pattern, 
participants were required to provide numerical 
values for the ‘next’, 10th and 50th terms (Stages 1, 
2 and 3), as well as a written articulation of their 
reasoning at each stage. Participants were also 
asked to provide an algebraic expression for the nth 
term (Stage 4), and provide a justification for their 
expression. 

The structure of the six different question 
design formats was guided by insights gleaned 
from the literature review (see, for example, 
Stacey, 1989; Orton, 1997). These six formats are 
summarised below, where the dependent variable 
refers to the numerical value of the term itself, 
while the independent variable refers to the 
position of the term in the sequence. 
• Questions 1-5: A single pictorial term in which 

the underlying structure is unambiguous. Both 
dependent and independent variable mentioned 
in the context of the picture. 

• Questions 6–10: Two non-consecutive pictorial 
terms. Both dependent and independent 

variable mentioned in the context of the picture. 
• Questions 11–13: Three consecutive purely 

pictorial terms. 
• Questions 14–16: Three consecutive pictorial 

terms with numerical value of dependent 
variable indicated. 

• Questions 17–19: Three consecutive purely 
numeric terms (dependent variable indicated). 

• Questions 20–22: Three consecutive purely 
numeric terms in table format (dependent and 
independent variables indicated). 
The responses to the various linear generalis-

ation questions were classified by means of stage 
descriptors as well as stage modifiers. The method 
or strategy adopted for determining each of the 
‘next’, 10th and 50th terms was carefully analysed 
and classified into one of seven categories. In 
addition, a separate framework was used to 
characterise each learner’s justification of the nth 
term in terms of the extent to which the 
justification was linked to the pictorial context.   

Numeric patterns were presented 
as a simple sequence of numbers 
(Figure 1) as well as in tabular form 
(Figure 2). Pictorial patterns were 
presented using three consecutive 
terms (Figure 3), two non-consecutive 
terms (Figure 4) or one single term 
(Figure 5). The use of single terms 
was restricted to cases where a single 
pictorial term provides an 
unambiguous explanation of the 

 

 

3 houses2 houses1 house   
 

Figure 3.  Three consecutive terms 

 

7 squares require 22 matches

3 squares require 10 matches

  
 

Figure 4.  Two non-consecutive terms 
 
 
 

The diagram shows a fence containing 5 upright poles and 12 horizontal rails
  

 

Figure 5.  A single pictorial term 
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underlying structure. 
The literature review undertaken to inform the 

broader study suggested that linear sequences 
would be most appropriate in terms of eliciting rich 
data at all levels of the pattern generalisation 
process. Accordingly, 22 linear/arithmetic 
sequences of the type cax ±  )0( ≠c  were chosen. 
The choice of sequences with non-zero constant 
terms was a purposeful attempt at ensuring that 
choice of an inappropriate strategy would not 
produce a spurious yet numerically correct answer. 
The 22 sequences were split between pictorial and 
non-pictorial contexts. 

 
Data analysis  

(a) Stage classification 
For each of the 22 questions, participants were 
asked to provide numeric values for the ‘next’, 10th 
and 50th terms, as well as an algebraic 
representation for the nth term. Using the 
nomenclature of Stacey (1989: 150), the 10th and 
50th terms represent “near generalisation” and “far 
generalisation” tasks respectively. Determin-ing 
the 10th term thus represents a task which can be 
accomplished by means of step-by-step counting or 
drawing, while determining the 50th term 
represents a task which goes beyond reasonable 
practical limits of such a step-by-step approach.  
The nth term denotes an algebraic generalisation of 
the pattern.   

Stage descriptors and stage modifiers were used 
to classify the responses to the various linear 
generalisation questions. A similar model was used 
to that employed by Orton and Orton (1996; 1999).  
The various stage descriptors can be summarised 
as follows: 
• Stage 0: no progress 
• Stage 1: ‘next’ term correctly provided 
• Stage 2: ‘next’ and 10th terms correctly 

provided 
• Stage 3: ‘next’, 10th and 50th terms correctly 

provided 
• Stage 4: ‘next’, 10th, 50th and nth terms 

correctively provided. 
The above scheme is not intended as a 

hierarchical classification system, but rather as a 
qualitative framework for analysis. Thus, since it is 
possible for a learner to correctly determine the 
50th term despite having incorrectly determined the 
10th term (for example), stage modifiers were used 
to cover all possibilities. The use of both stage 
descriptors as well as stage modifiers thus allowed 
for both a quantitative as well as qualitative 

description of the level of attainment of each 
participant for each pattern generalisation task. 

 
(b) Strategy classification 

The method or strategy adopted for determining 
each of the ‘next’, 10th and 50th terms was carefully 
analysed and classified into one of seven 
categories, namely: counting, chunking, difference 
product, explicit, whole-object uncorrected, whole-
object corrected, and the nature of numerical 
terms. 

The counting method (or method of successive 
addition) represents a recursive approach whereby 
subsequent terms are determined by successively 
adding the identified constant difference to 
previous terms. The explicit method refers to a 
strategy where a general formula is first derived for 
the nth term and the desired term is then calculated 
directly from the general formula by using the 
independent variable, namely, the position of the 
term. Provided the general term has been correctly 
formulated, the explicit method will yield any 
number of algebraically equivalent expressions for 
the nth term.   
 

(c) Justification classification 
In each question, learners were asked to justify 
their general formula, that is, to explain why their 
formula for the nth term works. An important 
aspect of the justification process was an analysis 
of the extent to which learners used the pictorial 
scenario as a referential context for the use of a 
generic example in their justification of the general 
term. To this end, responses were rated in terms of 
whether or not the justification was specifically 
linked to the pictorial – rather than numerical – 
context, using a contextual connectivity rating 
(CCR). Only those questions that had a pictorial 
element (Questions 1–16) were rated. Scores of 1, 
½ or 0 were awarded depending on the extent to 
which the pictorial context featured in the 
justification. 
 
Results, analysis and discussion  
Each of the 22 pattern generalisation tasks used in 
the broader study fell into one of the six different 
question design formats. Analysis of the influence 
of question design on (a) strategy choice, (b) stage 
progress, (c) contextual connectivity, and (d) the 
diversity of expressions for the general term is 
discussed in detail below. 
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(a) Influence of question design on strategy 
MacGregor and Stacey (1993) cite one of the main 
causes of difficulty in formulating algebraic rules 
as being learners’ tendency to focus on the 
recursive patterns of one variable rather than the 
relationship linking the two variables. Similar 
observations have been made by other researchers, 
for example, Orton (1997). This part of the 
analysis focuses on the extent to which question 
design either attracts or discourages a recursive 
approach. 

The counting strategy (recursive approach) was 
used in one of two different modes, either (a) on its 
own as sole strategy, or (b) in combination with an 
explicit strategy. Table 1 shows the percentage of 
total responses using a counting strategy (as sole 
strategy) for Stages 1, 2 and 3. The value under the 
“Total” column indicates the number of responses 
using the counting strategy as a percentage of the 
total responses (using any strategy) for Stages 1, 2 
and 3 combined. The rationale behind considering 
only those responses that used counting as the sole 
strategy was the fact that when counting and 
explicit strategies were used in combination, the 
counting strategy was used simply to check the 
answer derived from the explicit strategy, and was 
thus not critical to a correct response at that stage. 

Table 1 reveals some interesting trends. There 
is a dramatic drop in the number of learners using 
the counting strategy when two non-consecutive 
pictorial terms are used instead of one single 

pictorial term. There could be two possible reasons 
for this. Firstly, a single pictorial term may not be a 
sufficient scaffold to enable some learners to 
derive a general expression. A second diagram, 
physically drawn by the learner, may have been 
necessary in order to see the general structure 
underlying the pictorial context. Thus, using a 
counting strategy at Stage 1 may have been a 
necessary prerequisite to moving to an explicit 
strategy at Stage 2. Secondly, questions that 
incorporated two non-consecutive pictorial terms 
tended to have slightly bigger physical structures 
compared to the single term scenario, and drawing 
the next diagram in such a case may have been 
considered impractical by some learners.  

There is a dramatic increase in the number of 
learners using the counting strategy when three 
consecutive purely pictorial terms are used instead 
of two non-consecutive pictorial terms. This 
increase is even more pronounced when the three 
consecutive terms are accompanied by an 
indication of the dependent variable. The initial 
increase could be a result of two possibilities. 
Firstly, the fact that the three consecutive pictorial 
terms are the first three terms in the sequence, the 
physical structures of the pictorial representations 
are a little less complex than in the case of the two 
non-consecutive terms. This may have encouraged 
learners simply to draw the next term rather than 
looking for an explicit strategy. Secondly, because 
the three consecutive terms give a physical 

 Stage 

Questions Next 
(Stage 1) 

10th 
(Stage 2) 

50th 
(Stage 3) Total 

1–5: Single pictorial term; dependent 
and independent variable mentioned. 36.7 % 2.5 % 0.0 % 13.1 % 

6–10: Two non-consecutive pictorial 
terms; dependent and independent 
variable mentioned. 

17.5 % 0.0 % 0.0 % 5.8 % 

11–13: Three consecutive purely 
pictorial terms. 38. 9 % 2.8 % 0.0 % 13.9 % 

14–16: Three consecutive pictorial 
terms; numerical value of dependent 
variable indicated.  

47.2 % 2.8 % 0.0 % 16.6 % 

17–19: Three consecutive purely 
numeric terms; dependent variable 
indicated. 

51.4 % 8.3 % 0.0 % 19.9 % 

20–22: Three consecutive purely 
numeric terms in table format; 
dependent and independent variables 
indicated. 

40.3 % 1.4 % 0.0 % 13.9 % 

 

Table 1.  Percentage of total responses using counting as sole strategy. 
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representation of growth, learners may have been 
drawn to the recursive nature of the pattern and 
simply added the common difference to the third 
term in order to obtain a numerical value for the 
next term. This seemed to be slightly more often 
the case than simply drawing the next term and 
counting the number of elements. 

The even greater increase when the three 
consecutive terms are accompanied by an 
indication of the dependent variable can be 
explained in terms of the common difference 
having been made somewhat more explicit by the 
inclusion of the dependent variable. Learners were 
thus drawn particularly towards a recursive 
strategy. 

The simple presentation of three consecutive 
purely numeric terms resulted in the highest 
proportion of learners opting for the recursive 
strategy. Just over 51% of all responses at Stage 1 
made use of the counting strategy in the three 
questions (17–19) presented in this format. 
Furthermore, just over 8% of the responses at 
Stage 2 also made use of the counting strategy, far 
more than in any other question design. Once 
again, the common difference becomes 
immediately clear from the given terms, and 
learners seem to have been drawn towards this, and 
used a recursive approach as a result.  

Interestingly, when the three consecutive 
numeric terms are put into table format, which 
necessarily includes the independent variable, there 
is a slight drop in the tendency to pattern 
recursively. One can only surmise that the explicit 
presence of both dependent and independent 
variables assisted some learners in seeing a general 
relation between the two and hence being more 
inclined to use an explicit strategy over a recursive 
approach. 

The above observations lend support to the 
findings of Hershkowitz, Dreyfus, Ben-Zvi, 

Friedlander, Hadas and Resnick (2002), that the 
presentation of consecutive terms encourages 
recursion, while terms presented non-consecutively 
tend to encourage generalisation by means of the 
independent variable. Hershkowitz et al. (ibid.) 
also found that the use of a pictorial context, 
particularly if non-consecutive terms were 
presented, tends to encourage explicit generalis-
ations. 

 
(b) Influence of question design on stage 

progress 
Table 2 shows the average Total Stage Attainment 
(TSA) values for each of the six different question 
designs. The average TSA values are indicative of 
the level of attainment/progress made by the 
research participants as a whole. The TSA value 
was calculated for each individual question by 
awarding 1 point for a correct Stage 1 response, 2 
points for a correct Stage 2 response, 3 points for a 
correct Stage 3 response, and 4 points for a correct 
Stage 4 response. The highest obtainable score for 
a single question is thus 10 (1+2+3+4) for a learner 
who correctly answered all four stages. 

Although the majority of the average TSA 
values lie fairly close to one another, of interest are 
the highest and lowest values, which are well 
distanced from the rest of the cluster.  The highest 
level of attainment (average TSA = 9.32) was 
achieved on those questions presented purely 
numerically, in tabular format. The explicit 
presence of both the dependent and independent 
variable, along with the fact that the terms were 
consecutive and hence made the common 
difference easier to recognise, all seem to have 
allowed for greater overall attainment. This finds 
resonance with a study by English and Warren 
(1998) where students found it easier to generalise, 
both verbally and symbolically, when patterns 
were presented in tabular form as opposed to 
pictorial form. 

The lowest level of attainment (average TSA = 
7.97) was achieved on those questions presented as 
three consecutive purely pictorial terms.  In these 
questions, no mention was made of either the 
dependent or independent variable. This is an 
interesting observation when taken in conjunction 
with the adopted strategy. Question designs that 
make use of (a) three consecutive purely pictorial 
terms (Questions 11–13), and (b) three consecutive 
purely numeric terms in tabular format (Questions 
20–22) show almost identical values for the 
percentage of total responses using an explicit 
strategy (85.2% vs. 84.7%). However, there is a 

 

Questions Average TSA 

1 – 5 8.91 

6 – 10 8.98 

11 – 13 7.97 

14 – 16 8.68 

17 – 19 8.75 

20 – 22 9.32 

 
Table 2.  Average TSA per question type. 
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marked difference in level of attainment in these 
two question types (7.97 for the former, 9.32 for 
the latter). This adds weight to the notion that a 
pictorial representation is only of benefit if the 
underlying structure can be clearly seen. Despite 
the fact that learners made almost equal use of an 
explicit strategy in the two question types, the 
lower level of success in the purely pictorial 
context would seem to suggest the use of explicit 
strategies based on misinterpretation of the general 
structure inherent in the pictorial context. Thus, 
while a purely pictorial context may be useful to 
some learners, to others it may well create 
complications. A contextualised indication of both 
the dependent and independent variable (for 
example: for 2 squares you will need 7 
matchsticks), in conjunction with the pictorial 
representation (Questions 1–5 and 6–10) seemed to 
be most successful in alleviating this problem. 

 
(c) Influence of question design on contextual 

connectivity 
Table 3 shows the average Contextual 
Connectivity Rating (CCR) for each of the four 
different question designs that were based on a 
pictorial context (Questions 1–16). The CCR is 
indicative of the extent to which the justification of 
the general term makes reference to the pictorial 
context.   

The results shown in Table 3 reveal a 
fascinating trend. The effect of presenting 
consecutive terms (Questions 11–13 and 14–16) 
seems to have a big influence on moving learners’ 

nT  justifications away from the referential context 

(the pictorial representation) toward a more 
numerically based argument. This effect is even 
more pronounced in those questions (14–16) where 
the pictorial context is presented in conjunction 
with values for the dependent variable.  The most 

likely explanation for this observation is that 
consecutive terms attract attention to the common 
difference, hence away from the underlying 
general structure inherent in the pictorial context, 
and thus to a more numeric approach to extracting 
and justifying the general formula for nT . 

There is also a slight decrease in the average 
CCR value when moving from questions involving 
a single pictorial term (Questions 1-5) to those 
making use of two non-consecutive pictorial terms 
(Questions 6-10).  It is worth keeping in mind that 
both these question types make contextualised 
reference to both the dependent and independent 
variables.  Thus, the slight decrease can probably 
be ascribed to the presence of more numeric points 
of reference. 
 
(d) Influence of question design on diversity of 

expressions for nT  

Table 4 shows the average number of nT  variations 

per question type. This gives an indication of the 
diversity of responses in formulating a general 
algebraic expression for the nth term. Only correct 
Stage 4 (i.e. nT ) responses have been considered.  

The dramatic drop in the number of correct nT  

variations for those questions incorporating purely 
numeric terms is both expected and 
understandable, since the lack of a referential 
(pictorial) context severely limits the scope of 
readily identifiable variations in nT . Without a 

pictorial frame of reference, expressions for nT  can 

only be derived from purely numeric 
considerations, the resulting expressions usually 
taking the form dna )1( −+  or )( dadn −+ , or 
those deriving fortuitously from a guess-and-check 
approach. 

Questions Average CCR 

1 – 5 0.86 

6 – 10 0.80 

11 – 13 0.64 

14 – 16 0.40 

17 – 19 - 

20 – 22 - 

 
Table 3.  Average CCR per question 

type. 

Questions 
Average number of 

correct nT  variations 

1 – 5 3.6 

6 – 10 6.2 

11 – 13 4.7 

14 – 16 6.0 

17 – 19 2.7 

20 – 22 2.3 
 

Table 4.  Average number of nT  variations 

per question type. 
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The increase in the number of correct nT  

variations when moving from questions involving 
a single pictorial term (Questions 1–5) to those 
making use of two non-consecutive pictorial terms 
(Questions 6–10) can probably be ascribed to 
learners’ enhanced appreciation of the underlying 
general structure inherent in the pictorial context as 
a result of the additional term. The same argument 
could be applied when moving from two pictorial 
terms (Questions 6–10) to three pictorial terms 
(Questions 11–13 and 14–16). The value of 4.7 
(Questions 11–13) is thus somewhat anomalous, 
and is probably a result of the specific questions 
chosen for that particular design type. Responses to 
Stage 4 in Question 13 gave rise to seven different 

nT  variations, while Question 11 and Question 12 

had only 4 and 3 respectively. It is worth bearing 
in mind that some pictorial designs yield fewer 
accessible (easily identifiable) expressions for nT , 

and this is likely to have been the case in this 
situation. 

Comparing the number of correct nT  variations 

per question type with average CCR values should 
be treated with extreme caution.  There is no 
reason to assume that a high CCR value implies a 
high diversity of nT  variations. The CCR value 

relates to the contextualisation of the justification 
for the nth term, but the justification itself is not 
necessarily an indication of the approach used to 
derive the algebraic expression for nT . It is thus 

hardly surprising that there is little correlation 
between the average CCR values per question type 
and the average number of nT  variations per 

question type. 
 
Conclusion  
This paper is based on a broader study in which a 
case study approach was adopted as a 
methodological strategy. Although the emphasis of 
a case study is to optimise understanding of the 
specific case under scrutiny rather than 
generalisation beyond that case, a case study can 
nonetheless be a useful small step towards a larger 
generalisation, or an increasingly refined 
generalisation (Stake, 1994 & 1995; Cohen & 
Manion, 1994). Thus, although any general trends 
or patterns observed are only relevant to the group 
of 24 research participants who took part in the 
study, such “generalisations” could be broadened 
or increasingly refined by future research involving 
further samples from the larger population.  

Learners’ responses gave evidence of the 
complex interplay between the number pattern 
itself, the nature of the question design and the 
specific numeric/pictorial context chosen.  Choice 
of strategy, level of stage progression, contextual 
connectivity, and the diversity of nT  expressions 

are a manifestation of this interwoven complexity 
in conjunction with the diverse cognitive skills of 
each individual learner.  There is thus a high 
degree of interconnectedness, and correlations 
between different aspects should be treated with 
due circumspection. 

The emphasis of the National Curriculum 
Statement (NCS) on investigation as a pedagogical 
approach to number pattern generalisation tasks, as 
well as its requirement that learners be able to 
investigate number patterns and hence “make 
conjectures and generalisations” as well as 
“provide explanations and justifications and 
attempt to prove conjectures” (Department of 
Education, 2003b: 18), has important pedagogical 
implications for classroom practitioners. An under-
standing of how question design of such pattern 
generalisation tasks is likely to influence the 
approach adopted by children would greatly assist 
teachers in terms of their choice of such activities. 
It is within this pedagogical context that this paper 
finds practical significance. 

The results highlighted in this paper give strong 
support to the notion that question design can play 
a key role in influencing which strategies are 
adopted by learners when solving pattern 
generalisation tasks, in both pictorial and purely 
numeric contexts. This observation is central to the 
theme of the broader study, and the notion that 
different contexts – numeric versus pictorial – will 
resonate differently with different learners. While a 
pictorial context may be helpful to some learners, 
for others it may simply create additional 
complications. 

It would be interesting to repeat this study with 
other high ability groups of learners, possibly with 
an augmented selection of patterning questions. 
This would serve to broaden and/or increasingly 
refine any localised “generalisations” identified in 
this paper. In addition, it would add further insight 
into the complex interplay between the number 
pattern, the nature of the question design and the 
specific numeric/pictorial context chosen. 
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“The riddle does not exist. If a question can be put at all, 
then it can also be answered.” 

 
Ludwig Wittgenstein  


