Ratio Mathematica ISSN: 1592-7415 Vol. 31, 2016, pp. 37--64 eISSN: 2282-8214 37 Max-Min Fuzzy Relation Equations for a Problem of Spatial Analysis 1Ferdinando Di Martino, 2Salvatore Sessa 1Università degli Studi di Napoli Federico II, Dipartimento di Architettura Via Toledo 402, 80134 Napoli, Italy fdimarti@unina.it 2Università degli Studi di Napoli Federico II, Dipartimento di Architettura Via Toledo 402, 80134 Napoli, Italy salvatore.sessa@unina.it Received on: 22-12-2016. Accepted on: 25-01-2017. Published on: 28-02-2017 doi: 10.23755/rm.v31i0.318 © Ferdinando Di Martino and Salvatore Sessa Abstract We implement an algorithm that uses a system of max-min fuzzy relation equations (SFRE) for solving a problem of spatial analysis. We integrate this algorithm in a Geographical Information Systems (GIS) tool. We apply our process to determine the symptoms after that an expert sets the SFRE with the values of the impact coefficients related to some parameters of a geographic zone under study. We also define an index of evaluation about the reliability of the results. Keywords: Fuzzy relation equation, max-min composition, GIS, triangular fuzzy number 2010 AMS subject classification: 03E72, 94D05. Ferdinando Di Martino, Salvatore Sessa 38 1. Introduction A Geographical Information System (GIS) is used as a support decision system for problems in a spatial domain. We use a GIS to analyse spatial distribution of data, the impact of event data on spatial areas: this analysis implies the creation of geographic thematic maps. Several authors (cfr., e. g., [3], [4], [7], [8], [25]) solve spatial problems using fuzzy relational calculus. In this paper, we propose an inferential method to solve such problems based on an algorithm for the resolution of a system of fuzzy relation equations (shortly, SFRE) given in [20] (cfr. also [21], [22]) and applied in [10] to solve industrial application problems. Here we integrate this algorithm in the context of a GIS architecture. Usually a SFRE with max-min composition is read as           mnmnm nn nn bxaxa bxaxa bxaxa )(...)( ... )(...)( )(...)( 11 2212 1 1111 1 (1) The system (1) is said consistent if it has solutions. Sanchez [23] determines its greatest solution, moreover many researchers have found algorithms which determine minimal solutions of (1) (cfr., e. g., [1], [2], [5], [6], [9], [11]÷[24], [26]). In [20] and [21] a method is described for the consistence of the system (1). This method has been applied in this paper to real spatial problem in which the input data vary for each subzone of the geographical area. The expert starts from a valuation of input data and he uses linguistic labels for the determination of the output results for each subzone. The input data are the facts or symptoms, the parameters to be determined are the causes. For example, let us consider a planning problem. A city planner needs to determine in each subzone the mean state of buildings (x1) and the mean soil permeability (x2), knowing the number of collapsed building in the last year (b1) and the number of flooding in the last year (b2). The expert creates the SFRE (1) for each subzone by setting the impact matrix A, whose entries aij (i=1,…,n and j=1,…,m) represent the impact of the j-th cause xj to the production of the i-th symptom bi, where the value of bi is the membership degree in the corresponding fuzzy set and let B=[b1,…,bm]. In another subzone, the input data vector B and the matrix A can vary. Max-Min Fuzzy Relation Equations for a Problem of Spatial Analysis 39 Input extraction i1 0 1 iK Input fuzzification b1 b2 b3 b4 b5 b6 b7 b8 b9 i2 bm-3 bm-2 bm-1 bm Results fuzzification 0 1 x1 x2 x3 x4 x5 x6 x7 x8 x9 xn-2 xn-1 xn 0 1 Output extraction o1 o2 oh SFRE A X = B 10 10 10 0 1 0 1 0 1 SFRE solving Fig. 1. Resolution process of a SFRE The process of the resolution of the system (1) is schematized in Fig. 1. We can determine the maximal interval solutions of (1). Each maximal interval solution is an interval whose extremes are the values taken from a lower solution and from the greatest solution. Every value xi belongs to this interval. If the SFRE (1) is inconsistent, it is possible to determine the rows for which no solution is permitted. If the expert decides to exclude the row for which no solution is permitted, he considers that the symptom bi (for that row) is not relevant to its analysis and it is not taken into account. Otherwise, the expert can modify the setting of the coefficients of the matrix A to verify if the new system has some solution. In general, the SFRE (1) has T maximal interval solutions Xmax(1),…,Xmax(T). In order to describe the extraction process of the solutions, let Xmax(t), t{1,…,T}, be a maximal interval solution given below, where X low is a lower solution and Xgr is the greatest solution. Our aim is to assign the linguistic label of the most appropriate fuzzy sets, usually triangular fuzzy numbers (briefly, TFN), corresponding to the unknown { sjjj xxx ,...,, 11 } related to an output variable os, s = 1,…,k. For example, assuming that INF(j), MEAN(j), SUP(j) are the three fundamental values of the generic TFN xj , j=j1, …, js, respectively, we can write their membership functions hjjj  ,...,, 21 as follows: Ferdinando Di Martino, Salvatore Sessa 40             otherwise 0 )(x )( if )()( )( )(x )INF(j if 1 11 11 1 11 j1 jSUPjMEAN jMEANjSUP xjSUP jMEAN  (2) }j,...,{jj and otherwise 0 )(Sx M EAN(j) if )()( )( )(Mx INF(j) if )()( )( 1-s2j                  jUP jMEANjSUP xjSUP jEAN jINFjMEAN jINFx  (3)              otherwise 0 )(x )(EAN if 1 )(x )( if )()( )( js ss ss ss s jSUPjM jMEANjINF jINFjMEAN jINFx  (4) If XMint(j) (resp. XMaxt(j)) is the min (resp., max) value of every interval corresponding to the unknown xj, we can calculate the arithmetical mean value XMeant(j) of the j-th component of the above maximal interval solution Xmax(t) as 2 )()( )( jXMaxjXMin jXMean tt t   (5) and we get the vector column XMeant = [XMeant(1),…, XMeant(n)] -1. The value given from max{XMeant(j1),…,XMeant(js)} obtained for the unknowns sj x,...,x 1j corresponding to the output variable os, is the linguistic label of the fuzzy set assigned to os and it is denoted by scoret(os), defined also as reliability of os in the interval solution t. For the output vector O = [o1,…,ok], we define the following reliability index in the interval solution t as Max-Min Fuzzy Relation Equations for a Problem of Spatial Analysis 41       k s stt oscore k Ol 1 1 Re (6) and then as final reliability index of O, the number Rel(O)=max{Relt(O):t=1,…,T}. The reliability of our solution is higher, the more the final reliability index Rel(O) close to 1 is. In Section 2 we give an overview of how finding the whole set of the solutions of a SFRE. In Section 3 we show how the proposed algorithm is applied in spatial analysis. Section 4 contains the results of our simulation and it is divided in five subsections. 2. SFRE: An Overview The SFRE (1) is abbreviated in the following known form: A ○ X = B where A = (aij), is the matrix of coefficients, X = (x1, x2,…, xn) -1 is the column vector of the unknowns and B = (b1,b2,…,bm) -1 is the column vector of the known terms, being aij, xj, bi  [0,1] for each i = 1,…,m and j = 1,…,n. We have the following definitions and terminologies: the whole set of all solutions X of the SFRE (1) is denoted by  . A solution X̂  is called a minimal solution if X ≤ X̂ for some X  implies X= X̂ , where “≤” is the partial order induced in  from the natural order of [0, 1]. We also recall that the system (1) has the unique greatest (or maximum) solution 1 21 ),...,,(   g r n g rg rg r xxxX if  ≠Ø [23]. A matrix interval Xinterval of the following type: ],[ [...,...] ],[ ],[ 22 11 in t                nn erva l ba ba ba X where [aj,bj]  [0,1] for each j=1,…,n, is called an interval solution of the SFRE (1) if every X=(x1,x2,…,xn) -1 such that ],[ jjj bax  for each j = 1,…,n, belongs to  . If aj is a membership value of a minimal solution and bj is a membership value of Xgr for each j = 1,…,n, then Xinterval is called a maximal interval solution of the SFRE (1) and it is denoted by Xmax(t) , where t varies from 1 till to the Ferdinando Di Martino, Salvatore Sessa 42 number of minimal solutions. The SFRE (1) is said to be in normal form if b1≥b2≥…≥bm. The time computational complexity to reduce a SFRE in a normal form is polynomial [20, 22]. Now we consider the matrix )(   ij aA so defined:          i ii i ij b bb b a ij ij ij * a if 1 a if a if 0 where i = 1,…,m and j = 1,…,n, that is  ij a is S—type coefficient (Smaller) if aijbi.  A is called augmented matrix and the system BXA    is said associated to the SFRE (1). Without loss of generality, from now on we suppose that the system (1) is in normal form. We also the following definitions and results from [16, 17, 20, 22]. Definition 1. Let SFRE (1) be consistent and },...,{ 1   mjjj aaA . If  j A contains G-type coefficients and k{1,…,m} is the greatest index of row such that 1  kj a , then the following coefficients in  j A are called selected: -  ij a for i{1,…,k} with kiij bba   , -  ij a for i{k+1,…,m} with iij ba   . Definition 2. If  j A not contains G-type coefficients, but it contain E-type coefficients and r {1,…,m} is the smallest index of row such that rrj ba   , then any iij ba   in  j A for i{r,…,m} is called selected. Theorem 1. Let us consider a SFRE (1). Then - The SFRE (1) is consistent if and only if there exist at least one selected coefficient for each i-th equation, i=1,…,m. - The complexity time function for determining the consistency of the SFRE (1) is O(m∙n). Consequently, when a SFRE (1) is inconsistent, the equations for which no element is a selected coefficient, could not be satisfied simultaneously with the other equations having at least one selected coefficient. Furthermore a vector IND=(IND(1),…,IND(m)) is defined by setting IND(i) equal to the number of selected coefficients in the ith equation for each i = l,...,m. If IND(i) = 0, then Max-Min Fuzzy Relation Equations for a Problem of Spatial Analysis 43 all the coefficients in the ith equation are not selected and the system is inconsistent. The system is consistent if IND(i) ≠ 0 if for each i = l,...,m and the product    m i iINDPN 1 )(2 gives the upper bound of the number of the eventual minimal solutions. Theorem 2. Let SFRE (1) be consistent. Then - the SFRE has an unique greatest solution Xgr with component k g r j bx  if the jth column  j A contains selected G-type coefficients kja and 1 g r j x otherwise. - The complexity time function for computing Xgr is O(m∙n). A help matrix H=[hij], i = 1,…,m and j = 1,…,n, is defined as follows:       otherwise 0 selected is a if iji ij b h Let |Hi| be the number of coefficients hij in the ith equation of the SFRE (1). Then the number of potential minimal solutions cannot exceed the value    m i i HPN 1 1 and one has 12 PNPN  . Definition 3. Let ),...,,( 21 iniii hhhh  and ),...,,( 21 knkkk hhhh  be the ith and the kth rows of the matrix H. If for each j=1,…n, 0ijh implies both 0kjh and ijkj hh  , then the ith row (resp. equation) is said dominant over the kth row in H (resp. equation) or that the kth row (resp. equation) is said dominated by the ith row (resp. equation). If the ith equation is dominant over the kth equation in (1), then the kth equation is a redundant equation of the system. By using Definition 3, we can build a matrix of dimension m×n, called dominance matrix H*, having components: otherwise equationanother by dominated is equation ith theif 0 *     ij ij h h Ferdinando Di Martino, Salvatore Sessa 44 For each i= 1, ...,m, now we set |  i H | as the number of coefficients 0  iij bh in the ith row of the dominance matrix H*. When this value is 0, we set |  i H | = 1. Then the number of potential minimal solutions of the SFRE cannot exceed the value    m i i HPN 1 *3 being 123 PNPNPN  [17, 20 ,22]. There the authors use the symbol j b i to indicate the coefficients 0  iij bh . We have ijij bxh   if ]1,[ ij bx  and ij bx  is the jth component of a minimal solution. A solution of the ith equation can be written as    n j i i j b H 1 In [20,22] the concept of concatenation W is introduced to determine all the components of the minimal solutions and it is given by              m i n j i m i i j b HW 1 11 We can determine the minimal solutions 1)()( 2 )( 1 )( ),...,,(   tlo w n tlo wtlo wtlo w xxxX , t )}3(,...,1{ PN , with components otherwise 0 0b if b tt ii)(      tlo w j x In order to determine if a SFRE is consistent, hence its greatest solution and minimal solutions, we have used the universal algorithm of [20,22] based on the above concepts. For brevity of presentation, here we do not give this algorithm which has been implemented and tested under C++ language. The C++ library has been integrated in the ESRI ArcObject Library of the tool ArcGIS 9.3 for a problem of spatial analysis illustrated in the next Section 3. 3. SFRE in Spatial Analysis We consider a specific area of study on the geographical map on which we have a spatial data set of “causes” and we want to analyse the possible “symptoms”. Max-Min Fuzzy Relation Equations for a Problem of Spatial Analysis 45 We divide this area in P subzones where a subzone is an area in which the same symptoms are derived by input data or facts, and the impact of a symptom on a cause is the same one as well. It is important to note that even if two subzones have the same input data, they can have different impact degrees of symptoms on the causes. For example, the cause that measures the occurrence of floods may be due with different degree of importance to the presence of low porous soils or to areas subjected to continuous rains. Afterwards the area of study is divided in homogeneous subzones, hence the expert creates a fuzzy partition for the domain of each input variable and he determines the values of the symptoms bi, as the membership degrees of the corresponding fuzzy sets (cfr., input fuzzification process of Fig. 1) for each subzone on which the expert sets the most significant equations and the values aij of impact of the j-th cause to the i- th symptom. After the determination of the set of maximal interval solutions, the expert for each interval solution calculates, for each unknown xj, the mean interval solution Xmean(t) with (5). The linguistic label Relt(os) is assigned to the output variable os . Then he calculates the reliability index Relt(O), given from formula (6), associated to this maximal interval solution t. After the iteration of this step, the expert determines the reliability index (6) for each maximal interval solution, by choosing the output vector O for which Rel(O) assumes the maximum value. Iterating the process for all the subzones (cfr., Fig. 2), the expert can show the thematic map of each output variable. If the SFRE related to a specific subzone is inconsistent, the expert can decide whether or not eliminate rows to find solutions: in the first case, he decides that the symptoms associated to the rows that make the system inconsistent are not considered and eliminates them, so reducing the number of the equations. In the second case, he decides that the corresponding output variable for this subzone remain unknown and it is classified as unknown on the map. 4. Simulation Results Here we show the results of an experiment in which we apply our method to census statistical data agglomerated on four districts of the east zone of Naples (Italy). We use the year 2000 census data provided by the ISTAT (Istituto Nazionale di Statistica). These data contain informations on population, buildings, housing, family, employment work for each census zone of Naples. Every district is considered as a subzone with homogeneous input data given in Table 2. In this experiment, we consider the following four output variables: “o1 = Economic prosperity” (wealth and prosperity of citizens), “o2 = Transition into the job” (ease of finding work), “o3 = Social Environment” (cultural levels of Ferdinando Di Martino, Salvatore Sessa 46 citizens) and “o4 = Housing development” (presence of building and residential dwellings of new construction). For each variable, we create a fuzzy partition composed by three TFNs called “low”, “mean” and “high” presented in Table 1. Moreover, we consider the following seven input parameters: i1=percentage of people employed=number of people employed/total work force, i2=percentage of women employed=number of women employed/number of people employed, Fig. 2. Area of study: four districts at east of Naples (Italy) Table 1. Values of the TFNs low, mean, high Output low mean high INF MEAN SUP INF MEAN SUP INF MEAN SUP o1 0.0 0.3 0.5 0.3 0.5 0.8 0.5 0.8 1.0 o2 0.0 0.3 0.5 0.3 0.5 0.8 0.5 0.8 1.0 o3 0.0 0.3 0.5 0.3 0.5 0.8 0.5 0.8 1.0 o4 0.0 0.3 0.5 0.3 0.5 0.8 0.5 0.8 1.0 i3=percentage of entrepreneurs and professionals = number of entrepreneurs and professionals/number of people employed, i4 = percentage of residents graduated=numbers of residents graduated/number of residents with age > 6 years, i5=percentage of new residential buildings=number of residential Max-Min Fuzzy Relation Equations for a Problem of Spatial Analysis 47 buildings built since 1982/total number of residential buildings, i6 = percentage of residential dwellings owned=number of residential dwellings owned/ total number of residential dwellings, i7 = percentage of residential dwellings with central heating system = number of residential dwellings with central heating system/total number of residential dwellings. In Table 4 we show these input data for the four subzones. Table 2. Input data given for the four subzones District i1 i2 i3 i4 i5 i6 i7 Barra 0.604 0.227 0.039 0.032 0.111 0.424 0.067 Poggioreale 0.664 0.297 0.060 0.051 0.086 0.338 0.149 Ponticelli 0.609 0.253 0.039 0.042 0.156 0.372 0.159 S. Giovanni 0.576 0.244 0.041 0.031 0.054 0.353 0.097 Table 3. TFNs values for the input domains Input Var low Mean High INF MEAN SUP INF MEAN SUP INF MEAN SUP i1 0.00 0.40 0.60 0.40 0.60 0.80 0.60 0.80 1.00 i2 0.00 0.10 0.30 0.10 0.30 0.40 0.30 0.50 1.00 i3 0.00 0.04 0.06 0.04 0.06 0.10 0.07 0.20 1.00 i4 0.00 0.02 0.04 0.02 0.04 0.07 0.04 0.07 1.00 i5 0.00 0.05 0.08 0.05 0.08 0.10 0.08 0.10 1.00 i6 0.00 0.10 0.30 0.10 0.30 0.60 0.30 0.60 1.00 i7 0.00 0.10 0.30 0.10 0.30 0.50 0.30 0.50 1.00 Ferdinando Di Martino, Salvatore Sessa 48 Table 4: TFNs for the symptoms b1 ÷ b12 Subzone b1: i1 = low b2: i1 = me- an b3: i1 = hi-gh b4: i2 = low b5: i2= me- an b6: i2 = hi- gh b7: i3 = low b8: i3 = me- an b9: i3 = hi- gh b10: i4 = low b11: i4 = me- an b12: i4 = hi- gh Barra 0.00 0.98 0.02 0.36 0.63 0.00 1.00 0.00 0.00 0.40 0.60 0.00 Poggioreale 0.00 0.93 0.07 0.01 0.99 0.00 0.00 1.00 0.00 0.00 0.63 0.37 Ponticelli 0.00 0.91 0.05 0.23 0.76 0.00 1.00 0.00 0.00 0.00 0.93 0.07 S. Giovanni 0.12 0.88 0.00 0.28 0.72 0.00 0.95 0.05 0.00 0.45 0.55 0.00 The expert indicates a fuzzy partition for each input domain formed from three TFNs labeled “low”, “mean” and “high”, whose values are reported in Table 3. In Tables 4 and 5 we show the values of TFNS for the 21 symptoms b1,...,b21. In order to form the SFRE (1) in each subzone, the expert defines the most significant symptoms. Table 5: TFNs for the symptoms b13 ÷ b21 Subzone b13: i5 = low b14: i5 = mean b15: i5 = high b16: i6 = low b17: i6 = mean b18: i6 = high b19: i7 = low b20: i7 = mean b21: i7 = high Barra 0.00 0.00 0.10 0.00 0.59 0.41 1.00 0.00 0.00 Poggioreale 0.00 0.70 0.30 0.00 0.87 0.13 0.75 0.25 0.00 Ponticelli 0.00 0.00 1.00 0.00 0.76 0.24 0.70 0.30 0.00 S. Giovanni 0.87 0.13 0.00 0.00 0.82 0.18 1.00 0.00 0.00 Max-Min Fuzzy Relation Equations for a Problem of Spatial Analysis 49 4.1 Subzone “Barra” The expert chooses the significant symptoms b2, b4, b5, b7, b10, b11, b15, b17, b18, b19, by obtaining a SFRE (1) with m = 10 equations and n = 12 unknowns. The matrix A of the impact values aij has dimensions 10×12 and the vector B of the symptoms bi has dimension 10×1 and both are given below. The SFRE (1) is inconsistent and eliminating the rows for which the value IND(j) = 0, we obtain four maximal interval solutions Xmax(t) (t=1,…,4) and we calculate the vector column XMeant on each maximal interval solution. Hence we associate to the output variable os (s = 1,…,4), the linguistic label of the fuzzy set with the higher value calculated with formula (5) obtained for the corresponding unknowns sj x,...,x 1j and given in Table 6. For determining the reliability of our solutions, we use the index given by formula (6). We obtain that Relt(o1) = Relt(o2) = Relt(o3) = Relt(o4) = 0.6025 for t=1,…,4 and hence Rel(O)=max{Relt(O): t=1,…,4}=0.6025 where O={o1,…o4}. We note that the same final set of linguistic labels associated to the output variables o1 = “high”, o2 = “mean”, o3 = “low”, o4 = “low” is obtained as well. The relevant quantities are given below.                                                                   00.1 41.0 59.0 10.0 60.0 40.0 00.1 63.0 36.0 98.0 B 0.01.00.10.03.04.00.03.04.00.02.05.0 5.04.02.05.05.01.04.04.01.04.04.01.0 3.07.03.01.05.02.01.04.01.02.05.02.0 3.03.01.01.01.02.01.02.01.01.01.01.0 1.02.01.03.07.02.03.07.03.03.07.03.0 0.00.01.01.04.06.01.04.06.01.03.05.0 0.00.03.02.02.08.01.03.08.00.02.00.1 0.00.00.02.07.02.02.07.02.02.07.02.0 0.00.00.02.06.03.04.05.04.02.05.03.0 2.03.01.03.07.02.02.00.10.40.01.00.5 A                                                                                                                                                             ]10.0,00.0[ ]10.0,00.0[ ]00.1,00.1[ ]41.0,41.0[ ]36.0,36.0[ ]00.1,00.0[ ]36.0,00.0[ ]00.1,00.0[ ]36.0,36.0[ ]00.1,00.0[ ]36.0,00.0[ ]40.0,40.0[ ]10.0,00.0[ ]10.0,00.0[ ]00.1,00.1[ ]41.0,41.0[ ]36.0,00.0[ ]00.1,00.0[ ]36.0,36.0[ ]00.1,00.0[ ]36.0,00.0[ ]00.1,00.0[ ]36.0,00.0[ ]40.0,40.0[ ]10.0,00.0[ ]10.0,00.0[ 00.1,00.1[ ]41.0,41.0[ ]36.0,00.0[ ]00.1,00.0[ ]36.0,00.0[ ]00.1,00.0[ ]36.0,36.0[ ]00.1,00.0[ ]36.0,00.0[ ]40.0,40.0[ ]10.0,00.0[ ]10.0,00.0[ ]00.1,00.1[ ]41.0,41.0[ ]36.0,00.0[ ]00.1,00.0[ ]36.0,00.0[ ]00.1,00.0[ ]36.0,00.0[ ]00.1,00.0[ ]36.0,36.0[ ]40.0,40.0[ )4max ()3max ()2max ()1max ( XXXX Ferdinando Di Martino, Salvatore Sessa 50                                                                                                                                                             05.0 05.0 00.1 41.0 36.0 50.0 18.0 50.0 36.0 05.0 18.0 40.0 05.0 05.0 00.1 18.0 18.0 50.0 36.0 50.0 18.0 50.0 18.0 40.0 05.0 05.0 00.1 41.0 18.0 50.0 18.0 50.0 36.0 50.0 18.0 40.0 05.0 05.0 00.1 41.0 18.0 50.0 18.0 50.0 18.0 50.0 36.0 40.0 4321 XMeanXMeanXMeanXMean Table 6. Final linguistic labels for the output variables in the district Barra Output variable score1(os) score2(os) score3(os) score4(os) o1 high high high high o2 mean mean mean mean o3 low low low low o4 low low low low For determining the reliability of our solutions, we use the index given by formula (6). We obtain Rel(Ok) = 0.4675 for k = 1,..,12. Then we obtain two final sets of linguistic labels associated to the output variables: o1 = “low”, o2 = “low”, o3 = “low”, o4 = “low”, and o1 = “low”, o2 = “low”, o3 = “low”, o4 = “mean”, with a same reliability index value 0.4675. The expert prefers to choose the second solution: o1 = “low”, o2 = “low”, o3 = “low”, o4 = “mean” because he considers that in the last two years in this district the presence of building and residential dwellings of new construction has increased although marginally. 4.2 Subzone “Poggioreale” The expert choices the significant symptoms b2, b5, b8, b11, b12, b14, b15, b17, b18, b19, b20, by obtaining a SFRE (1) with m = 11 equations and n = 12 unknowns. The matrix A of the impact values aij has sizes dimension 11×12 and the column Max-Min Fuzzy Relation Equations for a Problem of Spatial Analysis 51 vector B of the symptoms bi has sizes 11×1 are given below. The SFRE (7) is inconsistent and eliminating the rows for which the value IND(j) = 0, we obtain 12 maximal interval solutions Xmax(t) (t=1,…,12) and we calculate the vector column XMeant on each maximal interval solution. Table 7 contains the output variables and the relevant quantities are given below.                                                                           25.0 75.0 13.0 87.0 30.0 70.0 37.0 63.0 00.1 99.0 93.0 B 2.06.03.01.02.01.01.02.01.01.02.01.0 0.03.07.01.03.05.03.05.08.00.01.04.0 4.01.00.05.02.01.05.02.01.05.01.00.0 2.08.02.02.08.02.01.09.01.01.09.01.0 2.01.00.06.04.02.06.04.03.06.04.02.0 1.02.01.03.07.02.03.07.03.03.07.03.0 1.00.00.06.05.03.06.05.03.06.05.04.0 2.02.01.03.07.02.03.07.03.03.07.03.0 0.00.00.02.00.12.02.00.12.02.00.12.0 0.00.00.02.09.02.02.00.12.02.00.12.0 2.03.01.03.07.02.02.00.10.40.01.00.5 A                                                                                                                                                             ]13.0,00.0[ ]25.0,25.0[ ]25.0,00.0[ ]13.0,00.0[ ]13.0,00.0[ ]00.1,00.0[ ]13.0,00.0[ ]13.0,13.0[ ]75.0,75.0[ ]13.0,00.0[ ]30.0,00.0[ ]37.0,37.0[ ]13.0,00.0[ ]25.0,00.0[ ]25.0,25.0[ ]13.0,00.0[ ]13.0,00.0[ ]00.1,00.0[ ]13.0,00.0[ ]13.0,13.0[ ]75.0,75.0[ ]13.0,00.0[ ]30.0,00.0[ ]37.0,37.0[ ]13.0,00.0[ ]25.0,25.0[ ]25.0,00.0[ ]13.0,00.0[ ]13.0,00.0[ ]00.1,00.0[ ]13.0,00.0[ ]13.0,00.0[ ]75.0,75.0[ ]13.0,13.0[ ]30.0,00.0[ ]37.0,37.0[ ]13.0,00.0[ ]25.0,00.0[ ]25.0,25.0[ ]13.0,00.0[ ]13.0,00.0[ ]00.1,00.0[ ]13.0,00.0[ ]13.0,00.0[ ]75.0,75.0[ ]13.0,13.0[ ]30.0,00.0[ ]37.0,37.0[ )4max ()3max ()2max ()1max ( XXXX Ferdinando Di Martino, Salvatore Sessa 52                                                                                                                                                             ]13.0,00.0[ ]25.0,25.0[ ]25.0,00.0[ ]13.0,00.0[ ]13.0,13.0[ ]00.1,00.0[ ]13.0,00.0[ ]13.0,00.0[ ]75.0,75.0[ ]13.0,00.0[ ]30.0,00.0[ ]37.0,37.0[ ]13.0,00.0[ ]25.0,00.0[ ]25.0,25.0[ ]13.0,00.0[ ]13.0,13.0[ ]0.1,00.0[ ]13.0,00.0[ ]13.0,00.0[ ]75.0,75.0[ ]13.0,00.0[ ]30.0,00.0[ ]37.0,37.0[ ]13.0,00.0[ ]25.0,25.0[ ]25.0,00.0[ ]13.0,00.0[ ]13.0,00.0[ ]00.1,00.0[ ]13.0,00.0[ ]13.0,13.0[ ]75.0,75.0[ ]13.0,00.0[ ]30.0,00.0[ ]37.0,37.0[ ]13.0,00.0[ ]25.0,00.0[ ]25.0,25.0[ ]13.0,00.0[ ]13.0,00.0[ ]00.1,00.0[ ]13.0,00.0[ ]13.0,13.0[ ]75.0,75.0[ ]13.0,00.0[ ]30.0,00.0[ ]37.0,37.0[ )8max ()7max ()6max ()5max ( XXXX                                                                                                                                                             ]13.0,13.0[ ]25.0,25.0[ ]25.0,00.0[ ]13.0,00.0[ ]13.0,00.0[ ]00.1,00.0[ ]13.0,00.0[ ]13.0,00.0[ ]75.0,75.0[ ]13.0,00.0[ ]30.0,00.0[ ]37.0,37.0[ ]13.0,13.0[ ]25.0,00.0[ ]25.0,25.0[ ]13.0,00.0[ ]13.0,00.0[ ]00.1,00.0[ ]13.0,00.0[ ]13.0,00.0[ ]75.0,75.0[ ]13.0,00.0[ ]30.0,00.0[ ]37.0,37.0[ ]13.0,00.0[ ]25.0,25.0[ ]25.0,00.0[ ]13.0,13.0[ ]13.0,00.0[ ]00.1,00.0[ ]13.0,00.0[ ]13.0,00.0[ ]75.0,75.0[ ]13.0,00.0[ ]30.0,00.0[ ]37.0,37.0[ ]13.0,00.0[ ]25.0,00.0[ ]25.0,25.0[ ]13.0,13.0[ ]13.0,00.0[ ]00.1,00.0[ ]13.0,00.0[ ]13.0,00.0[ ]75.0,75.0[ ]13.0,00.0[ ]30.0,00.0[ ]37.0,37.0[ )1 2max ()1 1max ()1 0max ()9max ( XXXX                                                                                                                                                             065.0 250.0 125.0 065.0 065.0 500.0 065.0 130.0 750.0 065.0 150.0 370.0 065.0 125.0 250.0 065.0 065.0 500.0 065.0 130.0 750.0 065.0 150.0 370.0 065.0 250.0 125.0 065.0 065.0 500.0 065.0 065.0 750.0 130.0 150.0 370.0 050.0 125.0 250.0 065.0 065.0 500.0 065.0 065.0 750.0 130.0 150.0 370.0 4321 XMeanXMeanXMeanXMean Max-Min Fuzzy Relation Equations for a Problem of Spatial Analysis 53                                                                                                                                                             065.0 250.0 125.0 065.0 130.0 500.0 065.0 065.0 750.0 065.0 150.0 370.0 065.0 125.0 250.0 065.0 130.0 500.0 065.0 065.0 750.0 065.0 150.0 370.0 050.0 250.0 125.0 065.0 065.0 500.0 130.0 065.0 750.0 065.0 150.0 370.0 05.0 125.0 250.0 065.0 065.0 500.0 130.0 065.0 750.0 065.0 150.0 370.0 8765 XMeanXMeanXMeanXMean                                                                                                                                                             130.0 250.0 125.0 065.0 065.0 500.0 065.0 065.0 750.0 065.0 150.0 370.0 130.0 125.0 250.0 065.0 065.0 500.0 065.0 065.0 750.0 065.0 150.0 370.0 050.0 250.0 125.0 130.0 065.0 500.0 065.0 065.0 750.0 065.0 150.0 370.0 050.0 125.0 250.0 130.0 065.0 500.0 065.0 065.0 750.0 065.0 150.0 370.0 1 21 11 09 XMeanXMeanXMeanXMean For determining the reliability of our solutions, we use the index given by formula (6). We obtain Rel(Ok) = 0.4675 for k = 1,..,12. Then we obtain two final sets of linguistic labels associated to the output variables: o1 = “low”, o2 = “low”, o3 = “low”, o4 = “low”, and o1 = “low”, o2 = “low”, o3 = “low”, o4 = “mean”, with a same reliability index value 0.4675. The expert prefers to choose the second solution: o1 = “low”, o2 = “low”, o3 = “low”, o4 = “mean” because he considers that in the last two years in this district the presence of building and residential dwellings of new construction has increased although marginally. Ferdinando Di Martino, Salvatore Sessa 54 Table 7. Final linguistic labels for the output variables in the district “Poggioreale” L i n g u i s t i c l a b e l s a s s o c i a t e d t o o u tp u t v a ri a b le X M e a n 1 X M e a n 2 X M e a n 3 X M e a n 4 X M e a n 5 X M e a n 6 X M e a n 7 X M e a n 8 X M e a n 9 X M e a n 1 0 X M e a n 1 1 X M e a n 1 2 o1 low low low high low low low high low low low high o2 low low low mea n low low low mea n low low low mea n o3 low low low low low low low low low low low low o4 low m e a n low m e a n low m e a n low m e a n low m e a n low m e a n 4.3 Subzone: District Ponticelli The expert choices the significant symptoms b2, b4, b5, b7, b11, b15, b17, b18, b19, b20, obtaining a SFRE (7) with m = 10 equations and n = 12 variables: The matrix A of sizes 10×12 and the column vector B of dimension 10×1 are given by:                                                                   0.30 0.70 0.24 0.76 1.00 0.93 1.00 0.76 0.23 91.0 B 1.05.03.00.02.01.00.02.01.00.02.01.0 0.02.07.01.02.04.01.02.04.00.01.02.0 2.01.00.02.01.00.02.01.00.02.01.00.0 3.07.03.02.08.02.02.08.02.03.07.03.0 0.11.00.07.03.01.07.03.01.00.11.00.0 0.03.01.01.08.02.01.09.03.01.08.04.0 0.01.03.02.02.08.00.01.00.10.02.00.1 0.00.00.02.08.02.02.08.02.02.08.02.0 0.00.00.00.01.02.00.01.02.00.01.02.0 2.03.01.03.07.02.02.00.10.40.01.00.5 A Max-Min Fuzzy Relation Equations for a Problem of Spatial Analysis 55 The SFRE (7) is inconsistent and eliminating the rows for which the value IND(j) = 0, we obtain 8 maximal interval solutions Xmax(t) (t=1,…,8) and we calculate the vector column XMeant on each maximal interval solution. Table 10 contains the output variables and the relevant quantities are given below.                                                                                                                                                             ]00.1,00.1[ ]30.0,00.0[ ]00.1,70.0[ ]00.1,00.0[ ]76.0,00.0[ ]00.1,00.0[ ]00.1,00.0[ ]76.0,76.0[ ]00.1,00.1[ ]00.1,00.0[ ]76.0,00.0[ ]00.1,00.0[ ]00.1,00.1[ ]30.0,00.0[ ]00.1,70.0[ ]00.1,00.0[ ]76.0,00.0[ ]00.1,00.0[ ]00.1,00.0[ ]76.0,76.0[ ]00.1,00.0[ ]00.1,00.0[ ]76.0,00.0[ ]00.1,00.1[ ]00.1,00.0[ ]30.0,00.0[ ]00.1,70.0[ ]00.1,00.0[ ]76.0,00.0[ ]00.1,00.0[ ]00.1,00.0[ ]76.0,76.0[ ]00.1,00.1[ ]00.1,00.1[ ]76.0,00.0[ ]00.1,00.0[ ]00.1,00.0[ ]30.0,00.0[ ]00.1,70.0[ ]00.1,00.0[ ]76.0,00.0[ ]00.1,00.0[ ]00.1,00.0[ ]76.0,76.0[ ]00.1,00.0[ ]00.1,00.1[ ]76.0,00.0[ ]00.1,00.1[ )4max ()3max ()2max ()1max ( XXXX                                                                                                                                                             ]00.1,00.1[ ]30.0,00.0[ ]00.1,70.0[ ]00.1,00.0[ ]76.0,76.0[ ]00.1,00.0[ ]00.1,00.0[ ]76.0,00.0[ ]00.1,00.1[ ]00.1,00.0[ ]76.0,00.0[ ]00.1,00.0[ ]00.1,00.1[ ]30.0,00.0[ ]00.1,70.0[ ]00.1,00.0[ ]76.0,76.0[ ]00.1,00.0[ ]00.1,00.0[ ]76.0,00.0[ ]00.1,00.0[ ]00.1,00.0[ ]76.0,00.0[ ]00.1,00.1[ ]00.1,00.0[ ]30.0,00.0[ ]00.1,70.0[ ]00.1,00.0[ ]76.0,76.0[ ]00.1,00.0[ ]00.1,00.0[ ]76.0,00.0[ ]00.1,00.1[ ]00.1,00.1[ ]76.0,00.0[ ]00.1,00.0[ ]00.1,00.0[ ]30.0,00.0[ ]00.1,70.0[ ]00.1,00.0[ ]76.0,76.0[ ]00.1,00.0[ ]00.1,00.0[ ]76.0,00.0[ ]00.1,00.0[ ]00.1,00.1[ ]76.0,00.0[ ]00.1,00.1[ )8max ()7max ()6max ()5max ( XXXX                                                                                                                                                             00.1 15.0 85.0 50.0 38.0 50.0 50.0 76.0 00.1 50.0 38.0 50.0 00.1 15.0 85.0 50.0 38.0 50.0 50.0 76.0 50.0 50.0 38.0 00.1 50.0 15.0 85.0 50.0 38.0 50.0 50.0 76.0 00.1 00.1 38.0 5.0 50.0 15.0 85.0 50.0 38.0 50.0 50.0 76.0 50.0 00.1 38.0 00.1 4321 XMeanXMeanXMeanXMean Ferdinando Di Martino, Salvatore Sessa 56                                                                                                                                                             00.1 15.0 85.0 50.0 76.0 50.0 50.0 38.0 00.1 50.0 38.0 50.0 00.1 15.0 85.0 50.0 76.0 50.0 50.0 38.0 50.0 50.0 38.0 50.0 50.0 15.0 85.0 50.0 76.0 50.0 50.0 38.0 00.1 00.1 38.0 50.0 50.0 15.0 85.0 50.0 76.0 50.0 50.0 38.0 50.0 00.1 38.0 00.1 8765 XMeanXMeanXMeanXMean Now we associate to the output variables os k = 1,…,4, the linguistic label of the fuzzy set with the higher XMeanj obtained for the corresponding unknowns 1j x ,…, sj x obtaining: Table 8. Final linguistic labels for the output variables in the district “Ponticelli” L i n g u i s t i c l a b e l s a s s o c i a t e d t o o u tp u t v a ri a b le X M e a n 1 X M e a n 2 X M e a n 3 X M e a n 4 X M e a n 5 X M e a n 6 X M e a n 7 X M e a n 8 o1 Low-high high low Low -high Low -high high low Low -high o2 mean low mea n low Low -high low Low -high low o3 Low-high Low-high Low -high Low -high mea n mea n mea n mea n o4 low low low low low low low low Here “low-high” indicates that the membership degree of both the fuzzy sets with linguistic labels “low” and “high” have the maximal value for that output variable. We obtain for each solution Rel(O1) =0.565, Rel(O2) = 0.625, Rel(O3) Max-Min Fuzzy Relation Equations for a Problem of Spatial Analysis 57 = 0.565 Rel(O4) = 0.5, Rel(O5) =0.565, Rel(O6) = 0.69, Rel(O7) = 0.565 Rel(O8) = 0.565. Thus we choice the solution O6 which have the greatest reliability Rel(O6) = 0.69. Our solution for this subzone is: o1 = “high”, o2 = “low”, o3 = “mean”, o4 = “low”. 4.4 Subzone: district S. Giovanni The expert choices the significant symptoms b2, b4, b5, b7, b11, b15, b17, b18, b19, b20, obtaining a SFRE (1) with m = 12 equations and n = 12 variables: The matrix A of sizes 12×12 and the column vector B of sizes 12×1 are given by:                                                                               0.1 18.0 0.82 0.13 0.87 0.55 0.45 0.95 0.72 0.28 0.88 12.0 B 0.00.00.10.01.04.00.01.04.01.02.05.0 5.01.00.01.00.00.01.00.00.01.00.00.0 1.07.03.03.06.03.03.06.03.03.06.03.0 1.04.01.00.01.00.00.01.00.00.01.00.0 0.02.08.01.02.05.01.02.05.01.03.06.0 0.02.00.02.08.02.02.05.02.02.06.03..0 0.01.02.01.03.06.01.03.05.01.03.05.0 0.01.03.00.01.09.00.01.00.10.02.00.1 0.02.00.02.08.02.02.08.02.02.08.02.0 0.00.02.00.01.04.00.01.04.00.01.04.0 0.03.00.01.09.01.01.09.01.01.09.01.0 0.00.01.00.01.03.00.01.00.30.00.10.3 A The SFRE (1) is inconsistent and eliminating the rows for which the value IND(j) = 0, we obtain 6 maximal interval solutions Xmax(t) (t=1,…,6) and we calculate the vector column XMeant on each maximal interval solution. Table 11 contains the output variables and the relevant quantities are given below. Ferdinando Di Martino, Salvatore Sessa 58 ]18.0,18.0[ ]13.0,13.0[ ]00.1,00.1[ ]00.1,00.0[ ]55.0,00.0[ ]12.0,00.0[ ]00.1,00.0[ ]72.0,72.0[ ]12.0,12.0[ ]00.1,00.0[ ]55.0,55.0[ ]12.0,00.0[ ]18.0,18.0[ ]13.0,13.0[ ]00.1,00.1[ ]00.1,00.0[ ]55.0,55.0[ ]12.0,00.0[ ]00.1,00.0[ ]72.0,72.0[ ]12.0,00.0[ ]00.1,00.0[ ]55.0,00.0[ ]12.0,12.0[ ]18.0,18.0[ ]13.0,13.0[ ]00.1,00.1[ ]00.1,00.0[ ]55.0,00.0[ ]12.0,00.0[ ]00.1,00.0[ ]72.0,72.0[ ]12.0,00.0[ ]00.1,00.0[ ]55.0,55.0[ ]12.0,12.0[ )3(max ,)2(max ,)1max (                                                                                                                      XXX ]18.0,18.0[ ]13.0,13.0[ ]00.1,00.1[ ]00.1,00.0[ ]55.0,55.0[ ]12.0,12.0[ ]00.1,00.0[ ]72.0,72.0[ ]12.0,00.0[ ]00.1,00.0[ ]55.0,00.0[ ]12.0,00.0[ ]18.0,18.0[ ]13.0,13.0[ ]00.1,00.1[ ]00.1,00.0[ ]55.0,00.0[ ]12.0,12.0[ ]00.1,00.0[ ]72.0,72.0[ ]12.0,00.0[ ]00.1,00.0[ ]55.0,55.0[ ]12.0,00.0[ ]18.0,18.0[ ]13.0,13.0[ ]00.1,00.1[ ]00.1,00.0[ ]55.0,55.0[ ]12.0,00.0[ ]00.1,00.0[ ]72.0,72.0[ ]12.0,12.0[ ]00.1,00.0[ ]55.0,00.0[ ]12.0,00.0[ )6max ()5max ()4max (                                                                                                                      XXX 18.0 13.0 00.1 50.0 275.0 06.0 50.0 72.0 12.0 50.0 55.0 06.0 18.0 13.0 00.1 50.0 55.0 06.0 50.0 72.0 06.0 50.0 275.0 12.0 18.0 13.0 00.1 50.0 275.0 06.0 50.0 72.0 06.0 50.0 55.0 12.0 321                                                                                                                      XMeanXMeanXMean Max-Min Fuzzy Relation Equations for a Problem of Spatial Analysis 59 180.0 130.0 000.1 500.0 550.0 120.0 500.0 720.0 060.0 500.0 275.0 060.0 18.0 13.0 00.1 50.0 275.0 06.0 50.0 72.0 06.0 50.0 55.0 06.0 18.0 13.0 00.1 50.0 55.0 06.0 50.0 72.0 12.0 50.0 275.0 06.0 6514                                                                                                                      XMeanXMeanXMean Table 9. Final linguistic labels for the output variables in the district “San Giovanni” output variabl e linguistic label associate d to XMean1 linguistic label associate d to XMean2 linguistic label associate d to XMean3 linguistic label associate d to XMean4 linguistic label associate d to XMean5 linguistic label associate d to XMean6 o1 mean high mean high mean high o2 mean mean mean mean mean mean o3 high mean high mean high mean o4 low low low low low low We obtain Rel(Ok) = 0.6925 for k = 1,…,6. Thus we obtain two final sets of linguistic labels associated to the output variables: o1 = “mean”, o2 = “mean”, o3 = “high”, o4 = “low”, and o1 = “high”, o2 = “mean”, o3 = “mean”, o4 = “low” with the same reliability index value 0.6925. The expert prefers to choose the first solution: o1 = “mean”, o2 = “mean”, o3 = “high”, o4 = “low”, because he considers in this district that in the two years the presence of residents was graduated and consequently, the cultural level of citizens has increased, whereas the average pro capite wealth of citizens has decreased. Ferdinando Di Martino, Salvatore Sessa 60 4.5 Thematic maps and conclusions Finally, we obtain four final thematic maps shown in Figs. 3, 4, 5, 6 for the output variable o1, o2, o3, o4, respectively. Fig. 3. Thematic map for output variable o1 (Economic prosperity) Fig. 4. Thematic map of the output variable o2 (Transition into the job) Fig. 5. Thematic map for the output variable o3 (Social Environment) Max-Min Fuzzy Relation Equations for a Problem of Spatial Analysis 61 Fig. 6. Thematic map for the output variable o4 (Housing development) The results show that there was no housing development in the four districts in the last 10 years and there is difficulty in finding job positions. In Fig. 7 we show the histogram of the reliability index Rel(O) for each subzone, where O=[o1,o2,o3,o4]. Fig. 7. Histogram of the reliability index Rel(O) for the four subzones. This paper is a new reformulation of our work titled “Spatial Analysis and Fuzzy Relation Equations” published in Advances in Fuzzy Systems, Volume 2011 (2011), Article ID 429498, 14 pages (http://dx.doi.org/10.1155/2011/429498) (under Common License) where an extended version of the first three sections can be found, indeed an extended version of Section 4 is here more complete with respect to Section 4 presented there. Ferdinando Di Martino, Salvatore Sessa 62 References 1. Chen, L., Wang, P.: Fuzzy Relational Equations (I): the General and Specialized Solving Algorithms. Soft Computing 6, 428—435 (2002) 2. De Baets, B.: Analytical Solution Methods for Fuzzy Relational Equations. In: Dubois, D., Prade, H., (eds.) Fundamentals of Fuzzy Sets, The Handbooks of Fuzzy Sets Series, Vol. 1, pp. 291—340. Kluwer Academic Publishers, Dordrecht (2000) 3. Di Martino, F., Loia, V., Sessa, S.: A Fuzzy-Based Tool for Modelization and Analysis of the Vulnerability of Aquifers: a Case Study. International Journal of Approximate Reasoning 38, 98—111 (2005) 4. Di Martino, F., Loia, V., Sessa, S., Giordano, M.: An Evaluation of the Reliability of a GIS Based on the Fuzzy Logic in a Concrete Case Study. In: Petry, F.E., Robinson,V.B., Cobb, M.A. (eds.) Fuzzy Modeling with Spatial Information for Geographic Problems, pp. 185—208. Springer, Heidelberg (2005) 5. Di Martino, F., Loia, V., Sessa, S.: Extended Fuzzy C-Means Clustering Algorithm for Hotspot Events in Spatial Analysis, International Journal of Hybrid Intelligent Systems 5 (1), 31—44 (2008) 6. Di Nola, A., Pedrycz, W., Sessa, S., Sanchez, E.: Fuzzy Relation Equations and Their Application to Knowledge Engineering. Kluwer Academic Press, Dordrecht, 1989 7. Groenemans, R., Van Ranst, E., Kerre, E.: Fuzzy Relational Calculi in Land Evaluation. Geoderma 77 (2-4), 283—298 (1997) 8. Hemetsberger, M., Klinger, G., Niederer, S., Benedikt, J.: Risk Assessment of Avalanches - a Fuzzy GIS Application. In: Ruan, D., D’hondt, P., Kerre, E.E. (eds.) Proceedings of 5th International FLINS. Conference Computational Intelligent Systems for Applied Research, pp. 397—402. World Scientific, Singapore (2002) 9. Higashi, M., Klir, G.J.: Resolution of Finite Fuzzy Relation Equations. Fuzzy Sets and Systems 13 (1), 65—82 (1984) 10. Kyosev, Y.: Diagnostics of Sewing Process Using Fuzzy Linear Systems. In: Proceedings Max-Min Fuzzy Relation Equations for a Problem of Spatial Analysis 63 of 5th International Conference Textile Science TEXSCI 2003. CD ROM Edition. Liberec, (2003) 11. Li, P., Fang, S.C..: A Survey on Fuzzy Relational Equations, Part I: Classification and Solvability. Fuzzy Optimation and Decision Making 8, 179—229 (2009) 12. Markovskii, A.V. : On the Relation between Equations with Max-Product Composition and the Covering Problem. Fuzzy Sets and Systems 153, 261— 273 (2005) 13. Miyakoshi, M., Shimbo, M.: Minimal Solutions of Systems of Fuzzy Equations. Fuzzy Sets and Systems 19, (1986) 37—46 14. Pappis, C.P., Adamopoulos, G.: A Computer Algorithm for the Solution of the Inverse Problem of Fuzzy Systems. Fuzzy Sets and Systems 39, 279—290 (1991) 15. Pappis, C.P., Sugeno, M.: Fuzzy Relational Equations and the Inverse Problem. Fuzzy Sets and Systems 15, 79—90 (1985) 16. Peeva, K.: Systems of Linear Equations over a Bounded Chain. Acta Cybernetica 7(2), 195-202 (1985) 17. Peeva, K.: Fuzzy Linear Systems. Fuzzy Sets and Systems 49, 339—355 (1992) 18. Peeva, K.: Fuzzy Linear Systems –Theory and Applications in Artificial Intelligence Areas, DSc Thesis, Sofia (2002) (in Bulgarian) 19. Peeva, K.: Resolution of Min–Max Fuzzy Relational Equations. In: Nikravesh, M., Zadeh , L.A., Korotkikh, V. (eds.) Fuzzy Partial Differential Equations and Relational Equations, pp. 153—166. Springer, Heidelberg (2004) 20. Peeva, K.: Universal Algorithm for Solving Fuzzy Relational Equations. Italian Journal of Pure and Applied Mathematics 19, 9—20 (2006) 21. Peeva, K., Kyosev, Y.: Algorithm for Solving Max-product Fuzzy Relational Equations, Soft Computing 11 (7), 593—605 (2007) Ferdinando Di Martino, Salvatore Sessa 64 22. Peeva, K., Kyosev, Y.: Fuzzy Relational Calculus: Theory, Applications and Software (with CD-ROM). Series Advances in Fuzzy Systems-Applications and Theory, vol. 22, World Scientific, Singapore (2004) 23. Sanchez, E.: Resolution of Composite Fuzzy Relation Equations. Information and Control, 30, 38—48 (1976) 24. Shieh, B.S.: New Resolution of Finite Fuzzy Relation Equations with Max- Min Composition. Internat. J. of Uncertainty, Fuzziness Knowledge Based Systems 16 (1), 19—33 (2008) 25. Sicat,, R.S., Carranza, E.J.M., Nidumolu, U.B.: Fuzzy modeling of farmers’ kno- wledge for land suitability classification. Agricultural Systems 83, 49—75 (2005) 26. Wu, Y.K., Guu, S.M.: An efficient procedure for solving a fuzzy relational equati- on with max-Archimedean t-norm composition. IEEE Transactions on Fuzzy Syst- ems 16 (1), 73—84 (2008)