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Abstract

Consider the set X = {1,2, 3,4} with 4 elements. A permutation of
X i1s a function from X to itself that is both one one and on to. The
permutations of X with the composition of functions as a binary op-
eration is a nonabelian group, called the symmetric group S;. Now
consider the collection of all permutations corresponding to the ways
that two copies of a square with vertices 1,2, 3 and 4 can be placed
one covering the other with vertices on the top of vertices. This col-
lection form a nonabelian subgroup of S, called the dihedral group
Dy. In this paper, we introduce A-magic labelings of graphs, where A
is a finite nonabelian group and investigate graphs that are [)4-magic.
This did not attract much attention in the literature.
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1 Introduction

A graph G is an ordered pair (V(G), E(G)), where V (G) is a finite nonempty
set whose elements are called vertices and E'((G) is a binary irreflexive and sym-
metric relation on V' (G) whose elements are called edges. For any abelian group
A, written additively, any mapping ¢ : E(G) — A\ {0} is called a labeling.
Given a labeling on the edge set F/((G), one can introduce a vertex set labeling
T V(G) — A as follows:

t(v) = Z [(uv)
weE(G)

A graph G is said to be A-magic if there is a labeling ¢ : F(G) — A\ {0} such that
for each vertex v, the sum of the labels of the edges incident with v are all equal to
the same constant, that is, /*(v) = a for some fixed a € A. The original concept
of A-magic graph was introduced by Sedlacek[1]. According to him, a graph G
is A-magic if there exists an edge labeling on GG such that (i) distinct edges have
distinct non-negative labels; and (ii) the sum of the labels of the edges incident to
a particular vertex is same for all vertices. When A = Z, the Z-magic graphs are
considered in Stanley[7]. Doob [5, 4] also considered A-magic graphs where A
is an abelian group. Also he determined which wheels are Z-magic. Observe that
several authors studied V;-magic graphs[8, 6]. It is natural to ask does there exist
graphs which admits A-magic labeling, when A is nonabelian? In this paper, we
address this question and investigate graphs that are D,-magic.

2 Main results

Let G = (V(G), E(G)) be a finite (p, ¢) graph and let (A, ) be a finite non-
abelain group with identity element 1. Let f : E(G) — N, = {1,2,...,¢} and
letg: E(G) — A\ {1} be two edge labelings of G such that f is bijective. Define
an edge labeling ( : E(G) — N, x A\ {1} by

l(e) == (f(e),9(e)), e € E(G).

Define a relation < on the range of ¢ by:

/

(f(e) g(e)) < (f(e),g(¢")) ifand only if f(e) < f(e').
Then obviously the relation < is a partial order on the range of /.

Let {(f(e1),g9(e1)),(f(e2),g(e2)),...,(f(ex),g(ex))} be a chain in the range of
£. We define the product of elements of this chain as follows:

k

[I(r(en). glen)) = ((((gler) * gle2)) * gles)) * glea)) = ...) * glew).

i=1

168



D, magic graphs

Letu € V and let N*(u) be the set of all edges incident with u. Note that the range
Of £ x+(u) is a chain, say (f(e1),g(e1)) < (f(e2),g(e2)) < -+ < (f(en), glen))-
We define,

() = [J(f (e, gle)). (1
i=1
If ¢*(u) is a constant, say a for all u € V(G), we say that the graph G is A-
magic. The map ¢* is called an A-magic labeling of G and the corresponding
constant a is called the magic constant. For example, consider the cycle graph
Cy = (uwv,vw, wz, ru) and the permutation group D,. Note that the group D, is
a non abelian group of order 8 and its elements are given by

(123 4 12 3 4
PO=1\1 923 4) MT{4 32 1)
(1234 12 3 4
Pr=\9 34 1) "™ (214 3)
(123 4) 1 2 3 4
P2=\3 41 9) 27\1 43 2)
(123 4) 1 2 3 4
PP=\4 1 2 3) 27\3 21 4/

Define f : E(G) — Ny = {1,2,3,4} as f(uv) = 1, f(wz) = 2, f(vw) =
3,f(zu) = 4and g : E(G) — D4\ {po} as g(uwv) = g(wz) = p1, g(vw)
g(zu) = 9;. Thus

C(u) = (1,p1)(4,01) = proy = pua,

*(v) = (1, p1)(3,61) = p101 = po. Similarly, £*(w) = po and €*(z) = pe. Thus
C} is Dy-magic with magic constant 5.

(27 pl)
T w
(4,61) (3,81)

(17 pl)

Figure 1: D4-magic labeling of C}.

In this paper, we will consider the symmetric group D, and investigate graphs that
are D -magic.
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Theorem 2.1. Let A be a non abelian group having an element of order 2 and let
G be a graph. If either the degree of the vertices of G are all even or odd. Then G
is A-magic.

Proof. Let G be a (p, ¢) graph and A be a nonabelian group having an element
of order 2. Let a € G is of order 2. Let g : E(G) — A\ {1} be the constant
map g(e) = a, Ve € E(G) and let f be any bijection from E(G) — N,. First
assume that all the vertices of G are of even degree then [*(u) = 1, Yu € V(G).
Similarly, if all the vertices of G are of odd degree then I*(u) = a, Yu € V(G).
Hence the proof.

Corolary 2.1. All Eulerian graphs are D,-magic.
Theorem 2.2. Any regular graph is D,-magic.

Proof. Let G = (V(G), E(G)) be a regular graph with |E(G)| = ¢. Let f :
E(G) — N, be any bijection and g be any constant map from E(G) — D4\ {po}.
Obviously, f and g will determine a D -magic labeling of G. This completes the
proof of the theorem.

Corolary 2.2. For any n > 3, the cycle graph C,, is D4-magic.
Corolary 2.3. For any n > 2, the complete graph K,, is D4-magic.
Corolary 2.4. The Peterson graph is D,-magic.

Theorem 2.3. The star graph K ,,,n > 2 is D,-magic iff n is odd.

Proof. Let G = K, ,. Suppose that n is odd. Let f : E(G) — N,4; be a
bijection. Define g : E(G) — Dy \ {po} by g(e) = pi. Then clearly it is Dy-
magic with magic constant ji;.

Conversely, suppose K, is D4-magic with magic constant, say ‘a’. So every
pendent edge of K ,, should be mapped to a under g. Let u be the vertex of K ,,
with degree n. Then
*(u) =ga---a=a.
n times

n—1 n—1

This implies that a = po. If n is odd, the equation «a = po has five non
trivial solutions in Dy viz. piq, f2, 1,92 and po. On the other hand, if n is even
there are no element in D, such that ! = p,. This completes the proof.

A bistar graph B, is the graph obtained by connecting the apex vertices of two
copies of star K ,, by a bridge.

Theorem 2.4. The bistar graph B,,, n > 1 is Dy-magic when n % 1(mod 4).
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Proof. First, observe that there are 2n pendant edges and one bridge in B,,.
Here we consider the following cases:

Case (i): niseven (n = 2(mod 4) or n = 0(mod 4)).

If n is even, define g : E(B,) — D4\ {po} by g(e) = 1, Ve € E(B,).
Let f be any bijective map from E(B,) — Na,1. Then obviously, B, is
D4-magic with magic constant /1.

Case (ii): n = 3(mod 4).

In this case we define g : E(B,,) — Dy \ {po} by

() p1, if e is a pendant edge,
e =
g pe, if e is the bridge.

Let f be any bijective map from E(B,,) to Ny, 1. Then obviously B, is

D4-magic with the magic constant p;.

Case (iii): n = 1(mod 4).

Suppose that n = 1(mod 4). Let k; and k5 be the apex vertices of the bistar
graph. Assume that B,, is D -magic with magic constant p;. Therefore,
g(e) = p for all pendant edges e. Assume that g(k1k2) = a, where a €
Dy \ {po}. Without loss of generality assume that f(k1ks) > f(b), Vb €
E(G), where b denotes the pendant edge with one end point k;. Then

(ki) = papur - = p.
(n times)

The above equation tells us that a = py, which is a contradiction. This
contradiction shows that B,, is not D -magic with magic constant y;. In a
similar manner, we can prove that B,, is not Ds-magic with magic constants
la, P1, P2, P3, 01 or 05. Thus the bistar graph B, is not D -magic when
n = 1(mod 4). This completes the proof of the theorem.

Theorem 2.5. The complete bipartite graph K,, ,, is Ds-magic, m,n > 1.

Proof. Let G = K, ,. Suppose U = {uy, us,...,u,},and V = {v1,ve,..., 05}
be the two partite sets of K, ,. If m and n are both even or odd then the theorem
is obvious by taking any constant map g : E(G) — {p2, ft1, ft2, 91, 02}

Case (i): n = 0(mod 2) and m = 1(mod 4).

Let U = {uy,ug,...,uy}t and V.= {vy,va,...,04p41} Where n = 2,
m=4r+1,andl,r € N.For1 <i<nand1 < j < mdefine
g(uvsgs1) = p1, where k <m, k=0,1,2,3,...
g(uUskao) = po, bk <m, k=0,1,23,...
g(uvj) = pa,j # 5k + 1, 5k +2 wherek =0,1,2,...
fluw;)) =G —1)m+7 1<i<n, 1<j<m.

171



C. Anusha and V. Anil Kumar

The maps f and g will determine a D,-magic labeling for K, ,, with magic
constant pg.

Case (ii): n = 0(mod 2) and m = 3(mod 4). Define g as follows:

and

p1, if 7 1s odd 1 <5 <m,
g(uvy) = e .
ps, if 7 is even 1 < j < m,

g(uzvm) = P2, VZ, 1 S { S n,

and let f be any bijection from F(G) to {1,2,...,mn}. Then clearly f and
g will determine a D,-magic labeling of K, ,, with magic constant py.

This completes the proof of the theorem.

3 Cycle Generated Graphs

In this section, we consider certain graphs which are constructed from cycles.

A wheel W, of order n + 1, sometimes simply called an n wheel is a graph
that contains a cycle of order n and for which every graph vertex in the cycle is
connected to one other graph vertex (which is known as the hub). The edges of
a wheel which include the hub are called spokes. The wheel W/, can be defined
as the graph join K + C),, where K is the singleton graph and C,, is the cycle
graph.

Theorem 3.1. Ifn > 3, the wheel W,, is D,-magic.

Proof. Let the vertices of C,, be uy, us, . . ., u, such that w,u; 1 € E(C,,), i =
1,2,...,nand u,41 = uy. Denote the vertex of /; by k. Now we consider the
following cases:

Case (i): nis odd.
If n is odd then every vertex of W, is of odd degree. Thus we can take g :
E(W,,) = D4\{po} as any constant map from E(W,,) to {p2, fi1, pt2, 1, 02 }.
Since ¢ is constant we can take f as any bijection from E(W,,) to No,.
Clearly this f and g will constitute a D -magic labeling for W,,.

Case (ii): n is even.
Suppose n is even define f : F(W,,) — Ny, as
flku)) =14, 1=1,2,...,n,
flugui)) =n+i, 1 <i<n-—1,
f(uiuy,) = 2n.
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Now we can define g : E(W,,) — D4\ {po} by labeling each spokes by
w1 and all the outer edges by ps and p, alternatively. Then W), becomes
D4-magic with magic constant py.

This completes the proof of the theorem.

The helm H,, is a graph obtained from a wheel ¥, by attaching a pendant
edge at each vertex of the n cycle.

Theorem 3.2. The Helm graph H,, is D4s-magic.

Proof. Let {k,u;,v; : i = 1,2,...,n} be the vertex set of H,,, where k be

the central vertex, uq,us, ..., u, are the vertices of the cycle, vy, vs, ..., v, are
the pendant vertices adjacent to uy, us, ..., u,. The edge set of H, is E(H,) =
{uiwiyr, kug, uv; 21 =1,2,...,n, u,r1 = ug . Now consider the following two
cases:

Case(i): n is odd.
Suppose that n is odd. Define f and g as follows: Let g : E(G) — D4\ {po}
be defined as g(ku;) = p2, 1 < i < n, gujujp1) =p1, 1 < j<n-—
L, g(uiu,) = p1, g(ugvy) = p2, 1 <k < n. Nowlet [ : E(G) = Napp
be any bijection. Then clearly f and g will give a D,-magic labeling of
H,,, where n is odd.

Case(ii): n is even.
Let f be defined as above and define g : E(G) — D4\ {po} by
g(uiv;) = pa, 1 <i <m, g(vr0,) = py
pa, if1 < j<n-—2,
g(kuj):{ e :
p1, ifj=n—1n.
pr, if1 <k <n-2,
pa, if k=n—1.

g(upups1) = {

It follows that [*(u) = pe,Vu € V(G). Hence H,, is D4-magic when n is
even.

This completes the proof of the theorem.
The web graph W (2,n) is a graph obtained joining the pendant points of a

helm to form a cycle and adding a single pendant edge to each vertex of this outer
graph.

Theorem 3.3. The web graph W (2,n),n > 3 is Dy-magic.
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Proof. Let {k,u;,v;,w; : ¢ = 1,2,3,...,n} be the vertex set of W (2,n),
where k be the central vertex, uq, us,us, ..., u, are the vertices of inner cycle,
vy, v, Vs, ..., U, are the vertices of outer cycle and wy, wy, ws, ..., w, are the
pendant vertices adjacent to vy, ve,vs, ..., v, of W(2,n). Let E(W(2,n)) =
{uitiv1, Vivig1, vV, viw; c i =1,2,... ., nand u,1 = Uy, v, = v1 ;. We define
a D,-magic labeling for W (2, n) with magic constant p, as follows:

Case (i): n is odd.
Let f : F(G) — N3, be any bijection.
Define g : E(G) — D4\ {po} as

g(ku;) = p2 = g(uwv;) = glvaw;), 1 <i <n,
g(uiuitr) = pr = g(vivigr), 1 <i<n-—1,
g(uru,) = p1 = g(vivy).

Case (ii): n is even.
Let f : E(G) — Ns,1 be any bijection.
Define g : E(G) — D4\ {po} as
glku;) = p2, 1 < i < n—1, glkun) = g(kup—1) = p1, g(vivi1)
p1 = g(utip1) = p1, 1 <i <n—1, glow;) = pa = g(uv;), 1 <
n, g(vive) = p1, g(urtn) = p2.

IA

This completes the proof of the theorem.

A shell graph 5, ,,_3 of width n is a graph obtained by taking n — 3 concurrent
chords in a cycle C,, of n vertices. The vertex at which all chords are concurrent
is called is called the apex. The two vertices adjacent to the apex have degree 2,
apex has degree n — 1 and all other vertices have degree 3.

Theorem 3.4. Shell graphs S,, ,,_s are D4-magic.

Proof. Let us denote the vertices of the shell graph S, ,,_3 by uy, uo, ..., u,
such that u; is adjacent to u;,1, where ¢ = 1,2,...,n and u,,+1 = u;. Without
loss of generality let the apex be 1. Now consider the following cases:

Case (i): niseven.
We will define the map f : E(S,, ,—3) — Na,_3 as
f(uiuiﬂ) i, 1 S 1 S n — ]_,

f(unu1> T,
flumu)=n+(j—2),3<j<n-1
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and we define g : E(S,,—3) = Da\ {po} as
g(urug) = g(unur) = pa,
glurw;) = p1, 3 <i<n-—1,
g(uitizr) = pro, 2 <i<m— 1.
Clearly f and g define a D,-magic labeling with magic constant ;.

Case (ii): n is odd.
Define f as

f(uiuigr)
fluru,) = n,
flugu))=n+(j—2),3<j<n-1

L 1<i<n—1,

and define g as

g(uruz) = g(uru,) = pa,
gluug) =, 3<j<n—1,
pe, if i is even,
g(uiuip) = ip )
o, if1isodd, 1 <i <n —1.
Obviously the functions f and g define a D,-magic labeling of S, ,,_3 with
magic constant py.

This completes the proof of the theorem.

When £ copies of C,, share a common edge it will form the n-gon book of %
pages and is denoted by B(n, k).

Theorem 3.5. The graph n-gon book of k pages B(n, k) is D,-magic.

Proof. Let G be the graph B(n, k). Denote the vertices of common edge
by k; and k,, and the edges of i*" page other than k; and k,, by w2, uss, . . ., Uin—_1
such that u;, is adjacent to k; and w;,—; adjacent to &, and u;; adjacent to w;;41
forall 2 < 7 < n — 1. Consider the following cases:

Case (i): k is even.
Define g : E(G) — D4\ {po} as

9(kikn) = pa,
(uljulj-‘rl) p1, 2<j<n-—2
(U1n 1kn ) = l1 = <k1u12)
g(Uijuijir) = po, 2<i <k, 2 <j<n—1,
g(k1up) = g(um—1) = po, 2 <1 < k.
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Now define f as
f(kikn) =1, f(kiwe) = 2, f(uin—1kn) =n
flugjugjpn) =j+1,V2<j<n-—2
flkiup) =n+(@—-2)n—1)+1, i >2,
flujjujp) =n+(GE—2)(n—1)4+4,2<j<n-—-2,2<i<k,
Flign-nykn) =n+ (G —2)(n—1)+(n—1),2<i<k.

The functions f and g determine a D,-magic labeling with magic constant
Po-

Case (ii): k& is odd.
Here define g as g(e) = ps2, Ve € E(G) then g together with any bijection
f: E(G) — Ng,_1 will define a D;-magic labeling of B(n, k) with magic
constant pg.

This completes the proof of the theorem.
Note that, for any n > 3 the path graph of order n is not D -magic.

4 Path Generated Graphs

In this section we will consider some graphs which are constructed from Paths.
We start with the Splitting graph of Path.

A splitting graph S(G) of a graph G is the graph obtained from G by adding
to G a new vertex 2’ for each vertex z of G and joining 2’ to the neighbors of z in

G.
Theorem 4.1. Splitting graph of the path graph P,,n > 3 is D,-magic.

Proof. Let P, be a path graph of order n, where n > 3. Let uy, us, ..., u,
be the vertices of P,, where w;u; 1 € E(P,),i = 1,2,...,n — 1. There are 2n
vertices and 3n — 3 edges in S(P,). Let u,; be the vertex corresponding to the

™ vertex in S(P,). Observe that there are two pendant edges in S(P,), one with
end points us and u,,,1 and the other with end points u,, 1 and us,.

Case (i): n = 3.
In this case, define f : E(S(P3;)) — Ng as
flurug) = 1, f(uguz) = 3, flusus) = 2, f(wius) = 4, flugus) =
5, f(ugug) = 6. Now define g : E(G) — Dy \ {po} as
g(uruz) = g(ugus) = p1, g(uguz) = g(urus) = da, glugua) = gusue) =
-
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Case (ii): n > 3.
In this case, define f and g as follows:

fluuir) =i, 1 <i<n-—1,
fwitpyony) =n+ (1 —2), 2<i<n,
f(Wittny4y) = (2n—2) +4, 1 <i<n—1land

g(wiuz) = pa, g(tn-1un) = pa,

g(uztiny1) = g(Un_1u2n) = pia,

g(ugipr) = p, 2<i<n—1,
J(Uitin(i-1)) = p2, 3 <@ <,
G(Uitiny(i41)) = p2, 1 <i<n—2

In all the above cases, we can prove that the functions f and g defines a
D,-magic labeling of S(P,) with magic constant /.

This completes the proof of the theorem.
The middle graph of a connected graph GG denoted by M (G) is the graph
whose vertex set is V' (G) U E(G) where two vertices are adjacent if

(i) They are adjacent edges of G or
(i1) One is a vertex of GG and the other is an edge incident with it.
Theorem 4.2. Middle graph of the path graph P, is D,-magic for n > 3.

Proof. Let M(P,) be the middle graph of the path P,. Denote the vertices
of P, by uy,us,...,u, and edges by ey, es,...,e,_1 where e; incident with wu;
and u;41. There are 2n — 1 vertices and 3n — 4 edges in M (P,). Consider the
following cases:

Case(i): n = 3.
Define f : E(M(P3)) — N3,_4as f(equy) = 1, f(equz) =2, f(eres) =
3, f(eaug) =4 and f(equs) = 5 and define g : E(M(Ps)) — D4\ {po} as
glerur) = po = gleaus), glequz) = p1 = gleaus), g(erez) = ps. Then
clearly the middle graph of the path P; is D4-magic with magic constant ps.

Case(ii): n > 3.

Define f : E(M(P,)) — Ns,_4 as follows:
Forl1 <i<n-2,1<j<n, fleuj) =2(i—1)+jand f(e;e;11) = 3i.
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Now define g : E(M(P,)) — D4 \ {po by

glerur) = p2 = glen—1uy),
gleruz) = pa, gleaua) = p1, glezes) = ps
(€2U3) = (€3U3)

gleieir1) = pg, where i #2and 1 <i<n—1,

i, if j=i+land3 <i<n—1,
gleiu;) = e .
po, if i=7and4 <i<n-—1.

The above functions f and g will define a D,-magic labeling of M (P, ) with
magic constant ps.

This completes the proof of the theorem.

A triangular snake 7;, is obtained from the path P, by replacing each edge of
the path by a triangle C’s.

Theorem 4.3. The Triangular snake T}, is D4-magic.

Proof. Note that every vertex of 7}, has even degree . So the proof is indis-
putable from Theorem 2.1.

The alternate triangular snake A(7),) is obtained from the path uy, us, . .., u,
by joining wu;u; 1 (alternatively) to a new vertex v;.

Theorem 4.4. The alternate triangular graph A(T,,) is Dy-magic.

Proof. Let us denote the vertices of the path P, be uy,us,...,u, and the
vertex which join u; and u;, 1 be denoted by v;. Now consider the following cases:

Case (i): n is even and triangle starts from .
Suppose that n is even and the triangle starts from the first vertex u;, then
there are n + % vertices and 2n — 1 edges.
Suppose n = 2 then A(T,) is Cj itself. So there is nothing to prove.
Suppose n = 4 then take f be any bijection from F(A(T,)) to N; and
define g : E(A(T,)) = Da\ {po} by
g(wivr) = g(uavs) = p1, g(uauz) = pa, g(ugv1) = g(uzvs) = g(urus) =
g(uzuy) = ps. Then A(T}) becomes D, -magic with magic constant py.
Suppose n > 4, thenlet f : E(A(T,)) — Na,_1 be any bijection and define
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9: E(A(T0)) = Da\ {po} as

g(uuz) = g(un-1un) = gugv1) = g(up-1vp-1) = p3,
g(uiv1) = g(Up_1vp_1) = p1. For 2 < i < n — 1, define
po, if i is even,
gluitti) = { 1o, if i is odd.
n—4
2

9(Ugkr1Vak41) = g(UgproVops1) = p1, k =1,2,.. .,

Obviously the functions f and g will constitute a D,-magic labeling for
A(T,) with I*(u) = po, Vu € V(A(T,)).

Case (ii): 7 is even and the triangle starts from the second vertex .
We can define a magic labeling for A(T,,), where n is even and cycle starts
from u, as follows:
Let f be any bijection as above and define g as

if 7 is odd, )
P2, T 1<i<n-—1,

g(Uitip1) = {

ps, if i is even,

g(ugkvar) = g(Uuspravar) = p1, k=1,2,3,...,
Clearly [* is a constant map, i.e., [*(u) = po, Yu € V(A(T},)).

Case (iii): n is odd and the triangle starts from the first vertex.
Suppose n = 3 and the triangle starts from the first vertex u;.
Let f : E(A(T,)) — N, be any bijection.
Now define g : E(A(T,)) — D4\ {po} by
g(urug) = g(ugvy) = 09, g(uvy) = 91, g(ugus) = po. Using these maps
we can show that the graph is D,-magic with magic constant p,.
When n is odd and n > 3, there are n + ~—— =1 vertices and 2(n—1) edges in
A(T,). Suppose that n > 3, n is odd and the triangle of A(T;,) starts from
the first vertex u;. Here we take f as any bijection and ¢ : E(A(T,)) —
Dy \ {po} be defined as follows:

U1U2 9 U2U1 = 09, (U1U1) = 01,

{ o, if 7 is even,

g(uuiq) = 1 <1 < n.

ps, if 7 1s odd,

g(uv;) = g(uiqv;) = p1,1 < i < nandiis odd.

Then clearly I*(u) = p2, Yv € V(A(T,))
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Case (iv): n is odd and triangle starts from the second vertex.
A(T,,) with n odd and the triangle starts from the first vertex is just the mir-
ror image of the A(7},) in Case (iii). So we can define f and g similarly as
in Case(iii) and obtain a D4-magic labeling for A(7},) with magic constant

P2-

This completes the proof of the theorem.

A double triangular snake D(7},) consists of two triangular snakes that have a
common path P,.

Theorem 4.5. The double triangular graph is D,-magic.

Proof. Letu;,us,...,u, bethe vertices of the path P, and let vy, vo, ..., v, 1,
wy, W, . . ., w,_1 be the remaining vertices of D(7},) such that the vertex v; is ad-
jacent to u; and u;41, where 1 < 7 < n. Similarly the vertex w; is adjacent to u;
and u; 1. Without loss of generality let vy, vs, ..., v,—1 and wy, wa, ..., w,_1 be
the vertices of upper triangles and lower triangles respectively.

Now we define a D,-magic labeling for D(7,) as follows:

Let f : E(D(T,)) — Ns@-1) be any bijection and let g : E(D(T,)) — Dy \
{po} be defined by g(uiuiy1) = p2, gluvi) = glumw;) = p1, and g(ui1v;) =
g(uiw;) = pswherel < i < n. Thus we can see that [*(u) = py, Yu €
V(D(T,)). This completes the proof.

S5 Conclusions
In this paper, we introduced the concept of A-magic labeling of graphs, where

A is a nonabelian group. Furthermore, we characterised graphs which are D,
magic.
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