Ratio Mathematica Volume 45, 2023 Changing and Unchanging strong efficient edge domination number of some standard graphs when a vertex is removed or an edge is added M. Annapoopathi1 N. Meena2 Abstract Let ๐บ = (๐‘‰, ๐ธ) be a simple graph. A subset S of E(G) is a strong (weak) efficient edge dominating set of G if โ”‚Ns[e] ๏ƒ‡ Sโ”‚ = 1 for all e ๏ƒŽ E(G)(โ”‚Nw[e] ๏ƒ‡ Sโ”‚ = 1 for all e ๏ƒŽ E(G)) where Ns(e) ={f / f ๏ƒŽ E(G), f is adjacent to e & deg f โ‰ฅ deg e}(Nw(e) ={f / f ๏ƒŽ E(G), f is adjacent to e & deg f โ‰ค deg e}) and Ns[e]=Ns(e) ๏ƒˆ{e}(Nw[e] = Nw(e) ๏ƒˆ{e}). The minimum cardinality of a strong efficient edge dominating set of G (weak efficient edge dominating set of G) is called a strong efficient edge domination number of G and is denoted by ๐›พโ€ฒ ๐‘ ๐‘’ (๐บ) (๐›พโ€ฒ ๐‘ค๐‘’ (๐บ)).When a vertex is removed or an edge is added to the graph, the strong efficient edge domination number may or may not be changed. In this paper the change or unchanged of the strong efficient edge domination number of some standard graphs are determined, when a vertex is removed or an edge is added. Keywords: Domination, edge domination, strong edge domination, efficient edge domination, strong efficient edge domination. AMS subject classification: 05C693 1 Reg.No:17231072092002, Research Scholar, Department of Mathematics, P.G. & Research Department of Mathematics, The M.D.T. Hindu College, Tirunelveli. (Affiliated to Manonmaniam Sundaranar University, Tirunelveli โ€“ 627 012, Tamil Nadu, India) and Assistant Professor, National Engineering College, Kovilpatti - 628503, Tamil Nadu, India. Email: annapoopathi.nec@gmail.com 2 Assistant Professor, P.G. & Research Department of Mathematics, the M.D.T. Hindu College, Tirunelveli. (Affiliated to Manonmaniam Sundaranar University, Tirunelveli โ€“ 627 012, Tamil Nadu, India). Email: meena@mdthinducollege.org 3 Received on July 10, 2022. Accepted on October 15, 2022. Published on January 30, 2023. doi: 10.23755/rm.v45i0.1024. ISSN: 1592-7415. eISSN: 2282-8214. ยฉThe Authors. This paper is published under the CC-BY license agreement. 257 mailto:annapoopathi.nec@gmail.com mailto:meena@mdthinducollege.org M. Annapoopathi and N. Meena 1. Introduction It is meant by the graph that it is a finite, undirected graph without loops and multiple edges. The concept of domination in graphs was introduced by Ore. Two volumes on domination have been published by T. W. Haynes, S. T. Hedetniemi and P. J. Slater [4, 5]. Let G be a graph with vertex set V and edge set E. A subset D of V (G) is called a strong dominating set of G if every vertex in V- D is strongly dominated by at least one vertex in D. Similarly, a set D is a subset of V (G) is called a weak dominating set of G if every vertex in V- D is weakly dominated by at least one vertex in D. The strong (weak) domination number ๐›พ๐‘ (๐บ) (๐›พ๐‘ค (๐บ)) respectively of G is the minimum cardinality of a strong (weak) dominating set of G. A subset D of V (G) is called an efficient dominating set of G if for every vertex u โˆˆ V (G), |๐‘[๐‘ข] โˆฉ ๐ท| = 1 [1, 2]. Edge dominating sets were also studied by Mitchell and Hedetniemi [6, 7]. A subset F of edges in a graph G = (V, E) is called an edge dominating set of G if every edge in E-F is adjacent to at least one edge in F. The edge domination number ๐›พโ€ฒ(๐บ) of a graph G is the smallest cardinality among all minimum edge dominating sets of G. The degree of an edge uv is defined to be deg u + deg v - 2. An edge uv is called an isolated edge if deg uv = 0. A subset F of E is called an efficient edge dominating set if every edge in E is either in F or dominated by exactly one edge in F. The cardinality of minimum efficient edge dominating set is called the edge domination number of G. Motivated by these definitions; strong efficient edge domination in graphs is defined as follows. A subset S of E(G) is a strong (weak) efficient edge dominating set of G if |๐‘๐‘ [๐‘’] โˆฉ ๐‘†| = 1 for all ๐‘’ โˆˆ ๐ธ(๐บ) [ |๐‘๐‘ค [๐‘’] โˆฉ ๐‘†| = 1 for all ๐‘’ โˆˆ ๐ธ(๐บ)] where ๐‘๐‘  (๐‘’) = { ๐‘“/๐‘“ โˆˆ ๐ธ(๐บ) & ๐‘‘๐‘’๐‘” ๐‘“ โ‰ฅ deg ๐‘’} ( ๐‘๐‘ค (๐‘’) = {๐‘“/๐‘“ โˆˆ ๐ธ(๐บ) & ๐‘‘๐‘’๐‘” ๐‘“ โ‰ค deg ๐‘’} ) and ๐‘๐‘ [๐‘’] = ๐‘๐‘ (๐‘’) โˆช {๐‘’} (๐‘๐‘ค [๐‘’] = ๐‘๐‘ค (๐‘’) โˆช {๐‘’}) .The minimum cardinality of a strong efficient edge dominating set of G (weak efficient edge dominating set of G) is called as a strong efficient edge domination number of G (weak efficient edge domination number of G ) and also denoted by ๐›พโ€ฒ๐‘ ๐‘’ (๐บ) (๐›พ โ€ฒ ๐‘ค๐‘’ (๐บ)). Definition 1.1. Let ๐บ = (๐‘‰, ๐ธ) be a simple graph. Let ๐ธ(๐บ) = {๐‘’1, ๐‘’2, ๐‘’3, ๐‘’4, โ€ฆ โ€ฆ โ€ฆ โ€ฆ . ๐‘’๐‘› }. An edge ๐‘’๐‘– is said to be the full degree edge if and only if deg ๐‘’๐‘– = n-1. Observation 1.2. ๐›พ โ€ฒ ๐‘ ๐‘’ (๐บ) = 1 if and only if G has a full degree edge. Observation 1.3. ๐›พ โ€ฒ ๐‘ ๐‘’ (๐พ1,๐‘›) = 1, ๐‘› โ‰ฅ 1 and ๐›พ โ€ฒ ๐‘ ๐‘’ (๐ท๐‘Ÿ,๐‘ ) = 1, ๐‘Ÿ, ๐‘  โ‰ฅ 1 Theorem 1.4. For any path ๐‘ƒ๐‘š , ๐›พ โ€ฒ ๐‘ ๐‘’ ( ๐‘ƒ๐‘š ) = { ๐‘›, ๐‘–๐‘“ ๐‘š = 3๐‘› + 1, ๐‘› โ‰ฅ 1 ๐‘› + 1, ๐‘–๐‘“ ๐‘š = 3๐‘›, ๐‘› โ‰ฅ 2 ๐‘› + 1, ๐‘–๐‘“ ๐‘š = 3๐‘› + 2, ๐‘› โ‰ฅ 1 Theorem 1.5. NnnC nse ๏ƒŽ๏€ข= ,)( 3 ' ๏ง 258 Changing and Unchanging strong efficient edge domination number of some standard graphs when a vertex is removed or an edge is added Theorem 1.6. Let Wm be a wheel graph. Then Wm has a strong efficient edge dominating set if and only if m = 3n, n โ‰ฅ 2 and ๐›พโ€ฒ ๐‘ ๐‘’ (๐‘Š3๐‘›) = ๐‘›, n โ‰ฅ 2. 2. Main Results Definition 2.1. )})(())(/()({)()( ''0' GeGGEeGE sesese ๏ง๏ง =+๏ƒŽ= )})(())((/)({)()( ''' GeGGEeGE sesese ๏ง๏ง ๏€พ+๏ƒŽ= + , )})(())((/)({)()( ''' GeGGEeGE sesese ๏ง๏ง ๏€ผ+๏ƒŽ= โˆ’ Example 2.2. Consider the following graph Since e5 is the full degree edge of G, )( ' G se ๏ง =1. {e3, e6} is the unique strong efficient edge dominating set of G โ€“ e5. Therefore ))((2))(( ' 5 ' GeG sese ๏ง๏ง ๏€พ=โˆ’ and e5 is the full degree edge of G โ€“ e3 and )(1)( ' 3 ' GeG sese ๏ง๏ง ==โˆ’ . Hence ))(()( 3 '' eGG sese โˆ’= ๏ง๏ง . Definition 2.3. )}()(/)({)()( ''0' GvGGVvGV sesese ๏ง๏ง =โˆ’๏ƒŽ= )}()(/)({)()( ''' GvGGVvGV sesese ๏ง๏ง ๏€พโˆ’๏ƒŽ= + , )}()(/)({)()( ''' GvGGVvGV sesese ๏ง๏ง ๏€ผโˆ’๏ƒŽ= + Example 2.4. Consider the following graph S= {e4, e7} is the strong efficient edge dominating set of G and )( ' G se ๏ง =2. 3,1,)()( '' ==โˆ’ iGvG seise ๏ง๏ง and 3,1,)()( '' ๏‚น๏€ผโˆ’ iGvG seise ๏ง๏ง e2 2 e1 2 e3 2 e5 2 e4 2 e6 2 e1 e4 e2 e3 e6 e5 e7 v1 v2 v3 v4 v5 v6 259 M. Annapoopathi and N. Meena Theorem 2.5. Let G = P3n, .1๏‚ณn Then ๏ฆ= + )()( ' GV se Proof: Case (1): Let G = P3n, .1๏‚ณn Let v be the end vertex of G. Then G โ€“ v = P3n-1. nnPP nsense =+โˆ’== +โˆ’โˆ’ 11)()( 2)1(3 ' 13 ' ๏ง๏ง and 1)( ' += nG se ๏ง . Therefore )()( '' GvG sese ๏ง๏ง ๏€ผโˆ’ . Hence )()( ' GVv sei + ๏ƒ . Case (2): Let 11, 3 โˆ’๏‚ฃ๏‚ฃ= nkvv k . Thus G โ€“ v = P3k --1 โˆช P3n-3k and kP kse =โˆ’ )( 13 ' ๏ง , 1)()( )(3 ' 33 ' +โˆ’== โˆ’โˆ’ knPP knseknse ๏ง๏ง . Therefore )()()( 33 ' 13 '' knseksese PPvG โˆ’โˆ’ +=โˆ’ ๏ง๏ง๏ง = )(11 ' Gnknk se ๏ง=+=+โˆ’+ . Hence )()( 0' GVv se ๏ƒŽ . Case (3): Let 11, 13 โˆ’๏‚ฃ๏‚ฃ= + nkvv k . Thus G โ€“ v = P3k โˆชP3n-3k-1 and 1)( 3 ' += kP kse ๏ง , knPP knseknse โˆ’== +โˆ’โˆ’โˆ’โˆ’ )()( 2)1(3 ' 133 ' ๏ง๏ง . Therefore )()()( 133 ' 3 '' โˆ’โˆ’ +=โˆ’ knseksese PPvG ๏ง๏ง๏ง = )(11 ' Gnknk se ๏ง=+=โˆ’++ . Hence )()( 0' GVv se ๏ƒŽ . Case (4): Let 21, 23 โˆ’๏‚ฃ๏‚ฃ= + nkvv k . Thus G โ€“ v = P3k+1 โˆชP3n-3k-2 and kP kse =+ )( 13 ' ๏ง , 1)()( 1)1(3 ' 233 ' โˆ’โˆ’== +โˆ’โˆ’โˆ’โˆ’ knPP knseknse ๏ง๏ง . Therefore )()()( 233 ' 13 '' โˆ’โˆ’+ +=โˆ’ knseksese PPvG ๏ง๏ง๏ง 11 โˆ’=โˆ’โˆ’+= nknk )( ' G se ๏ง๏€ผ . Hence )()( ' GVv se โˆ’ ๏ƒŽ . Case (5): when v = v2 or v3n-1. Thus G-v = P3n-2 โˆช P1 having no strong efficient dominating set. From the above given the cases it is identified that, ๏ฆ= + )()( ' GV se Theorem 2.6. Let G = P3n+1, .1๏‚ณn Then ๏ฆ= โˆ’ )()( ' GV se Proof: Case (1): Let G = P3n+1, .1๏‚ณn Let v be the end vertex of G. Then G โ€“ v = P3n. 1)( ' +=โˆ’ nvG se ๏ง but nG se =)( ' ๏ง . Therefore )()( '' GvG sese ๏ง๏ง ๏€พโˆ’ . Hence )()( ' GVv se + ๏ƒŽ Case (2): Let 11, 3 โˆ’๏‚ฃ๏‚ฃ= nkvv k . Thus G โ€“ v = P3k --1 โˆช P3n+1-3k. Therefore )()()( 313 ' 13 '' knseksese PPvG โˆ’+โˆ’ +=โˆ’ ๏ง๏ง๏ง = )()( 1)(3 ' 2)1(3 ' +โˆ’+โˆ’ + knsekse PP ๏ง๏ง = )( ' Gnknk se ๏ง==โˆ’+ . Hence )()( 0' GVv se ๏ƒŽ . Case (3): Let 11,13 โˆ’๏‚ฃ๏‚ฃ= + nkvv k . Thus G โ€“ v = P3k โˆช P3n-3k. Therefore )()()( )(3 ' 3 '' knseksese PPvG โˆ’ +=โˆ’ ๏ง๏ง๏ง = )(211 ' Gnnknk se ๏ง=๏€พ+=+โˆ’++ . Hence )()( ' GVv se + ๏ƒŽ . Case (4): Let 21,23 โˆ’๏‚ฃ๏‚ฃ= + nkvv k . Thus G โ€“ v = P3k+1 โˆชP3n-3k-1 = P3k+1 โˆชP3(n-k-1)+2 and, Therefore )()()( 2)1(3 ' 13 '' +โˆ’โˆ’+ +=โˆ’ knseksese PPvG ๏ง๏ง๏ง nknk =+โˆ’โˆ’+= 11 )( ' G se ๏ง= . Hence )()( 0' GVv se ๏ƒŽ . Case (5): when v = v2 or v3n. G-v = P3n-1 โˆชP1 which has no strong efficient dominating set. From the above all the cases, ๏ฆ= โˆ’ )()( ' GV se Theorem 2.7. Let G = P3n+2, .1๏‚ณn Then ๏ฆ= โˆ’ )()( ' GV se 260 Changing and Unchanging strong efficient edge domination number of some standard graphs when a vertex is removed or an edge is added Proof: Case (1): Let G = P3n+2, .1๏‚ณn Let v be the end vertex of G. Then G โ€“ v = P3n+1. nPvG nsese ==โˆ’ + )()( 13 '' ๏ง๏ง but 1)( ' += nG se ๏ง . Therefore )()( '' GvG sese ๏ง๏ง ๏€ผโˆ’ . Hence )()( ' GVv se โˆ’ ๏ƒ Case (2): Let 11, 3 โˆ’๏‚ฃ๏‚ฃ= nkvv k . Thus G โ€“ v = P3k --1 โˆช P3n+2-3k. Therefore )()()( 323 ' 13 '' knseksese PPvG โˆ’+โˆ’ +=โˆ’ ๏ง๏ง๏ง = )()( 2)(3 ' 2)1(3 ' +โˆ’+โˆ’ + knsekse PP ๏ง๏ง = )(11 ' Gnknk se ๏ง=+=+โˆ’+ . Hence )()( 0' GVv se ๏ƒŽ . Case (3): Let 11, 13 โˆ’๏‚ฃ๏‚ฃ= + nkvv k . Thus G โ€“ v = P3k โˆช P3n-3k+1. Therefore )()()( 1)(3 ' 3 '' +โˆ’ +=โˆ’ knseksese PPvG ๏ง๏ง๏ง = )(11 ' Gnknk se ๏ง=+=โˆ’++ . Hence )()( 0' GVv se ๏ƒŽ . Case (4): Let 21, 23 โˆ’๏‚ฃ๏‚ฃ= + nkvv k . Thus G โ€“ v = P3k+2 โˆชP3n-3k-1 = P3k+2 โˆชP3(n-k-1)+2 and, Therefore )()()( 2)1(3 ' 23 '' +โˆ’โˆ’+ +=โˆ’ knseksese PPvG ๏ง๏ง๏ง 112 +=โˆ’โˆ’++= nknk )( ' G se ๏ง= . Hence )()( 0' GVv se ๏ƒŽ . Case (5): when v = v2 or v3n+1. G-v = P3n-2 โˆชP1 which has no strong efficient dominating set. From the above all the cases, ๏ฆ= โˆ’ )()( ' GV se Theorem 2.8. Let 1, 3 ๏‚ณ= nCG n . Then ).()()( 0' GVGV se = Proof: Let 1, 3 ๏‚ณ= nCG n . Let )(GVv ๏ƒŽ . Then )( ' G se ๏ง =n, G โ€“ v = P3n-1 and )()( 2)1(3 ' 13 ' +โˆ’โˆ’ = nsense PP ๏ง๏ง n= Therefore )()( '' GvG sese ๏ง๏ง =โˆ’ . Hence ).()()( 0' GVGV se = Theorem 2.9. Let 2, ,1 ๏‚ณ= nKG n . Then ).()()( 0' GVGV se = Proof: Let 2, ,1 ๏‚ณ= nKG n . Let )(GVv ๏ƒŽ . Then )( ' G se ๏ง =1, G โ€“ v = K1, n-1 and 1)( 1,1 ' = โˆ’nse K๏ง . Therefore )()( '' GvG sese ๏ง๏ง =โˆ’ . Hence ).()()( 0' GVGV se = Theorem 2.10. Let 1,, , ๏‚ณ= srDG sr . Then .2|)()(| 0' โˆ’+= srGV se Proof: Let 1,, , ๏‚ณ= srDG sr . Let V (G) = }1,1/,,,{ sjrivuvu ji ๏‚ฃ๏‚ฃ๏‚ฃ๏‚ฃ , ๏ป ๏ฝ.1,1/,,)( sjrivvuuuvGE ji ๏‚ฃ๏‚ฃ๏‚ฃ๏‚ฃ= Let v = ui or vj. Then )( ' G se ๏ง =1, G โ€“ v = Dr -1, s = Dr, s-1 and 1)()( 1, ' ,1 ' == โˆ’โˆ’ srsesrse DD ๏ง๏ง . Therefore )()( '' GvG sese ๏ง๏ง =โˆ’ . Hence ๏ป ๏ฝ.,)()()( 0' vuGVGV se โˆ’= Therefore ( ) 2|)(| 0' โˆ’+= srGV se Theorem 2.11. Let 2,3 ๏‚ณ= nWG n . Then )()( 0' GVv se ๏ƒŽ if )( 1 Kv ๏ƒŽ and )()( ' GVv se โˆ’ ๏ƒŽ if ( ) 13 โˆ’ ๏ƒŽ n CVv 261 M. Annapoopathi and N. Meena Proof: Let 2, 3 ๏‚ณ= nWG n . Let V(G) = }31/,{ nivv i ๏‚ฃ๏‚ฃ , ๏ป ๏ฝ131,31/,,)( 131 โˆ’๏‚ฃ๏‚ฃ๏‚ฃ๏‚ฃ= + ninjvvvvvvGE niij Case (1): G โ€“ v = C3n. Therefore nCvG nsese ==โˆ’ )()( 3 '' ๏ง๏ง . Hence )()( 0' GVv se ๏ƒŽ . Case (2): Let v = vi, ni 31 ๏‚ฃ๏‚ฃ . G โ€“ v = F3n-1. Therefore nFFvG nsensese ===โˆ’ +โˆ’โˆ’ )()()( 2)1(3 ' 13 '' ๏ง๏ง๏ง . but nG se 2)( ' =๏ง . Hence )()( '' GvG sese ๏ง๏ง ๏€ผโˆ’ . Therefore )()( ' GVv se โˆ’ ๏ƒŽ Theorem 2.12. Let G = P3n, .2๏‚ณn Let e = uv be any edge incident with any vertex of G and Gโ€™ = G+e. Then 1)()( '' โˆ’=+ GeG sese ๏ง๏ง if e is incident with u1 or 231,3 โˆ’๏‚ฃ๏‚ฃ niu i and )( ' eG se +๏ง has no strong efficient edge dominating set if e is incident with u2, u3n-1, 231, 23 โˆ’๏‚ฃ๏‚ฃ + niu i Proof: Let G = P3n, .2๏‚ณn V(G) = }31/{ niui ๏‚ฃ๏‚ฃ , ๏ป ๏ฝ131/)( 1 โˆ’๏‚ฃ๏‚ฃ== + niuueGE iii . Let e = uv be the new edge incident with any vertex of G and Gโ€™ = G+e. Case 1: Let e be an end edge of Gโ€™. Then Gโ€™ = P3n+1. Therefore nPG nsese == + )()'( 13 '' ๏ง๏ง but .1)( ' += nG se ๏ง Therefore ).()( '' GeG sese ๏ง๏ง ๏€ผ+ Hence ).()( ' GEe se โˆ’ ๏ƒŽ Case 2: Let the edge e be incident with the vertex u2. Let S be a strong efficient edge dominating set of Gโ€™. Suppose .2๏‚ณn Among all the edges, the edge e2 have maximum degree. It must belong to S. It strongly efficiently dominates e, e3, e1. Also the edges e5, e8, e11, โ€ฆ, e3n-4 belong to S. If the edge e3n-2 belongs to S, then |๐‘๐‘†[๐‘’3๐‘›โˆ’3] โˆฉ ๐‘†| = |{๐‘’3๐‘›โˆ’4, ๐‘’3๐‘›โˆ’2}| = 2 > 1 , a contradiction. Hence Gโ€™ has no strong efficient edge dominating set. The proof is similar if the edge e is added at the vertex u3n-1. Case 3: Let the edge e be incident with the vertex u3. e2 and e3 are the only maximum degree edges. Hence any strong efficient edge dominating set contains either e2 or e3 .Then S1 = {e1, e3, e6, โ€ฆ., e3n-3, e3n-1} , S2 = {e2, e4, e7, โ€ฆ. e3n-2} are the strong efficient edge dominating sets of Gโ€™. Therefore |S1|=n+1, |S2|=n. Hence )()'( '' GnG sese ๏ง๏ง ๏€ผ= . Therefore ).()( ' GEe se โˆ’ ๏ƒŽ The proof is similar if the edge e is incident with the vertex 12, 3 โˆ’๏‚ฃ๏‚ฃ niu i Case 4: Let the edge e be incident with the vertex u4. Then S = {e2, e4, e7, โ€ฆ. e3n-2} is the unique strong efficient edge dominating set of Gโ€™ and nG se =)'( ' ๏ง . Therefore ).()( '' GeG sese ๏ง๏ง ๏€ผ+ Hence ).()( ' GEe se โˆ’ ๏ƒŽ The proof is similar if the edge e is incident with the vertex 12, 13 โˆ’๏‚ฃ๏‚ฃ + niu i Case 5: Let the edge e be incident with the vertex u5. Let S be a strong efficient edge dominating set of Gโ€™. The edge e4 & e5 are the only maximum degree edges. If the edge e4 belongs to S then no edge in S to strongly efficiently dominate e2. If the edge e5 belongs to S then e2, e8, e11, โ€ฆ., e3n-4 belongs to S and there is no edge in S to strongly 262 Changing and Unchanging strong efficient edge domination number of some standard graphs when a vertex is removed or an edge is added efficiently dominate e3n-2. Hence strong efficient edge dominating set does not exists. Proof is similar if the edge e is incident with the vertex 22, 23 โˆ’๏‚ฃ๏‚ฃ + niu i . From all the above cases, ( ) ๏ฆ=)(0' GE se Remark: Let n = 1, Gโ€™=K1, 3. ).(1)'( '' GG sese ๏ง๏ง == Therefore ( ) )(0' GEe se ๏ƒŽ Theorem 2.13. Let G = P3n+1, .1๏‚ณn Let e = uv be any edge incident with any vertex of G and Gโ€™ = G+e. Then )()( '' GeG sese ๏ง๏ง =+ if e is incident with u2 or 11,3 โˆ’๏‚ฃ๏‚ฃ niu i , 21, 23 โˆ’๏‚ฃ๏‚ฃ + nju j and 1)()( '' +=+ GeG sese ๏ง๏ง if e is incident with u1, u3n, 11, 13 โˆ’๏‚ฃ๏‚ฃ + niu i . Proof: Let G = P3n+1, .1๏‚ณn V(G) = }131/{ +๏‚ฃ๏‚ฃ niui , ๏ป ๏ฝniuueGE iii 31/)( 1 ๏‚ฃ๏‚ฃ== + . Let e = uv be the any edge incident with any vertex of G and Gโ€™ = G+e. Case 1: Let e be an end edge of Gโ€™. Then Gโ€™ = P3n+2. Therefore 1)()'( 23 '' +== + nPG nsese ๏ง๏ง but .)( ' nG se =๏ง Therefore ).()( '' GeG sese ๏ง๏ง ๏€พ+ Hence ).()( ' GEe se โˆ’ ๏ƒŽ Therefore 1)()( '' +=+ GeG sese ๏ง๏ง Case 2: Let the edge e be incident with the vertex u2. Suppose .1๏‚ณn S = {e2, e5, e8, โ€ฆ. e3n-1} is the unique strong efficient edge dominating sets of Gโ€™ and |S| = n. Therefore nGG sese == )()'( '' ๏ง๏ง Hence ).()( 0' GEe se ๏ƒŽ The proof is similar if the edge e is incident with the vertex u3n. Case 3: Let the edge e be incident with the vertex u3. e2 and e3 are the only maximum degree edges. Hence any strong efficient edge dominating set contains either e2 or e3 .If e2 belongs to S then S = {e2, e5, e8, โ€ฆ., e3n-3, e3n-1} is the unique strong efficient edge dominating sets of Gโ€™and |S| =n. Hence )()'( '' GnG sese ๏ง๏ง == . Therefore ๏ฆ= + )()( ' GE se . If the edge e3 belongs to S then there is no edge in S to strongly efficiently dominate e3. The proof is similar if the edge e is incident with the vertex .12, 3 โˆ’๏‚ฃ๏‚ฃ niu i Case 4: Let the edge e be incident with the vertex u4. Then S1 = {e1, e3, e5, โ€ฆ. e3n-1} , S2 = {e2, e4, e7, โ€ฆ. e3n-2, e3n} are the strong efficient edge dominating sets of Gโ€™ and |S1|=|S2|=n+1. Therefore 1)'( ' += nG se ๏ง but .)( ' nG se =๏ง Therefore ).()( '' GeG sese ๏ง๏ง ๏€พ+ Hence ).()( ' GEe se + ๏ƒŽ The proof is similar if the edge e is incident with the vertex 12, 13 โˆ’๏‚ฃ๏‚ฃ + niu i Case 5: Let the edge e be incident with the vertex u5. Let S be a strong efficient edge dominating set of Gโ€™. The edge e4 & e5 are the only maximum degree edges. If the edge e4 belongs to S then no edge in S to strongly efficiently dominate e2. If the edge e5 belongs to S then e2, e8, e11, โ€ฆ., e3n-4 belongs to S and there is no edge in S to strongly efficiently dominate e3n-2. Hence strong efficient edge dominating set does not exists. 263 M. Annapoopathi and N. Meena Proof is similar if the edge e is incident with the vertex 22, 23 โˆ’๏‚ฃ๏‚ฃ + niu i . From all the above cases, ( ) ๏ฆ=)(0' GE se Theorem 2.14. Let G = P3n+2 .1๏‚ณn Let e = uv be any edge incident with any vertex of G and Gโ€™ = G+e. Then )()( '' GeG sese ๏ง๏ง =+ if e is incident with all 231/ +๏‚ฃ๏‚ฃ niu i except u1, u3n and 1)()( '' +=+ GeG sese ๏ง๏ง if e is incident with u1, u3n. Proof: Let G = P3n+2, .1๏‚ณn V(G) = }231/{ +๏‚ฃ๏‚ฃ niui , ๏ป ๏ฝ131/)( 1 +๏‚ฃ๏‚ฃ== + niuueGE iii . Let e = uv be the any edge incident with any vertex of G and Gโ€™ = G+e. Case 1: Let e be an end edge of Gโ€™. Then Gโ€™ = P3n+3=P3(n+1). Therefore 2)()'( )1(3 '' +== + nPG nsese ๏ง๏ง but .1)( ' += nG se ๏ง Therefore ).()( '' GeG sese ๏ง๏ง ๏€พ+ Hence ).()( ' GEe se + ๏ƒŽ Therefore 1)()( '' +=+ GeG sese ๏ง๏ง Case 2: Let the edge e be incident with the vertex u2. Suppose .1๏‚ณn S = {e2, e5, e8, โ€ฆ. e3n-1, e3n+1} is the unique strong efficient edge dominating sets of Gโ€™ and |S| = n+1. Therefore .1)()'( '' +== nGG sese ๏ง๏ง Hence ).()( 0' GEe se ๏ƒŽ The proof is similar if the edge e is incident with the vertex u3n. Case 3: Let the edge e be incident with the vertex u3. e2 and e3 are the only maximum degree edges. Hence any strong efficient edge dominating set contains either e2 or e3 .If e2 belongs to S then S = {e2, e5, e8, โ€ฆ., e3n-3, e3n-1, e3n+1} is the unique strong efficient edge dominating set of Gโ€™ and |S| = n+1. Hence )(1)'( '' GnG sese ๏ง๏ง =+= . Therefore ).()( 0' GEe se ๏ƒŽ If e3 belongs to S then S = {e1, e3, e6, โ€ฆ.,e3n } is the unique strong efficient edge dominating set of Gโ€™ and |S| = n+1. Hence )(1)'( '' GnG sese ๏ง๏ง =+= . Therefore ).()( 0' GEe se ๏ƒŽ The proof is similar if the edge e is incident with the vertex .12, 3 โˆ’๏‚ฃ๏‚ฃ niu i Case 4: Let the edge e be incident with the vertex u4. The edge e3 & e4 are the only maximum degree edges. Hence any strong efficient edge dominating set S contains either e3 or e4. If the edge e3 belongs to S then S = {e1, e3, e6, โ€ฆ.,e3n } is the unique strong efficient edge dominating set of Gโ€™ and |S| = n+1. Hence )(1)'( '' GnG sese ๏ง๏ง =+= . Therefore ).()( 0' GEe se ๏ƒŽ If the edge e4 belongs to S then there is no edge in S to strongly efficiently dominate e3n. Hence strong efficient edge dominating set does not exist. The proof is similar if the edge e is incident with the vertex 12,13 โˆ’๏‚ฃ๏‚ฃ+ niu i Case5: Let the edge e be incident with the vertex u5. The edge e4 & e5 are the only maximum degree edges. Hence any strong efficient edge dominating set S contains either e4 or e5. If the edge e4 belongs to S then there is no edge in S to strongly efficiently dominate e2. If the edge e5 belongs to S then {e2, e5, e8, โ€ฆ., e3n-3, e3n-1, e3n+1}} is the unique strong efficient edge dominating set of Gโ€™ and |S| = n+1. Hence 264 Changing and Unchanging strong efficient edge domination number of some standard graphs when a vertex is removed or an edge is added )(1)'( '' GnG sese ๏ง๏ง =+= . Therefore ).()( 0' GEe se ๏ƒŽ Proof is similar if the edge e is incident with the vertex 22, 23 โˆ’๏‚ฃ๏‚ฃ + niu i . Theorem 2.15. Let G = C3n, .1๏‚ณn Let e = uv be any edge incident with any vertex of G and Gโ€™ = G+e. Then ).()( '' eGG sese += ๏ง๏ง Proof: Let G = C3n, .1๏‚ณn Let e = uv be the new edge. V(Gโ€™) = }31/,{ niuui ๏‚ฃ๏‚ฃ , ๏ป ๏ฝvueuueniuueGE inniii ==โˆ’๏‚ฃ๏‚ฃ== + ,,131/)'( 1331 and Gโ€™ = G + e. Let the edge e be incident with the vertex u1. e1 and e3n are the maximum degree edges and they are adjacent. Any strong efficient dominating set contains e1 or e3n. Then S1 = {e1, e4, e7, โ€ฆ. e3n-2}, S2 = {e3, e6, e9, โ€ฆ. e3n-3, e3n} are the strong efficient edge dominating sets of Gโ€™ and |S1|=|S2|= n, .1๏‚ณn .1,)'( ' ๏‚ณ= nnG se ๏ง No other strong efficient edge dominating set exists without e1 and e3n. Therefore .1,)()( '' ๏‚ณ=+= nneGG sese ๏ง๏ง The proof is similar if the edge e is with any niu i 32, ๏‚ฃ๏‚ฃ Theorem 2.16. Let G = K1, n, .1๏‚ณn Let e be any edge incident with any vertex of G and Gโ€™ = G+e. Then ).()( '' eGG sese += ๏ง๏ง Proof: Let G = K1, n, .1๏‚ณn Let V(G) = },1/,{ niuui ๏‚ฃ๏‚ฃ E(G) = }.1/{ niuu i ๏‚ฃ๏‚ฃ V(Gโ€™) = }1/,,{ nivuui ๏‚ฃ๏‚ฃ . Case 1: Let e be the new edge incident with u. Then Gโ€™ = K1, n+1. Therefore 1)()'( '' == GG sese ๏ง๏ง Case2: Let uiv be the new edge incident with ui. Then {uui} is the unique strong efficient edge dominating set of Gโ€™ and .1)'( ' =G se ๏ง Therefore 1)()( '' =+= eGG sese ๏ง๏ง . Theorem 2.17. Let G = Dr, s, .1, ๏‚ณsr Let e = xy be any edge incident with any vertex of G and Gโ€™ = G+e. Then ๏ƒฏ๏ƒฎ ๏ƒฏ ๏ƒญ ๏ƒฌ =+ = = wvorwueifG wvorwueifG G jise se se ,1)( ),( )'( ' ' ' ๏ง ๏ง ๏ง . Proof: G = Dr, s, .1, ๏‚ณsr Let e = xy be the new edge. V(G) = },1,1/,,,{ sjrivuvu ji ๏‚ฃ๏‚ฃ๏‚ฃ๏‚ฃ V(Gโ€™) = }1,1/,,,,,{ sjriyxvuvu ji ๏‚ฃ๏‚ฃ๏‚ฃ๏‚ฃ , ๏ป ๏ฝsjrixyevvfuvfuueGE jjii ๏‚ฃ๏‚ฃ๏‚ฃ๏‚ฃ===== 1,1/,,,)'( . Then Gโ€™ = G+e. Case 1: If the edge e is incident with either the vertex u or the vertex v. Then Gโ€™= Dr+1, s or Gโ€™= Dr, s+1 and 1)()'( '' == GG sese ๏ง๏ง 265 M. Annapoopathi and N. Meena Case 2: Let the edge e be incident with the vertex ui, ri ๏‚ฃ๏‚ฃ1 or vj, sj ๏‚ฃ๏‚ฃ1 . Then S = {uv, uiw} or S = {uv, vjw} is the strong efficient edge dominating set of Gโ€™ and |S|=2. .2)'( ' =G se ๏ง 2)()( '' =+= eGG sese ๏ง๏ง . 3. Conclusions In this paper, the change or unchanged of the strong efficient edge domination number of some standard graphs are determined, when a vertex is removed or an edge is added. References [1] D.W. Bange, A. E. Barkauskas, L. H. Host, and P. J. Slater. Generalized domination and efficient domination in graphs. Discrete Math., 159:1 โ€“ 11, 1996. [2] D.W. Bange, A. E. Barkauskas, and P. J. Slater. Efficient dominating sets in graphs. In R. D. Ringeisen and F. S. Roberts, editors, Applications of Discrete Mathematics, pages 189 โ€“ 199. SIAM, Philadelphia, PA, 1988. [3] Dominngos M. Cardoso, J. Orestes Cerdefra Charles Delorme, Pedro C.Silva , Efficient edge domination in regular graphs, Discrete Applied Mathematics 156 , 3060 - 3065(2008) [4] Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater (Eds), Domination in graphs: Advanced Topics, Marcel Decker, Inc., New York 1998. [5] Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, Fundamentals of domination in graphs, Marcel Decker, Inc., New York 1998. [6] C. L. Lu, M-T. Ko, C. Y. Tang, Perfect edge domination and efficient edge domination in graphs, Discrete Appl. Math. 119227-250(2002) [7] S. L. Mitchell and S. T. Hedetniemi, edge domination in trees. Congr. Number.19489-509 (1977) [8] E. Sampath Kumar and L. Pushpalatha, Strong weak domination and domination balance in a graph, Discrete Math., 161:235 - 242, 1996. [9] C. Yen and R.C. T. Lee., The weighted perfect domination problem and its variants, Discrete Applied Mathematics, 66, p147-160, 1996. 266