Ratio Mathematica Volume 45, 2023 Near mean labeling in dicyclic snakes Palani K* Shunmugapriya A† Abstract K. Palani et al. defined the concept of near mean labeling in digraphs. Let 𝐷 = (𝑉, 𝐴) be a digraph where 𝑉the vertex is set and 𝐴 is the arc set. Let 𝑓: 𝑉 β†’ {0, 1, 2, … , π‘ž} be a 1-1 map. Define π‘“βˆ—: 𝐴 β†’ {1, 2, … , π‘ž} byπ‘“βˆ—(𝑒 = 𝑒𝑣⃗⃗⃗⃗ ) = ⌈ 𝑓(𝑒)+𝑓(𝑣) 2 βŒ‰. Letπ‘“βˆ—(𝑣) = |βˆ‘ π‘“βˆ—(𝑣𝑀⃗⃗⃗⃗ βƒ—)π‘€βˆˆπ‘‰ βˆ’ βˆ‘ 𝑓 βˆ—(𝑀𝑣⃗⃗⃗⃗ βƒ—)π‘€βˆˆπ‘‰ |. If𝑓 βˆ—(𝑣) ≀ 2 βˆ€ 𝑣 ∈ 𝐴(𝐷), then 𝑓 is said to be a near mean labeling of D and 𝐷 is said to be a near mean digraph. In this paper, different dicyclic snakes are defined and the existence of near mean labeling in them is checked. Keywords: Near mean labeling, digraphs, di-cyclic, di-quadrilateral, di-pentagonal, snake. 2010 AMS subject classification: 05C78‑ *PG & Research Department of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi-628 002, Tamil Nadu, India); palani@apcmcollege.ac.in. † Department of Mathematics, Sri Sarada College for Women (Autonomous), Tirunelveli-627 011. (Research scholar-19122012092005, A.P.C. Mahalaxmi College for Women, Thoothukudi-628 002, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India); priyaarichandran@gmail.com. ‑ Received on July 16, 2022. Accepted on September 15, 2022. Published on January 30, 2023. doi: 10.23755/rm.v45i0.1022. ISSN: 1592-7415. eISSN: 2282-8214. Β©The Authors. This paper is published under the CC-BY licence agreement. 238 mailto:palani@apcmcollege.ac.in mailto:priyaarichandran@gmail.com Palani K and Shunmugapriya A 1. Introduction Graph theory has applications in many areas of the computing, social and natural science. The theory is also intimately related to many branches of mathematics, including matrix theory, numerical analysis, probability, topology and combinatory. Over the last 50 year graph theory has evolved into an important mathematical tool in the solution of a wide variety of problems in many areas of society. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions have been motivated by practical problems, labelled graphs serve useful mathematical models for a broad range of applications such as: coding theory, including the design of good types codes, synch-set codes, missile guidance codes and convolutional codes with optimal auto correlation properties. The concept of graph labeling was introduced by Rosa in 1967 [6]. A useful survey on graph labeling by J.A. Gallian (2014) can be found in [2]. Somasundaram and Ponraj [4] have introduced the notion of mean labeling of graphs. A directed graph or digraph 𝐷 consists of a finite set 𝑉 of vertices and a collection of ordered pairs of distinct vertices. Any such pair (𝑒, 𝑣) is called an arc or directed line and will usually be denoted by𝑒𝑣⃗⃗⃗⃗ . A digraph 𝐷 with 𝑝 vertices and π‘ž arcs is denoted by𝐷 (𝑝, π‘ž). The indegree π‘‘βˆ’(𝑣) of a vertex 𝑣 in a digraph 𝐷 is the number of arcs having 𝑣 as its terminal vertex. The outdegree 𝑑+(𝑣) of 𝑣 is the number of arcs having 𝑣 as its initial vertex [1]. K. Palani et al. introduced the concepts of mean and near mean digraphs in [3]. In this paper, different di-cyclic snakes are introduced and the existence of near mean labeling is investigated. 2. Preliminaries The following definition and theorem are basics which are needed for the subsequent section. Definition 2.1: [3] Let 𝑓: 𝑉 β†’ {0, 1, 2, … , π‘ž} be a 1-1 map. Define π‘“βˆ—: 𝐴 β†’ {1, 2, … , π‘ž} byπ‘“βˆ—(𝑒 = 𝑒𝑣⃗⃗⃗⃗ ) = ⌈ 𝑓(𝑒)+𝑓(𝑣) 2 βŒ‰. Letπ‘“βˆ—(𝑣) = |βˆ‘ π‘“βˆ—(𝑣𝑀⃗⃗⃗⃗ βƒ—)π‘€βˆˆπ‘‰ βˆ’ βˆ‘ 𝑓 βˆ—(𝑀𝑣⃗⃗⃗⃗ βƒ—)π‘€βˆˆπ‘‰ |. If𝑓 βˆ—(𝑣) ≀ 2 βˆ€ 𝑣 ∈ 𝐴(𝐷), then 𝑓 is said to be a near mean labeling of D and 𝐷 is said to be a near mean digraph. Definition 2.2: [5] A cyclic snake π‘šπΆπ‘› is obtained by replacing every edge of π‘ƒπ‘š by𝐢𝑛. Theorem 2.3: [3] The directed cycle 𝐢𝑛⃗⃗⃗⃗ is a near mean digraph. 3. Main Results In this section, the different dicyclic snakes are defined and the near mean labeling existence is verified. 239 Near mean labeling in dicyclic snakes Definition 3.1: In cyclic snakeπ‘šπΆπ‘›, orient the edges of each cycle clockwise. The resulting graph is called Di-Cyclic Snake and it is denoted asπ‘šπΆπ‘›βƒ—βƒ—βƒ—βƒ— . For𝑛 = 3, 4, 5, Di- Cyclic Snakes are called Di-Triangular Snake 𝑇𝑆𝑛⃗⃗⃗⃗⃗⃗ βƒ—, Di-Quadrilateral Snake 𝑄𝑆𝑛⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ— and Di- Pentagonal Snake 𝑃𝑆𝑛⃗⃗⃗⃗⃗⃗ βƒ— respectively. Definition 3.2: In π‘šπΆπ‘› when 𝑛 is even, orient the edges of the cycle alternately and call resulting graph as Alternating Di-Cyclic Snake. Denote it asπ΄π‘šπΆπ‘›βƒ—βƒ—βƒ—βƒ— . Theorem 3.3: Di-Quadrilateral Snake 𝑄𝑆𝑛⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ— admits near mean labeling. Proof: Let 𝑉(𝑄𝑆𝑛⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—) = {𝑒𝑖|1 ≀ 𝑖 ≀ 𝑛} βˆͺ {𝑣𝑖|1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1} βˆͺ {𝑀𝑖|1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1} be the vertex set and let 𝐴(𝑄𝑆𝑛⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—) = {{𝑒𝑖𝑣𝑖⃗⃗⃗⃗⃗⃗ βƒ—} βˆͺ {𝑣𝑖𝑒𝑖+1βƒ—βƒ—βƒ—βƒ— βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— βƒ—βƒ— } βˆͺ {𝑒𝑖+1𝑀𝑖⃗⃗⃗⃗ βƒ—βƒ—βƒ—βƒ— βƒ—βƒ—βƒ—βƒ— βƒ—} βˆͺ {𝑀𝑖𝑒𝑖⃗⃗⃗⃗⃗⃗⃗⃗ }|1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1} be the arc set. Define 𝑓: 𝑉(𝑄𝑆𝑛⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—) β†’ {0, 1, 2, … , (4𝑛 βˆ’ 4)} by 𝑓(𝑒𝑖) = 4(𝑖 βˆ’ 1) for 1 ≀ 𝑖 ≀ 𝑛 𝑓(𝑣𝑖) = 4𝑖 βˆ’ 2 for 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1 Figure 3.1: The labeling of a Di-Quadrilateral snake For 𝑖 = 1 to 𝑛 βˆ’ 1 π‘“βˆ—(𝑒𝑖𝑣𝑖⃗⃗⃗⃗⃗⃗ βƒ—) = ⌈ 𝑓(𝑒𝑖)+𝑓(𝑣𝑖) 2 βŒ‰ = ⌈ [4(π‘–βˆ’1)]+[4π‘–βˆ’2] 2 βŒ‰ = ⌈ 8π‘–βˆ’6 2 βŒ‰ = 4𝑖 βˆ’ 3. (3.3.1) π‘“βˆ—(𝑣𝑖𝑒𝑖+1βƒ—βƒ—βƒ—βƒ— βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— βƒ—βƒ— ) = ⌈ 𝑓(𝑣𝑖)+𝑓(𝑒𝑖+1) 2 βŒ‰ = ⌈ [4π‘–βˆ’2]+[4(𝑖+1βˆ’1)] 2 βŒ‰ = ⌈ 8π‘–βˆ’2 2 βŒ‰ = 4𝑖 βˆ’ 1. (3.3.2) π‘“βˆ—(𝑒𝑖+1𝑀𝑖⃗⃗⃗⃗ βƒ—βƒ—βƒ—βƒ— βƒ—βƒ—βƒ—βƒ— βƒ—) = ⌈ 𝑓(𝑒𝑖+1)+𝑓(𝑀𝑖) 2 βŒ‰ = ⌈ [4(𝑖+1βˆ’1)]+[4π‘–βˆ’1] 2 βŒ‰ = ⌈ 8π‘–βˆ’1 2 βŒ‰ = 8𝑖 2 = 4𝑖. (3.3.3) π‘“βˆ—(𝑀𝑖𝑒𝑖⃗⃗⃗⃗⃗⃗⃗⃗ ) = ⌈ 𝑓(𝑀𝑖)+𝑓(𝑒𝑖) 2 βŒ‰ = ⌈ [4π‘–βˆ’1]+[4(π‘–βˆ’1)] 2 βŒ‰ = ⌈ 8π‘–βˆ’5 2 βŒ‰ = 8π‘–βˆ’4 2 = 4𝑖 βˆ’ 2. (3.3.4) Now π‘“βˆ—(𝑒1) = |𝑓 βˆ—(𝑒1𝑣1βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— βƒ—) βˆ’ 𝑓 βˆ—(𝑀1𝑒1βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— )| = |[4(1) βˆ’ 3] βˆ’ [4(1) βˆ’ 2]| [by (3.3.1) & (3.3.4)] = |1 βˆ’ 2| = |βˆ’1| < 2 Therefore, π‘“βˆ—(𝑒1) < 2 (3.3.5) For 𝑖 = 2 to 𝑛 βˆ’ 1 π‘“βˆ—(𝑒𝑖) = |[𝑓 βˆ—(𝑒𝑖𝑣𝑖⃗⃗⃗⃗⃗⃗ βƒ—) + 𝑓 βˆ—(π‘’π‘–π‘€π‘–βˆ’1βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—)] βˆ’ [𝑓 βˆ—(𝑀𝑖𝑒𝑖⃗⃗⃗⃗⃗⃗⃗⃗ ) + 𝑓 βˆ—(π‘£π‘–βˆ’1𝑒𝑖⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— )]| = |[4𝑖 βˆ’ 3 + 4(𝑖 βˆ’ 1)] βˆ’ [4𝑖 βˆ’ 2 + 4(𝑖 βˆ’ 1) βˆ’ 1]| [by (1), (3), (4) & (2)] = |8𝑖 βˆ’ 7 βˆ’ 8𝑖 + 7| = |0| < 2 Therefore, π‘“βˆ—(𝑒𝑖) < 2 for 𝑖 = 2 to 𝑛 βˆ’ 1 (3.3.6) π‘“βˆ—(𝑒𝑛) = |𝑓 βˆ—(π‘’π‘›π‘€π‘›βˆ’1βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—) βˆ’ 𝑓 βˆ—(π‘£π‘›βˆ’1𝑒𝑛⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— )| = |4(𝑛 βˆ’ 1) βˆ’ [4(𝑛 βˆ’ 1) βˆ’ 1| [by (3.3.3) & (3.3.2)] 240 Palani K and Shunmugapriya A = |1| < 2 Therefore, π‘“βˆ—(𝑒𝑛) < 2 (3.3.7) For 𝑖 = 1 to 𝑛 βˆ’ 1 π‘“βˆ—(𝑣𝑖) = |𝑓 βˆ—(𝑣𝑖𝑒𝑖+1βƒ—βƒ—βƒ—βƒ— βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— βƒ—βƒ— ) βˆ’ 𝑓 βˆ—(𝑒𝑖𝑣𝑖⃗⃗⃗⃗⃗⃗ βƒ—)| = |(4𝑖 βˆ’ 1) βˆ’ (4𝑖 βˆ’ 3)| [by (3.3.2) & (3.3.1)] = |4𝑖 βˆ’ 1 βˆ’ 4𝑖 + 3| = |2| = 2 Therefore, π‘“βˆ—(𝑣𝑖) = 2 for 𝑖 = 1 to 𝑛 βˆ’ 1 (3.3.8) For 𝑖 = 1 to 𝑛 βˆ’ 1 π‘“βˆ—(𝑀𝑖) = |𝑓 βˆ—(𝑀𝑖𝑒𝑖⃗⃗⃗⃗⃗⃗⃗⃗ ) βˆ’ 𝑓 βˆ—(𝑒𝑖+1𝑀𝑖⃗⃗⃗⃗ βƒ—βƒ—βƒ—βƒ— βƒ—βƒ—βƒ—βƒ— βƒ—)| = |(4𝑖 βˆ’ 2) βˆ’ (4𝑖)| [by (3.3.4) & (3.3.3)] = |βˆ’2| ≀ 2 Therefore,π‘“βˆ—(𝑀𝑖) ≀ 2 for 𝑖 = 1 to 𝑛 βˆ’ 1 (3.3.9) From equations (5) to (9), π‘“βˆ—(𝑒) ≀ 2 βˆ€ 𝑒 ∈ 𝑉(𝑄𝑆𝑛⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—) Hence Di-Quadrilateral Snake 𝑄𝑆𝑛⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ— is a near mean digraph. Theorem 3.4. Di-Pentagonal Snake 𝑃𝑆𝑛⃗⃗⃗⃗⃗⃗ βƒ— is a near mean digraph. Proof: Let 𝑉(𝑃𝑆𝑛⃗⃗⃗⃗⃗⃗ βƒ—) = {𝑒𝑖|1 ≀ 𝑖 ≀ 𝑛} βˆͺ {𝑣𝑖|1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1} βˆͺ {𝑀𝑖|1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1} βˆͺ {π‘₯𝑖|1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1} be the vertex set and let 𝐴(𝑃𝑆𝑛⃗⃗⃗⃗⃗⃗ βƒ—) = {{𝑒𝑖𝑣𝑖⃗⃗⃗⃗⃗⃗ βƒ—} βˆͺ {𝑣𝑖𝑀𝑖⃗⃗⃗⃗⃗⃗⃗⃗ } βˆͺ {𝑀𝑖𝑒𝑖+1βƒ—βƒ—βƒ—βƒ— βƒ—βƒ—βƒ—βƒ— βƒ—βƒ—βƒ—βƒ— βƒ—} βˆͺ {𝑒𝑖+1π‘₯𝑖⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— } βˆͺ {π‘₯𝑖𝑒𝑖⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—}|1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1} be the arc set. Define 𝑓: 𝑉(𝑃𝑆𝑛⃗⃗⃗⃗⃗⃗ βƒ—) β†’ {0, 1, 2, … , (5𝑛 βˆ’ 5)} by 𝑓(𝑒𝑖) = 5(𝑖 βˆ’ 1) for 1 ≀ 𝑖 ≀ 𝑛 𝑓(𝑣𝑖) = 5𝑖 βˆ’ 3 for 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1 𝑓(𝑀𝑖) = 5𝑖 βˆ’ 1 for 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1 𝑓(π‘₯𝑖) = 5𝑖 βˆ’ 2 for 1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1 Figure 3.2. The labeling of a Di-Pentagonal snake For 𝑖 = 1 to 𝑛 βˆ’ 1 π‘“βˆ—(𝑒𝑖𝑣𝑖⃗⃗⃗⃗⃗⃗ βƒ—) = ⌈ 𝑓(𝑒𝑖)+𝑓(𝑣𝑖) 2 βŒ‰ = ⌈ [5(π‘–βˆ’1)]+[5π‘–βˆ’3] 2 βŒ‰ = ⌈ 10π‘–βˆ’8 2 βŒ‰ = 5𝑖 βˆ’ 4 (3.4.1) π‘“βˆ—(𝑣𝑖𝑀𝑖⃗⃗⃗⃗⃗⃗⃗⃗ ) = ⌈ 𝑓(𝑣𝑖)+𝑓(𝑀𝑖) 2 βŒ‰ = ⌈ [5π‘–βˆ’3]+[5π‘–βˆ’1] 2 βŒ‰ = ⌈ 10π‘–βˆ’4 2 βŒ‰ = 5𝑖 βˆ’ 2 (3.4.2) π‘“βˆ—(𝑀𝑖𝑒𝑖+1βƒ—βƒ—βƒ—βƒ— βƒ—βƒ—βƒ—βƒ— βƒ—βƒ—βƒ—βƒ— βƒ—) = ⌈ 𝑓(𝑀𝑖)+𝑓(𝑒𝑖+1) 2 βŒ‰ = ⌈ [5π‘–βˆ’1]+[5(𝑖+1βˆ’1)] 2 βŒ‰ = ⌈ 10π‘–βˆ’1 2 βŒ‰ = 10𝑖 2 = 5𝑖 (3.4.3) π‘“βˆ—(𝑒𝑖+1π‘₯𝑖⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— ) = ⌈ 𝑓(𝑒𝑖+1)+𝑓(π‘₯𝑖) 2 βŒ‰ = ⌈ [5(𝑖+1βˆ’1)]+[5π‘–βˆ’2] 2 βŒ‰ = ⌈ 10π‘–βˆ’2 2 βŒ‰ = 5𝑖 βˆ’ 1 (3.4.4) 241 Near mean labeling in dicyclic snakes π‘“βˆ—(π‘₯𝑖𝑒𝑖⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—) = ⌈ 𝑓(π‘₯𝑖)+𝑓(𝑒𝑖) 2 βŒ‰ = ⌈ [5π‘–βˆ’2]+[5(π‘–βˆ’1)] 2 βŒ‰ = ⌈ 10π‘–βˆ’7 2 βŒ‰ = 10π‘–βˆ’6 2 = 5𝑖 βˆ’ 3 (3.4.5) Next to find π‘“βˆ—(𝑒𝑖) Now π‘“βˆ—(𝑒1) = |𝑓 βˆ—(𝑒1𝑣1βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— βƒ—) βˆ’ 𝑓 βˆ—(π‘₯1𝑒1βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— βƒ—)| = |[5(1) βˆ’ 4] βˆ’ [5(1) βˆ’ 3]| [by (3.4.1) & (3.4.5)] = |1 βˆ’ 2| = |βˆ’1| < 2 Therefore, π‘“βˆ—(𝑒1) < 2 (3.4.6) For 𝑖 = 2 to 𝑛 βˆ’ 1 π‘“βˆ—(𝑒𝑖) = |[𝑓 βˆ—(𝑒𝑖𝑣𝑖⃗⃗⃗⃗⃗⃗ βƒ—) + 𝑓 βˆ—(𝑒𝑖π‘₯π‘–βˆ’1βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— )] βˆ’ [𝑓 βˆ—(π‘₯𝑖𝑒𝑖⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—) + 𝑓 βˆ—(π‘€π‘–βˆ’1𝑒𝑖⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—)]| = |[5𝑖 βˆ’ 4 + 5(𝑖 βˆ’ 1) βˆ’ 1] βˆ’ [5𝑖 βˆ’ 3 + 5(𝑖 βˆ’ 1)]| [by (3.4.1), (3.4.4), (3.4.5) & (3.4.3)] = |10𝑖 βˆ’ 10 βˆ’ 10𝑖 + 8| = |βˆ’2| ≀ 2 Therefore, π‘“βˆ—(𝑒𝑖) ≀ 2 for 𝑖 = 2 to 𝑛 βˆ’ 1 (3.4.7) π‘“βˆ—(𝑒𝑛) = |𝑓 βˆ—(𝑒𝑛π‘₯π‘›βˆ’1βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— ) βˆ’ 𝑓 βˆ—(π‘€π‘›βˆ’1𝑒𝑛⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—)| = |5(𝑛 βˆ’ 1) βˆ’ 1 βˆ’ 5(𝑛 βˆ’ 1)| [by (3.4.4) & (3.4.3)] = |βˆ’1| < 2 Therefore, π‘“βˆ—(𝑒𝑛) < 2 (3.4.8) For 𝑖 = 1 to 𝑛 βˆ’ 1 π‘“βˆ—(𝑣𝑖) = |𝑓 βˆ—(𝑣𝑖𝑀𝑖⃗⃗⃗⃗⃗⃗⃗⃗ ) βˆ’ 𝑓 βˆ—(𝑒𝑖𝑣𝑖⃗⃗⃗⃗⃗⃗ βƒ—)| = |(5𝑖 βˆ’ 2) βˆ’ (5𝑖 βˆ’ 4)| [by (3.4.2) & (3.4.1)] = |2| = 2 Therefore, π‘“βˆ—(𝑣𝑖) = 2 for 𝑖 = 1 to 𝑛 βˆ’ 1 (3.4.9) For 𝑖 = 1 to 𝑛 βˆ’ 1 π‘“βˆ—(𝑀𝑖) = |𝑓 βˆ—(𝑀𝑖𝑒𝑖+1βƒ—βƒ—βƒ—βƒ— βƒ—βƒ—βƒ—βƒ— βƒ—βƒ—βƒ—βƒ— βƒ—) βˆ’ 𝑓 βˆ—(𝑣𝑖𝑀𝑖⃗⃗⃗⃗⃗⃗⃗⃗ )| = |(5𝑖) βˆ’ (5𝑖 βˆ’ 2)| [by (3.4.3) & (3.4.2)] = |2| = 2 Therefore, π‘“βˆ—(𝑀𝑖) = 2 for 𝑖 = 1 to 𝑛 βˆ’ 1 (3.4.10) For 𝑖 = 1 to 𝑛 βˆ’ 1 π‘“βˆ—(π‘₯𝑖) = |𝑓 βˆ—(π‘₯𝑖𝑒𝑖⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—) βˆ’ 𝑓 βˆ—(𝑒𝑖+1π‘₯𝑖⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— )| = |(5𝑖 βˆ’ 3) βˆ’ (5𝑖 βˆ’ 1)| [by (3.4.3) & (3.4.2)] = |βˆ’2| ≀ 2 Therefore, π‘“βˆ—(π‘₯𝑖) ≀ 2 for 𝑖 = 1 to 𝑛 βˆ’ 1 (3.4.11) From equations (6) to (11), π‘“βˆ—(𝑒) ≀ 2 βˆ€ 𝑒 ∈ 𝑉(𝑃𝑆𝑛⃗⃗⃗⃗⃗⃗ βƒ—) Hence, Di-Pentagonal Snake 𝑃𝑆𝑛⃗⃗⃗⃗⃗⃗ βƒ— is a near mean digraph. Theorem 3.5. Di-Cyclic snake π‘šπΆπ‘›βƒ—βƒ—βƒ—βƒ— is a near mean digraph for π‘š β‰₯ 1 and 𝑛 β‰₯ 3. Proof: Let 𝑒𝑖𝑗 denote the 𝑗th vertex in the 𝑖th copy of 𝐢𝑛⃗⃗⃗⃗ Here, 𝑉(π‘šπΆπ‘›βƒ—βƒ—βƒ—βƒ— ) = {𝑒𝑖𝑗|1 ≀ 𝑖 ≀ π‘š, 1 ≀ 𝑗 ≀ 𝑛} and 𝐴(π‘šπΆπ‘›βƒ—βƒ—βƒ—βƒ— ) = {𝑒𝑖𝑗𝑒𝑖(𝑗+1)βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—|1 ≀ 𝑖 ≀ π‘š, 1 ≀ 𝑗 ≀ 𝑛 βˆ’ 1} βˆͺ {𝑒𝑖𝑛𝑒𝑖1βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— |1 ≀ 𝑖 ≀ π‘š} Following the procedure of near mean labeling of 𝐢𝑛⃗⃗⃗⃗ in [3], define 𝑓: 𝑉(π‘šπΆπ‘›βƒ—βƒ—βƒ—βƒ— ) β†’ {0,1,2, … , π‘šπ‘›} as below 242 Palani K and Shunmugapriya A 𝑓(𝑒𝑖𝑗) = { (𝑖 βˆ’ 1)𝑛 + 2(𝑗 βˆ’ 1) for 1 ≀ 𝑗 ≀ ⌊ 𝑛 2 βŒ‹ + 1, 1 ≀ 𝑖 ≀ π‘š (𝑖 βˆ’ 1)𝑛 + 2(𝑛 βˆ’ (𝑗 βˆ’ 1)) + 1 for ⌊ 𝑛 2 βŒ‹ + 2 ≀ 𝑗 ≀ 𝑛, 1 ≀ 𝑖 ≀ π‘š where |𝑉(π‘šπΆπ‘›βƒ—βƒ—βƒ—βƒ— )| = π‘šπ‘› βˆ’ π‘š + 1 and |𝐴(π‘šπΆπ‘›βƒ—βƒ—βƒ—βƒ— )| = π‘šπ‘› Figure 3.3: The labeling of the Di-cyclic Snake π‘šπΆπ‘›βƒ—βƒ—βƒ—βƒ— when 𝑛 is even Figure 3.4: The labeling of the Di-cyclic Snake π‘šπΆπ‘›βƒ—βƒ—βƒ—βƒ— when 𝑛 is odd Now to find π‘“βˆ—(𝑒𝑖𝑗𝑒𝑖(𝑗+1)βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—) For 𝑖 = 1 to π‘š, 𝑗 = 1 to ⌊ 𝑛 2 βŒ‹ π‘“βˆ—(𝑒𝑖𝑗𝑒𝑖(𝑗+1)βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—) = ⌈ 𝑓(𝑒𝑖𝑗) + 𝑓(𝑒𝑖(𝑗+1)) 2 βŒ‰ = ⌈ [(π‘–βˆ’1)𝑛+2(π‘—βˆ’1)]+[(π‘–βˆ’1)𝑛+2((𝑗+1)βˆ’1)] 2 βŒ‰ = ⌈ 2(π‘–βˆ’1)𝑛+4π‘—βˆ’2 2 βŒ‰ = (𝑖 βˆ’ 1)𝑛 + 2𝑗 βˆ’ 1 = 𝑛𝑖 + 2𝑗 βˆ’ 𝑛 βˆ’ 1. Therefore, π‘“βˆ—(𝑒𝑖𝑗𝑒𝑖(𝑗+1)βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—) = 𝑛𝑖 + 2𝑗 βˆ’ 𝑛 βˆ’ 1 for 𝑖 = 1 to π‘š, 𝑗 = 1 to ⌊ 𝑛 2 βŒ‹ (3.5.1) 243 Near mean labeling in dicyclic snakes π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+1) 𝑒 𝑖(⌊ 𝑛 2 βŒ‹+2) βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—) = ⌈ 𝑓 (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+1) ) + 𝑓 (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+2) ) 2 βŒ‰ = ⌈ [(π‘–βˆ’1)𝑛+2(⌊ 𝑛 2 βŒ‹+1βˆ’1)]+[(π‘–βˆ’1)𝑛+2(π‘›βˆ’(⌊ 𝑛 2 βŒ‹+2βˆ’1))+1] 2 βŒ‰ = ⌈ 2(π‘–βˆ’1)𝑛+2π‘›βˆ’1 2 βŒ‰ = ⌈ 2(π‘–βˆ’1+1)π‘›βˆ’1 2 βŒ‰ = ⌈ 2π‘–π‘›βˆ’1 2 βŒ‰ = 2𝑖𝑛 2 = 𝑛𝑖 Therefore, π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+1) 𝑒 𝑖(⌊ 𝑛 2 βŒ‹+2) βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—) = 𝑛𝑖 for 𝑖 = 1 to π‘š and 𝑛 β‰₯ 3 (3.5.2) For 𝑖 = 1 to π‘š, 𝑗 = ⌊ 𝑛 2 βŒ‹ + 2 to 𝑛 βˆ’ 1 π‘“βˆ—(𝑒𝑖𝑗𝑒𝑖(𝑗+1)βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—) = ⌈ 𝑓(𝑒𝑖𝑗) + 𝑓(𝑒𝑖(𝑗+1)) 2 βŒ‰ = ⌈ [(π‘–βˆ’1)𝑛+2(π‘›βˆ’(π‘—βˆ’1))+1]+[(π‘–βˆ’1)𝑛+2(π‘›βˆ’((𝑗+1)βˆ’1))+1] 2 βŒ‰ = ⌈ 2(π‘–βˆ’1)𝑛+4π‘›βˆ’4𝑗+4 2 βŒ‰ = (𝑖 + 1)𝑛 βˆ’ 2𝑗 + 2 = 𝑛𝑖 βˆ’ 2𝑗 + 𝑛 + 2 π‘“βˆ—(𝑒𝑖𝑗𝑒𝑖(𝑗+1)βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—) = 𝑛𝑖 βˆ’ 2𝑗 + 𝑛 + 2 for 𝑖 = 1 to π‘š, 𝑗 = ⌊ 𝑛 2 βŒ‹ + 2 to 𝑛 βˆ’ 1 (3.5.3) π‘“βˆ—(𝑒𝑖𝑛𝑒𝑖1βƒ—βƒ— βƒ—βƒ—βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— ) = ⌈ 𝑓(𝑒𝑖𝑛) + 𝑓(𝑒𝑖1) 2 βŒ‰ = ⌈ [(π‘–βˆ’1)𝑛+2(π‘›βˆ’(π‘›βˆ’1))+1]+[(π‘–βˆ’1)𝑛+2(1βˆ’1)] 2 βŒ‰ = ⌈ 2(π‘–βˆ’1)𝑛+2(π‘›βˆ’π‘›+1)+1 2 βŒ‰ = ⌈ 2(π‘–βˆ’1)𝑛+3 2 βŒ‰ = 2(π‘–βˆ’1)𝑛+4 2 = (𝑖 βˆ’ 1)𝑛 + 2 = 𝑛𝑖 βˆ’ 𝑛 + 2. Therefore, π‘“βˆ—(𝑒𝑖𝑛𝑒𝑖1βƒ—βƒ— βƒ—βƒ—βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— ) = 𝑛𝑖 βˆ’ 𝑛 + 2 for 𝑖 = 1 to π‘š and 𝑛 β‰₯ 3 (3.5.4) Next to find π‘“βˆ—(𝑒𝑖𝑗) π‘“βˆ—(𝑒11) = |𝑓 βˆ—(𝑒11𝑒12βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—) βˆ’ 𝑓 βˆ—(𝑒1𝑛𝑒11βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—)| = |[𝑛(1) + 2(1) βˆ’ 𝑛 βˆ’ 1] βˆ’ [𝑛(1) βˆ’ 𝑛 + 2]| [by (3.5.1) & (3.5.4)] = |1 βˆ’ 2| = |βˆ’1| < 2 Therefore, π‘“βˆ—(𝑒11) < 2 (3.5.5) For 𝑖 = 1 to π‘š, 𝑗 = 2 to ⌊ 𝑛 2 βŒ‹ π‘“βˆ—(𝑒𝑖𝑗) = |𝑓 βˆ—(𝑒𝑖𝑗𝑒𝑖(𝑗+1)βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—) βˆ’ 𝑓 βˆ—(𝑒𝑖(π‘—βˆ’1)𝑒𝑖𝑗⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—)| = |[𝑛𝑖 + 2𝑗 βˆ’ 𝑛 βˆ’ 1] βˆ’ [𝑛𝑖 + 2(𝑗 βˆ’ 1) βˆ’ 𝑛 βˆ’ 1]| [by (3.5.1)] = |βˆ’1 + 3| = |2| = 2 Therefore, π‘“βˆ—(𝑒𝑖𝑗) = 2 for 𝑖 = 1 to π‘š, 𝑗 = 2 to ⌊ 𝑛 2 βŒ‹ (3.5.6) For 𝑖 = 1 to π‘š βˆ’ 1, two cases for π‘“βˆ—(𝑒𝑖𝑗) when 𝑗 = ⌊ 𝑛 2 βŒ‹ + 1 & ⌊ 𝑛 2 βŒ‹ + 2 Case (i): 𝑛 is odd. π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+1) ) = |π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+1) 𝑒 𝑖(⌊ 𝑛 2 βŒ‹+2) βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—) βˆ’ π‘“βˆ— (𝑒 π‘–βŒŠ 𝑛 2 βŒ‹ 𝑒 𝑖(⌊ 𝑛 2 βŒ‹+1) βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— )| = |𝑛𝑖 βˆ’ (𝑛𝑖 + 2 ⌊ 𝑛 2 βŒ‹ βˆ’ 𝑛 βˆ’ 1)| [by (3.5.2) & (3.5.1)] 244 Palani K and Shunmugapriya A = |𝑛 βˆ’ 2 ⌊ 𝑛 2 βŒ‹ + 1| = |𝑛 βˆ’ 2 ( π‘›βˆ’1 2 ) + 1| = |2| = 2 π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+1) ) = 2 when 𝑛 is odd (3.5.7) π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+2) ) = |(π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+2) 𝑒 𝑖(⌊ 𝑛 2 βŒ‹+3) βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—) + π‘“βˆ—(𝑒(𝑖+1)1𝑒(𝑖+1)2βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—)) βˆ’ (π‘“βˆ— (𝑒 π‘–βŒŠ 𝑛 2 βŒ‹+1 𝑒 𝑖(⌊ 𝑛 2 βŒ‹+2) βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—) + π‘“βˆ—(𝑒(𝑖+1)𝑛𝑒(𝑖+1)1βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— ))| = |[(𝑛𝑖 βˆ’ 2 (⌊ 𝑛 2 βŒ‹ + 2) + 𝑛 + 2) + 𝑛(𝑖 + 1) + 2 βˆ’ 𝑛 βˆ’ 1] βˆ’ [𝑛𝑖 + 𝑛(𝑖 + 1) βˆ’ 𝑛 + 2]| [by (3.5.3), (3.5.1), (3.5.2) & (3.5.4)] = |[(𝑛𝑖 βˆ’ 2 (⌊ 𝑛 2 βŒ‹) βˆ’ 4 + 𝑛 + 2) + (𝑛𝑖 + 𝑛 + 2 βˆ’ 𝑛 βˆ’ 1)] βˆ’ [𝑛𝑖 + 𝑛𝑖 + 2]| = |[2𝑛𝑖 βˆ’ 2 ( π‘›βˆ’1 2 ) + 𝑛 βˆ’ 1] βˆ’ [2𝑛𝑖 + 2]| = |βˆ’2| ≀ 2 π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+2) ) ≀ 2 when 𝑛 is odd. (3.5.8) Case (ii): 𝑛 is even. π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+1) ) = |[π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+1) 𝑒 𝑖(⌊ 𝑛 2 βŒ‹+2) βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—) + π‘“βˆ—(𝑒(𝑖+1)1𝑒(𝑖+1)2βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—)] βˆ’ [π‘“βˆ— (𝑒 π‘–βŒŠ 𝑛 2 βŒ‹ 𝑒 𝑖(⌊ 𝑛 2 βŒ‹+1) βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— ) + π‘“βˆ—(𝑒(𝑖+1)𝑛𝑒(𝑖+1)1βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— )]| = |[𝑛𝑖 + (𝑛(𝑖 + 1) + 2(1) βˆ’ 𝑛 βˆ’ 1)] βˆ’ [(𝑛𝑖 + 2 ⌊ 𝑛 2 βŒ‹ βˆ’ 𝑛 βˆ’ 1) + (𝑛(𝑖 + 1) βˆ’ 𝑛 + 2)]| [by (3.5.2), (3.5.1) & (3.5.4) ] = |[𝑛𝑖 + 𝑛𝑖 + 𝑛 + 2 βˆ’ 𝑛 βˆ’ 1] βˆ’ [𝑛𝑖 + 2 ( 𝑛 2 ) βˆ’ 𝑛 βˆ’ 1 + 𝑛𝑖 + 2]| = |0| < 2 π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+1) ) < 2 when 𝑛 is even (3.5.9) π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+2) ) = |π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+2) 𝑒 𝑖(⌊ 𝑛 2 βŒ‹+3) βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—) βˆ’ π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+1) 𝑒 𝑖(⌊ 𝑛 2 βŒ‹+2) βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— )| = |(𝑛𝑖 βˆ’ 2 (⌊ 𝑛 2 βŒ‹ + 2) + 𝑛 + 2) βˆ’ 𝑛𝑖| [by (3) & (4)] = |𝑛 βˆ’ 2 ⌊ 𝑛 2 βŒ‹ βˆ’ 4 + 2| = |𝑛 βˆ’ 2 ( 𝑛 2 ) βˆ’ 2| = |βˆ’2| ≀ 2 π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+2) ) ≀ 2 when 𝑛 is even (3.5.10) Cases (i) and (ii) imply π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+1) ) ≀ 2 for 𝑖 = 1 to π‘š βˆ’ 1 (3.5.11) and π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+2) ) ≀ 2 for 𝑖 = 1 to π‘š βˆ’ 1 (3.5.12) 245 Near mean labeling in dicyclic snakes Now to find π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+1) ) and π‘“βˆ— (𝑒 𝑖(⌊ 𝑛 2 βŒ‹+2) ) for 𝑖 = π‘š π‘“βˆ— (𝑒 π‘š(⌊ 𝑛 2 βŒ‹+1) ) = |π‘“βˆ— (𝑒 π‘š(⌊ 𝑛 2 βŒ‹+1) 𝑒 π‘š(⌊ 𝑛 2 βŒ‹+2) βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— ) βˆ’ π‘“βˆ— (𝑒 π‘šβŒŠ 𝑛 2 βŒ‹ 𝑒 π‘š(⌊ 𝑛 2 βŒ‹+1) βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—)| = |π‘›π‘š βˆ’ (π‘›π‘š + 2 ⌊ 𝑛 2 βŒ‹ βˆ’ 𝑛 βˆ’ 1)| [by (2) & (1)] = |𝑛 βˆ’ 2 ⌊ 𝑛 2 βŒ‹ + 1| = { |𝑛 βˆ’ 2 ( π‘›βˆ’1 2 ) + 1| if 𝑛 is odd |𝑛 βˆ’ 2 ( 𝑛 2 ) + 1| if 𝑛 is even = { |2| if 𝑛 is odd |1| if 𝑛 is even Therefore, π‘“βˆ— (𝑒 π‘š(⌊ 𝑛 2 βŒ‹+1) ) ≀ 2 (3.5.13) π‘“βˆ— (𝑒 π‘š(⌊ 𝑛 2 βŒ‹+2) ) = |π‘“βˆ— (𝑒 π‘š(⌊ 𝑛 2 βŒ‹+2) 𝑒 π‘š(⌊ 𝑛 2 βŒ‹+3) βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— ) βˆ’ π‘“βˆ— (𝑒 π‘š(⌊ 𝑛 2 βŒ‹+1) 𝑒 π‘š(⌊ 𝑛 2 βŒ‹+2) βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—)| = |(π‘›π‘š βˆ’ 2 (⌊ 𝑛 2 βŒ‹ + 2) + 𝑛 + 2) βˆ’ π‘›π‘š| [by (3.5.3) & (3.5.2)] = |𝑛 βˆ’ 2 ⌊ 𝑛 2 βŒ‹ βˆ’ 2| = { |𝑛 βˆ’ 2 ( π‘›βˆ’1 2 ) βˆ’ 2| if 𝑛 is odd |𝑛 βˆ’ 2 ( 𝑛 2 ) βˆ’ 2| if 𝑛 is even = { |βˆ’1| if 𝑛 is odd |βˆ’2| if 𝑛 is even Therefore, π‘“βˆ— (𝑒 π‘š(⌊ 𝑛 2 βŒ‹+2) ) ≀ 2 (3.5.14) For 𝑖 = 1 to π‘š, 𝑗 = ⌊ 𝑛 2 βŒ‹ + 3 to 𝑛 βˆ’ 1 π‘“βˆ—(𝑒𝑖𝑗) = |𝑓 βˆ—(𝑒𝑖𝑗𝑒𝑖(𝑗+1)βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—) βˆ’ 𝑓 βˆ—(𝑒𝑖(π‘—βˆ’1)𝑒𝑖𝑗⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—)| = |[𝑛𝑖 βˆ’ 2𝑗 + 𝑛 + 2] βˆ’ [𝑛𝑖 βˆ’ 2(𝑗 βˆ’ 1) + 𝑛 + 2]| [by (3)] = |βˆ’2| Therefore, π‘“βˆ—(𝑒𝑖𝑗) ≀ 2 for 𝑖 = 1 to π‘š, 𝑗 = ⌊ 𝑛 2 βŒ‹ + 3 to 𝑛 βˆ’ 1 (3.5.15) For 𝑖 = 1 to π‘š and 𝑗 = 𝑛 π‘“βˆ—(𝑒𝑖𝑛) = |𝑓 βˆ—(𝑒𝑖𝑛𝑒𝑖1βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— ) βˆ’ 𝑓 βˆ—(𝑒𝑖(π‘›βˆ’1)𝑒𝑖𝑛⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— )| = |[𝑛𝑖 βˆ’ 𝑛 + 2] βˆ’ [𝑛𝑖 βˆ’ 2(𝑛 βˆ’ 1) + 𝑛 + 2]| [by (4)] = |𝑛𝑖 βˆ’ 𝑛 + 2 βˆ’ 𝑛𝑖 + 2𝑛 βˆ’ 2 βˆ’ 𝑛 βˆ’ 2| = |βˆ’2| Therefore, π‘“βˆ—(𝑒𝑖𝑛) ≀ 2 (3.5.16) Equations (3.5.5), (3.5.6) and (3.5.11) to (3.5.16) imply π‘“βˆ—(𝑒𝑖𝑗) ≀ 2 for1 ≀ 𝑖 ≀ π‘š, 1 ≀ 𝑗 ≀ 𝑛. Thus, Di-Cyclic snake π‘šπΆπ‘›βƒ—βƒ—βƒ—βƒ— is a near mean digraph for π‘š β‰₯ 1 and𝑛 β‰₯ 3. Theorem 3.6. Alternating Di-Cyclic snakes are non near mean digraphs. 246 Palani K and Shunmugapriya A Proof: In an alternating Di-Cyclic snake, either 𝑑+(𝑒21) = 0 and 𝑑 βˆ’(𝑒21) = 4 (or) 𝑑+(𝑒21) = 4 and𝑑 βˆ’(𝑒21) = 0. Therefore, Corresponding to every𝑓: 𝑉 β†’ {0, 1, 2, … , π‘ž}, βˆ‘ π‘“βˆ—(𝑒21𝑀⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )π‘€βˆˆπ‘‰ = 0 and βˆ‘ π‘“βˆ—(𝑀𝑒21βƒ—βƒ—βƒ—βƒ— βƒ—βƒ—βƒ—βƒ— βƒ—βƒ— )π‘€βˆˆπ‘‰ is a sum of at least three positive integers (or) βˆ‘ 𝑓 βˆ—(𝑀𝑒21βƒ—βƒ—βƒ—βƒ— βƒ—βƒ—βƒ—βƒ— βƒ—βƒ— )π‘€βˆˆπ‘‰ = 0 and βˆ‘ π‘“βˆ—(𝑒21𝑀⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )π‘€βˆˆπ‘‰ is a sum of at least three positive integers. Therefore, π‘“βˆ—(𝑒21) > 2. Therefore, No function 𝑓: 𝑉 β†’ {0, 1, 2, … , π‘ž} is a near mean labeling. Thus, an alternating di-cyclic snake is a non near mean digraph. 4. Conclusions In this article, different dicyclic snakes are introduced. Also, existence of near mean labeling is verified to dicyclic snakes and its generalisation. Most of the labeling are proved only for graphs. In this way, we develop the concept of labeling into digraphs References [1] Gallian J A, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17, 2014. [2] Harary F, Graph Theory, Addition Wesley, Massachusetts, 1972. [3] Palani K and Shunmugapriya A, Near mean labeling in dragon digraphs, Journal of Xidian University, 14(3): 1298-1307, 2020. [4] Ponraj R and Somasundaram S, Mean labeling of graphs, National Academy of Science Letters, 26: 210-213, 2003. [5] Raval K K and Prajapati U M, Vertex even and odd mean labeling in the context of some cyclic snake graphs, Journal of Emerging Technologies and Innovative Research (JETIR), 4(6), 2017. [6] Rosa A, 1967. On certain valuations of the vertices of a graph, Theory of Graphs, Gordon and Breach, Dunod, Paris, 349-355, 1966. 247