Approach of the value of a rent when non-central moments of the capitalization factor are known: an R application with interest rates following normal and beta distributions Ratio Mathematica Volume 37, 2019, pp. 49-60 49 Mahgoub Transform on Boehmians Yogesh Khandelwal* Priti Chaudhary† Abstract Boehmian’s space is established utilizing an algebraic way that approximates identities or delta sequences and appropriate convolution. The space of distributions can be related to the proper subspace. In this paper, firstly we establish the appropriate Boehmian space, on which the Mahgoub Transformation can be described& function space K can be embedded. We add to more in this, our definitions enhance Mahgoub transform to progressively wide spaces. We additionally explain the functional axioms of Mahgoub transform on Boehmians. Lastly toward the finishing of topic, we analyze with specify axioms and properties for continuity and the enlarged Mahgoub transform, also its inverse regards to βˆ†-convergence and Ξ΄. Keywords: Mahgoub Transform; The Space 𝔹(𝔛); The Space𝔹(𝔛𝔐); Boehmian Spaces. 2010 AMS subject classification: 44A99; 44A40;46F99; 20C20.‑ * Department of Mathematics, Jaipur National University, Jaipur, Rajasthan (India); yogeshmaths81@gmail.com. † Department of Mathematics, Jaipur National University, Jaipur, Rajasthan (India). ‑ Received on July 3rd, 2019. Accepted on August 9th, 2019. Published on December 31th, 2019. doi: 10.23755/rm.v37i0.468. ISSN: 1592-7415. eISSN: 2282-8214. Β©Khandelwal and Chaudhary. This paper is published under the CC-BY licence agreement. Yogesh Khandelwal and Priti Chaudhary 50 1. Introduction The Mahgoub transform [8] which is denoted by the operator 𝔐(. ) and Mahgoub transform of 𝔗(π“‰βˆ—) is defined by: 𝔐( 𝔗(π“‰βˆ—)) = 𝔼(πœ—) = πœ— ∫ 𝔗(π“‰βˆ—) ∞ 0 π‘’βˆ’πœ—π“‰ βˆ— 𝑑𝓉 βˆ—, 𝓉 βˆ— β‰₯ 0, (1.1) and 𝜌1 ≀ πœ— ≀ 𝜌2. In a set ; 𝔸 = {𝔗(π“‰βˆ—): βˆƒπ•„, 𝜌1, 𝜌2 > 0 . |𝔗(𝓉 βˆ—)| < 𝕄𝑒 |𝓉 βˆ—| πœŒπ‘— } , (1.2) where 𝜌1 and 𝜌2(may be finite or infinite), the constant 𝕄 must be finite. An existence’s Mahgoub transform of 𝔗(π“‰βˆ—) is essential for π“‰βˆ— β‰₯ 0, a piece wise continuous and of exponential order is required, else it does not exist. Convolution Theorem For Mahgoub Transform [9-11]: If 𝔐( 𝔗(𝓉 βˆ—)) = 𝔼(πœ—) and 𝔐( 𝔓(π“‰βˆ—)) = π•Ž(πœ—) then 𝔐(𝔗(π“‰βˆ—) ⋆ 𝔓(𝓉 βˆ—)) = 1 Ο‘ 𝔐(𝔗(𝓉 βˆ—))𝔐(𝔓(π“‰βˆ—)) = 1 Ο‘ 𝔼(Ο‘)π•Ž(Ο‘) (1.3) Linearity Property Of Mahgoub Transform: If 𝔐( 𝔗(π“‰βˆ—)) = 𝔼(πœ—), 𝔐( 𝔓(π“‰βˆ—)) = π•Ž(πœ—) then 𝔐{π”žπ”—(π“‰βˆ—) + π”Ÿ 𝔓(π“‰βˆ—)} = π”ž 𝔐(𝔗(𝓉 βˆ—)) + π”Ÿ 𝔐(𝔓(π“‰βˆ—)) (1.4) 2. Boehmian Space Boehmians was first developed as a generalization’s standard mikusinski operators [2]. The formation necessary for Boehmians satisfying the following axioms. i. a non empty set 𝔄; ii. a semi group(πœ‘,βŠ›) which is commutative; iii. βŠ—: 𝔄 Γ— πœ‘ β†’ 𝔄 s.t.βˆ€ ΞΎ ∈ 𝔄 and πœ‚1, πœ‚2 ∈ πœ‘ , ΞΎ βŠ— (πœ‚1 βŠ› πœ‚2) = (ΞΎ βŠ— πœ‚1) βŠ— πœ‚2; iv. a collection βˆ† βŠ‚ πœ‘π‘such that a) IfΞΎ1, ΞΎ2 ∈ 𝔄 , (πœ‚π‘›) ∈ βˆ† , ΞΎ1 βŠ— πœ‚π‘› = ΞΎ2 βŠ— πœ‚π‘› βˆ€ 𝑛then ΞΎ1 = ΞΎ2; b) If (πœ‚π‘›), (πœπ‘›) ∈ βˆ†, then (πœ‚π‘› βŠ— πœπ‘›) ∈ βˆ†. where elements of βˆ† are known as delta sequences. Consider β„‹ = {(ξ𝑛, πœ‚π‘› ): ξ𝑛 ∈ 𝔄 , (πœ‚π‘› ) ∈ βˆ†, ξ𝑛 βŠ— πœ‚π‘š = ΞΎπ‘š βŠ— πœ‚π‘› βˆ€ π‘š, 𝑛 ∈ 𝑁}, Now if (ξ𝑛, πœ‚π‘› ), (βˆ…π‘›, πœπ‘› ) ∈ β„‹ then ξ𝑛 βŠ— πœπ‘š = βˆ…π‘š βŠ— πœ‚π‘› , βˆ€ π‘š, 𝑛 ∈ 𝑁. An Reckon of Mahgoub Transform for Boehmians 51 We say that (ξ𝑛 , πœ‚π‘› )~(βˆ…π‘›, πœπ‘›). where ~ is an equivalence relation inβ„‹.The Set of equivalence classes in β„‹ is denoted asβ„Œ. Elements of β„Œ are said to be Boehmians. We assume that there is a canonical embedding between β„Œ and𝔄, expressed as ΞΎ β†’ ΞΎπ‘›βŠ—πœ‚π‘› πœ‚π‘› ,whereβŠ— can also be extended in β„Œ Γ— 𝔄 by ξ𝑛 πœ‚π‘› βŠ— 𝜏 = ΞΎπ‘›βŠ—πœ πœ‚π‘› . In β„Œ, there are two types of convergence is given by i. if ™𝑛 β†’ β„Ά as 𝑛 β†’ ∞which belongs to𝔄,𝓀 ∈ πœ‘ is any fixed element, then ™𝑛 βŠ— 𝓀 β†’ β„Ά βŠ— 𝓀 as 𝑛 β†’ ∞in 𝔄. ii. if ™𝑛 β†’ β„Άas 𝑛 β†’ ∞ in 𝔄 and πœ†π‘› ∈ βˆ† then ™𝑛 βŠ— πœ†π‘› β†’ β„Άas 𝑛 β†’ ∞in 𝔄. An operation βŠ—can be extended inβ„Œ Γ— πœ‘ as per condition: If [ ™𝑛 πœ‚π‘› ] ∈ β„Œand 𝓀 ∈ πœ‘ then [ ™𝑛 πœ‚π‘› ] βŠ— 𝓀 = [ β„Άπ‘›βŠ—π“€ πœ‚π‘› ]. Now convergence in β„Œas following: 1. A sequence (πœπ‘›)in β„Œis called𝛿– convergent to 𝜍 in β„Œ, i.e. πœπ‘› 𝛿 β†’ 𝜍 if βˆƒ (πœ‚π‘›) ∈ Ξ” such that(πœπ‘› βŠ— πœ‚π‘› ), (𝜍 βŠ— πœ‚π‘› ) ∈ 𝔄, βˆ€ 𝑛 ∈ 𝑁 and (πœπ‘› βŠ— πœ‚π“€ ) β†’ (𝜍 βŠ— πœ‚π“€) as 𝑛 β†’ ∞ in 𝔄, βˆ€ 𝓀, 𝑛 ∈ 𝑁. 2. A sequence (πœπ‘›) in β„Œ is said to be βˆ† convergent to 𝜍 in β„Œ i.e. πœπ‘› βˆ† β†’ 𝜍 , if βˆƒ(πœ‚π‘›) ∈ Ξ” such that(πœπ‘› βˆ’ 𝜍) β†’ 0 as 𝑛 β†’ ∞ which belongs to 𝔄 . For more details, see [3-6]. 3. The Boehmian Space 𝔹(𝖃): Denoted by 𝔖+(ℝ) and π’ž0+ ∞ (ℝ)are the space’s smooth function over ℝ and the Schwarz space’s test function’s compact support over ℝ+ where ℝ+ = (0, ∞) respectively. We have found vital results for the structure of Boehmian space 𝔹(𝔛)where 𝔛 = (𝔖+, π’ž0+ ∞ , βˆ†+). Lemma 3.1: 1) If 𝔑1, 𝔑2 ∈ π’ž0+ ∞ (ℝ)then 𝔑1 ⋆ 𝔑2 ∈ π’ž0+ ∞ (ℝ)(Closure). 2) If 𝔉1, 𝔉2 ∈ 𝔖+(ℝ)and 𝔑1 ∈ π’ž0+ ∞ (ℝ)then (𝔉1 + 𝔉2) ⋆ 𝔑1 = 𝔉1 ⋆ 𝔑1 + 𝔉2 ⋆ 𝔑1 (Distributive). 3) 𝔑1 ⋆ 𝔑2 = 𝔑2 ⋆ 𝔑1βˆ€π”‘1, 𝔑2 ∈ π’ž0+ ∞ (ℝ) (Commutative). Yogesh Khandelwal and Priti Chaudhary 52 4) If 𝔉 ∈ 𝔖+(ℝ), 𝔑1, 𝔑2 ∈ π’ž0+ ∞ (ℝ)then (𝔉 ⋆ 𝔑1) ⋆ 𝔑2 = 𝔉 ⋆ (𝔑1 ⋆ 𝔑2)(Associative). Definition3.2: A sequence (πœ‚π‘›) of function from π’ž0+ ∞ (ℝ)is said to be inβˆ†+. If βˆ†+ 1 : ∫ πœ‚π‘› (πœ‰)π‘‘πœ‰ = 1. ℝ+ βˆ†+ 2 : ∫ |πœ‚π‘›(πœ‰)|π‘‘πœ‰ ≀ π‘š,ℝ+ where π‘š is a positive integer; βˆ†+ 3 ∢ 𝑆𝑒𝑝𝑝 πœ‚π‘› (πœ‰) βŠ‚ (0, πœ–π‘›), πœ–π‘› β†’ 0 as 𝑛 β†’ ∞. i.e.(πœ‚π‘›) shrink to zero as 𝑛 β†’ ∞.every member of βˆ†+ is known as an approximation identity or a delta sequences. In all manners delta sequences arise in numerous parts of Mathematics, however likely the very important application are those in the presupposition’s generalized functions. The fundamental application of delta sequence is the regularization’s established functions and ahead we can be utilized to characterize the convolution product and its established functions. Lemma 3.3: If(πœ‚π‘›),(πœπ‘›) ∈ βˆ†+, then 𝑠𝑒𝑝𝑝(πœ‚π‘› ⋆ πœπ‘›) βŠ‚ π‘ π‘’π‘π‘πœ‚π‘› + π‘ π‘’π‘π‘πœπ‘› . Lemma 3.4: If 𝔑1, 𝔑2 ∈ π’ž0+ ∞ (ℝ) then so is 𝔑1 ⋆ 𝔑2 and ∫ |𝔑1 ⋆ 𝔑2| ≀ℝ+ ∫ |𝔑1|ℝ+ ∫ |𝔑2|ℝ+ . Theorem 3.5: Let𝔉1, 𝔉2 ∈ 𝔖+(ℝ) and (πœ‚π‘› ) ∈ βˆ†+ such that 𝔉1 ⋆ πœ‚π‘› = 𝔉2 ⋆ πœ‚π‘› . where 𝑛 = 1,2,3, …, then 𝔉1 = 𝔉2 in 𝔖+(ℝ). Proof: To prove that 𝔉1 ⋆ πœ‚π‘› = 𝔉1. Let K be a compact support accommodating the π‘ π‘’π‘π‘πœ‚π‘› for each𝑛 ∈ 𝑁. By using βˆ†+ 1 , we write |πœ‰ π‘˜ π·π‘š(𝔉1 ⋆ πœ‚π‘› βˆ’ 𝔉1)(πœ‰)| ≀ ∫ |πœ‚π‘›(𝜏)| |πœ‰ π‘˜ π·π‘š(𝔉1(πœ‰ βˆ’ 𝜏) βˆ’ 𝔉1(πœ‰))| π‘‘πœ 𝐾 (3.1) The mapping 𝜏 β†’ 𝔉1 𝜏 where𝔉1 𝜏 = 𝔉1(πœ‰ βˆ’ 𝜏), is Uniformly continuous from ℝ+ β†’ ℝ+. By using axiomβˆ†+ 3 that π‘ π‘’π‘π‘πœ‚π‘› β†’ 0 as 𝑛 β†’ ∞, now we choose π‘Ÿ > 0;π‘ π‘’π‘π‘πœ‚π‘› βŠ† [0, π‘Ÿ] for large 𝑛 and 𝜏 < π‘Ÿ, that is |𝔉1(πœ‰ βˆ’ 𝜏) βˆ’ 𝔉1(πœ‰)| = |𝔉1 𝜏 βˆ’ 𝔉1| < πœ–π‘› 𝑀 (3.2) Hence using βˆ†+ 2 and Eq’s. (3.2), (3.1) we get An Reckon of Mahgoub Transform for Boehmians 53 |πœ‰ π‘˜ π·π‘š(𝔉1 ⋆ πœ‚π‘› βˆ’ 𝔉1)(πœ‰)| < πœ–π‘› β†’ 0 as 𝑛 β†’ ∞. Thus 𝔉1 ⋆ πœ‚π‘› β†’ 𝔉1 in𝔖+(ℝ). Similarly, we prove that 𝔉2 ⋆ πœ‚π‘› β†’ 𝔉2in 𝔖+(ℝ) βŒ‚ Theorem 3.6:if 𝔉𝑛 β†’ 𝔉in 𝔖+(ℝ)as𝑛 β†’ ∞ and 𝔑 ∈ π’ž0+ ∞ (ℝ) then lim π‘›β†’βˆž 𝔉𝑛 ⋆ 𝔑 = 𝔉 ⋆ 𝔑. Proof: Using Theorem we get |πœ‰ π‘˜ π·π‘š ((𝔉𝑛 ⋆ 𝔑) βˆ’ (𝔉 ⋆ 𝔑))(πœ‰)| = |πœ‰ π‘˜ (π·π‘š(𝔉𝑛 βˆ’ 𝔉) ⋆ 𝔑)(πœ‰)| (3.3) The equation follows from [3] π·π‘šπ”‰ ⋆ 𝔑 = π·π‘šπ”‰ ⋆ 𝔑 = 𝔉 ⋆ π·π‘šπ”‘ for all 𝔑 ∈ π’ž0+ ∞ (ℝ), we have |πœ‰ π‘˜ π·π‘š ((𝔉𝑛 ⋆ 𝔑) βˆ’ (𝔉 ⋆ 𝔑))(πœ‰)| ≀ ∫ πœ‰ π‘˜ |π·π‘š(𝔉𝑛 βˆ’ 𝔉)(πœ‰ βˆ’ 𝜏)||𝔑(𝜏)|π‘‘πœ 𝐾 ≀ π‘€π›Ύπ‘˜ (𝔉𝑛 βˆ’ 𝔉)for some constant Mβ†’ 0 as 𝑛 β†’ ∞. βŒ‚ Theorem 3.7:In 𝔖+(ℝ), Let lim π‘›β†’βˆž 𝔉𝑛 = 𝔉 and (πœ‚π‘› ) ∈ βˆ†+β‡’ lim π‘›β†’βˆž 𝔉𝑛 ⋆ πœ‚π‘› = 𝔉. Proof: By the hypothesis of the Theorem 3.5, we get lim π‘›β†’βˆž 𝔉𝑛 ⋆ πœ‚π‘› = 𝔉𝑛 β†’ 𝔉as𝑛 β†’ ∞. Hence , we arrive, lim π‘›β†’βˆž 𝔉𝑛 ⋆ πœ‚π‘› = 𝔉 as 𝑛 β†’ ∞. βŒ‚ The Canonical embedding between𝔹(𝔛)and𝔖+(ℝ), defined asπœ‰ β†’ [ πœ‰β‹†πœ‚ 𝑛 πœ‚ 𝑛 ]. The extension of ⋆ to 𝔹(𝔛) Γ— 𝔖+(ℝ) is given by [ ξ𝑛 πœ‚π‘› ] ⋆ 𝜏 = [ ΞΎπ‘›β‹†πœ πœ‚π‘› ]. Convergence in 𝔹(𝔛)is followed: πœΉβ€“ Convergence: A sequence(πœπ‘›)in 𝔹(𝔛)is called𝛿– convergent to 𝜍 in 𝔹(𝔛)denoted by πœπ‘› 𝛿 β†’ 𝜍 if βˆƒ (πœ‚π‘›) ∈ Ξ” such that(πœπ‘› ⋆ πœ‚π‘› ), (𝜍 ⋆ πœ‚π‘›) ∈ 𝔖+(ℝ), βˆ€ 𝑛 ∈ 𝑁 and (πœπ‘› ⋆ πœ‚π“€ ) β†’ (𝜍 ⋆ πœ‚π“€ )as𝑛 β†’ ∞ in 𝔖+(ℝ), βˆ€ 𝓀, 𝑛 ∈ 𝑁. 𝚫+ βˆ’ Convergence:A sequence (πœπ‘›)in 𝔹(𝔛)is said to be Ξ”+ βˆ’ convergent to 𝜍 in 𝔹(𝔛)i.e.πœπ‘› βˆ† β†’ 𝜍 , if βˆƒ(πœ‚π‘›) ∈ Ξ”+such that(πœπ‘› βˆ’ 𝜍) βŠ— πœ‚π‘› ∈ 𝔖+(ℝ)βˆ€ 𝑛 ∈ 𝑁 and (πœπ‘› βˆ’ 𝜍) βŠ— πœ‚π‘› β†’ 0 as 𝑛 β†’ ∞in 𝔖+(ℝ). Yogesh Khandelwal and Priti Chaudhary 54 Theorem 3.8:Define 𝔉 β†’ [ π”‰β‹†πœ‚π‘› πœ‚π‘› ] is continuous mapping which is embedding from 𝔖+(ℝ) into 𝔹(𝔛). Proof: To show: The mapping is one - one. We have [ 𝔉1β‹†πœ‚π‘› πœ‚π‘› ] = [ 𝔉2β‹†πœπ‘› πœπ‘› ], then (𝔉1 ⋆ πœ‚π‘› ) ⋆ πœπ‘š = (𝔉2 ⋆ πœπ‘š) ⋆ πœ‚π‘› , π‘š, 𝑛 ∈ 𝑁. ∡ (πœπ‘›), (πœ‚π‘›) ∈ Ξ”+, 𝔉1 ⋆ (πœ‚π‘š ⋆ πœπ‘›) = 𝔉2 ⋆ (πœπ‘› ⋆ πœ‚π‘š) = 𝔉2 ⋆ (πœ‚π‘š ⋆ πœπ‘›). Using Theorem 3.5, we get 𝔉1 = 𝔉2. To prove: The mapping is continuous. Let 𝔉𝑛 β†’ 0 in𝔖+(ℝ)as 𝑛 β†’ ∞. Then we have[ π”‰π‘›β‹†πœ‚π‘š πœ‚π‘š ] 𝛿 β†’ 0as 𝑛 β†’ ∞. From the Theorem 3.5, [ π”‰π‘›β‹†πœ‚π‘š πœ‚π‘š ] ⋆ πœ‚π‘š = 𝔉𝑛 ⋆ πœ‚π‘š β†’ 0as 𝑛 β†’ ∞. βŒ‚ Theorem3.9: Let 𝔑 ∈ π’ž0+ ∞ (ℝ) and 𝔉 ∈ 𝔖+(ℝ)⇒𝔐(𝔉 ⋆ 𝔑)(πœ‰) = 1 πœ‰ 𝔉𝔐(πœ‰)𝔑𝔐(πœ‰). 4. TheBoehmian Space 𝔹(𝔛𝔐) We delineate Boehmian space as ensues. Let 𝔖+(ℝ) be the space’s immediately decreasing function [3]. We have π’ž0+ βˆžπ”(ℝ) = {𝔑𝔐: βˆ€π”‘ ∈ π’ž0+ ∞ (ℝ)} (4.1) here 𝔑𝔐 express the Mahgoub transform of 𝔑 and also characterize π”‰βˆŽπ”‘π” by (π”‰βˆŽπ”‘π”)(πœ‰) = 1 πœ‰ 𝔉(πœ‰)𝔑𝔐(πœ‰) (4.2) Lemma 4.1 Let 𝔉 ∈ 𝔖+(ℝ),𝔑 𝔐 ∈ π’ž0+ βˆžπ”(ℝ)β‡’π”‰βˆŽπ”‘π” ∈ 𝔖+(ℝ). Proof. Let 𝔉 ∈ 𝔖+(ℝ), 𝔑 𝔐 ∈ π’ž0+ βˆžπ”(ℝ), by Leibnitz’ Theorem and applying the definition of 𝔖+(ℝ), we found |πœ‰ π‘˜ π·πœ‰ π‘š(π”‰βˆŽπ”‘π”)(πœ‰)| ≀ |πœ‰ π‘˜ βˆ‘ π·π‘šβˆ’π‘— ( 1 πœ‰ 𝔉(πœ‰)) 𝐷𝑗 𝔑𝔐(πœ‰) π‘š 𝑗=1 | ≀ βˆ‘ |πœ‰ π‘˜ π·π‘šβˆ’π‘— ( 1 πœ‰ 𝔉(πœ‰))| π‘š 𝑗=1 |𝐷𝑗 𝔑𝔐(πœ‰)| = βˆ‘ |πœ‰ π‘˜ π·π‘šβˆ’π‘— 𝔉1(πœ‰)| π‘š 𝑗=1 |πœ— ∫ 𝔑(𝜏)𝑒 βˆ’ 𝜏 πœ—π‘‘πœ 𝐾 | An Reckon of Mahgoub Transform for Boehmians 55 Where 𝔉1(πœ‰) = 1 πœ‰ 𝔉(πœ‰) ∈ 𝔖+(ℝ) and K is a compact support accommodating the 𝑠𝑒𝑝𝑝𝑒(𝜏). |πœ‰ π‘˜ π·πœ‰ π‘š(π”‰βˆŽπ”‘π”)(πœ‰)| ≀ π‘€π›Ύπ‘˜,π‘šβˆ’π‘— (𝔉1) < ∞, for some positive constant M. βŒ‚ Lemma 4.2 A mapping 𝔖+ Γ— π’ž0+ βˆžπ” β†’ 𝔖+ is defined by (𝔉, 𝔑𝔐) β†’ π”‰βˆŽπ”‘π” Satisfying the following axioms: (1) If 𝔑1 𝔐, 𝔑2 𝔐 ∈ π’ž0+ βˆžπ”(ℝ), then 𝔑1 π”βˆŽπ”‘2 𝔐 ∈ π’ž0+ βˆžπ”(ℝ). (2) If 𝔉1, 𝔉2 ∈ 𝔖+(ℝ), 𝔑 𝔐 ∈ π’ž0+ βˆžπ”(ℝ), then (𝔉1+ 𝔉2)βˆŽπ”‘ 𝔐 = 𝔉1βˆŽπ”‘ 𝔐 + 𝔉2βˆŽπ”‘ 𝔐. (3) For 𝔑1 𝔐, 𝔑2 𝔐 ∈ π’ž0+ βˆžπ”(ℝ), 𝔑1 π”βˆŽπ”‘2 𝔐 = 𝔑2 π”βˆŽπ”‘1 𝔐. (4) For 𝔉 ∈ 𝔖+(ℝ),𝔑1 𝔐, 𝔑2 𝔐 ∈ π’ž0+ βˆžπ” (ℝ)then(π”‰βˆŽπ”‘1 𝔐)βˆŽπ”‘2 𝔐 = π”‰βˆŽ(𝔑1 π”βˆŽπ”‘2 𝔐). Proof .Axioms of above lemma as follows: (1) Let 𝔑1, 𝔑2 ∈ π’ž0+ ∞ (ℝ) then 𝔑1βˆŽπ”‘2 ∈ π’ž0+ ∞ (ℝ). β‡’ (𝔑1βˆŽπ”‘2) 𝔐 ∈ π’ž0+ βˆžπ”(ℝ) By using Theorem (3.9) implies 𝔑1 π”βˆŽπ”‘2 𝔐 ∈ π’ž0+ βˆžπ” (ℝ). (2) Proof is straightforward. (3) We have (𝔑1 π”βˆŽπ”‘2 𝔐)(πœ‰) = 1 πœ‰ 𝔑1 𝔐(πœ‰)𝔑2 𝔐 (πœ‰) = 1 πœ‰ 𝔑2 𝔐(πœ‰)𝔑1 𝔐(πœ‰) = (𝔑2 π”βˆŽπ”‘1 𝔐)(πœ‰). (𝔑1 π”βˆŽπ”‘2 𝔐) = (𝔑2 π”βˆŽπ”‘1 𝔐) (4)Let 𝔉 ∈ 𝔖+(ℝ)and 𝔑1 𝔐, 𝔑2 𝔐 ∈ π’ž0+ βˆžπ”(ℝ), then ((π”‰βˆŽπ”‘1 𝔐)βˆŽπ”‘2 𝔐) (πœ‰) = 1 πœ‰ (π”‰βˆŽπ”‘1 𝔐)(πœ‰)𝔑2 𝔐 (πœ‰) = 1 πœ‰ { 1 πœ‰ 𝔉(πœ‰)𝔑1 𝔐 (πœ‰) } 𝔑2 𝔐(πœ‰) = 1 πœ‰ 𝔉(πœ‰) 1 πœ‰ 𝔑1 𝔐 (πœ‰) 𝔑2 𝔐(πœ‰) Yogesh Khandelwal and Priti Chaudhary 56 = 1 πœ‰ 𝔉(πœ‰)(𝔑1 π”βˆŽπ”‘2 𝔐)(πœ‰) = (π”‰βˆŽ(𝔑1 π”βˆŽπ”‘2 𝔐)) (πœ‰), (π”‰βˆŽπ”‘1 𝔐)βˆŽπ”‘2 𝔐 = π”‰βˆŽ(𝔑1 π”βˆŽπ”‘2 𝔐) βŒ‚ Denote byβˆ†+ 𝔐 whereβˆ†+ 𝔐 is the collection of all Mahgoub transform’s delta sequence inβˆ†+. i.e., βˆ†+ 𝔐 = {(πœ‚π‘› 𝔐): (πœ‚π‘›) ∈ βˆ†+, βˆ€ 𝑛 ∈ 𝑁}. (4.3) Lemma 4.3Let 𝔉1, 𝔉2 ∈ 𝔖+(ℝ), (πœ‚π‘› 𝔐) ∈ βˆ†+ 𝔐 such that 𝔉1βˆŽπœ‚π‘› 𝔐 = 𝔉2βˆŽπœ‚π‘› 𝔐 , βˆ€π‘›, then 𝔉1 = 𝔉2 in 𝔖+(ℝ). Proof. Let𝔉1, 𝔉2 ∈ 𝔖+(ℝ), (πœ‚π‘› 𝔐) ∈ βˆ†+ 𝔐. Since 𝔉1βˆŽπœ‚π‘› 𝔐 = 𝔉2βˆŽπœ‚π‘› 𝔐, using Eq.(4.2) β‡’ 1 πœ‰ 𝔉1(πœ‰)πœ‚π‘› 𝔐(πœ‰) = 1 πœ‰ 𝔉2(πœ‰)πœ‚π‘› 𝔐(πœ‰) Hence 𝔉1(πœ‰) = 𝔉2(πœ‰) for allπœ‰. βŒ‚ Lemma 4.4 For all (πœπ‘›), (πœ‚π‘› ) ∈ Ξ”+, (πœ‚π‘› π”βˆŽπœπ‘› 𝔐 ) ∈ βˆ†+ 𝔐. Proof. Since(πœπ‘›), (πœ‚π‘›) ∈ Ξ”+,πœ‚π‘› ⋆ πœπ‘› ∈ Ξ”+, βˆ€π‘› hence from Theorem 3.9, we get 𝔐(πœ‚π‘› ⋆ πœπ‘›)(πœ‰) = 1 πœ‰ πœ‚π‘› 𝔐(πœ‰)πœπ‘› 𝔐(πœ‰) = πœ‚π‘› π”βˆŽπœπ‘› 𝔐 ∈ βˆ†+ 𝔐, for each 𝑛. βŒ‚ Lemma 4.5 Let lim π‘›β†’βˆž 𝔉𝑛 = 𝔉in 𝔖+(ℝ), 𝔑 𝔐 ∈ π’ž0+ βˆžπ”(ℝ) then π”‰π‘›βˆŽπ”‘ 𝔐 β†’ π”‰βˆŽπ”‘π”in 𝔖+(ℝ). Proof.we know that 𝔑𝔐 is bounded in π’ž0+ βˆžπ”(ℝ) we have (π”‰π‘›βˆŽπ”‘ 𝔐)(πœ‰) β†’ 1 πœ‰ 𝔉(πœ‰)𝔑𝔐(πœ‰) β†’ (π”‰βˆŽπ”‘π”)(πœ‰). Hence π”‰π‘›βˆŽπ”‘ 𝔐 β†’ π”‰βˆŽπ”‘π”. βŒ‚ Lemma 4.6 Let lim π‘›β†’βˆž 𝔉𝑛 = 𝔉 in 𝔖+(ℝ), (πœ‚π‘› 𝔐) ∈ βˆ†+ 𝔐 then 𝔉𝑛 βˆŽπœ‚π‘› 𝔐 β†’ 𝔉 in 𝔖+(ℝ). Proof.Let (πœ‚π‘›) ∈ Ξ”+, πœ‚π‘› 𝔐(πœ‰) β†’ πœ‰ is uniformly on compact subsets of ℝ+. Hence |πœ‰ π‘˜ π·πœ‰ π‘š(π”‰π‘›βˆŽπœ‚π‘› 𝔐 βˆ’ 𝔉)(πœ‰)| = |πœ‰ π‘˜ π·πœ‰ π‘š ( 1 πœ‰ 𝔉𝑛 (πœ‰)πœ‚π‘› 𝔐(πœ‰)) βˆ’ 𝔉(πœ‰)| β†’ |πœ‰ π‘˜ π·πœ‰ π‘š(𝔉𝑛 βˆ’ 𝔉)(πœ‰)| as 𝑛 β†’ ∞ Thus |πœ‰ π‘˜ π·πœ‰ π‘š(𝔉𝑛 βˆŽπœ‚π‘› 𝔐 βˆ’ 𝔉)(πœ‰)| β†’ 0 as 𝑛 β†’ ∞. An Reckon of Mahgoub Transform for Boehmians 57 This yield 𝔉𝑛 βˆŽπœ‚π‘› 𝔐 β†’ 𝔉 in𝔖+(ℝ). βŒ‚ Lemma 4.7 Define𝔉 β†’ [ π”‰βˆŽπœ‚π‘› 𝔐 πœ‚π‘› 𝔐 ] is a continuous mapping which is embedding from 𝔖+(ℝ) into 𝔹(𝔛 𝔐). (4.4) Proof. Let π”‰βˆŽπœ‚π‘› 𝔐 πœ‚π‘› 𝔐 is a quotient of sequences where𝔉 ∈ 𝔖+(ℝ), πœ‚π‘› 𝔐 ∈ βˆ†+ 𝔐. We have (π”‰βˆŽπœ‚π‘› 𝔐)βˆŽπœ‚π‘š 𝔐 = π”‰βˆŽ(πœ‚π‘š π”βˆŽπœ‚π‘› 𝔐).We show that the map (4.3) is one - to - one. Let[ 𝔉1βˆŽπœ‚π‘› 𝔐 πœ‚π‘› 𝔐 ] = [ 𝔉2βˆŽπœπ‘› 𝔐 πœπ‘› 𝔐 ], then(𝔉1βˆŽπœ‚π‘› 𝔐)βˆŽπœπ‘š 𝔐 = (𝔉2βˆŽπœπ‘š 𝔐)βˆŽπœ‚π‘› 𝔐 , π‘š, 𝑛 ∈ 𝑁. Now using of Lemma 4.2& 4.3, we get 𝔉1 = 𝔉2. To establish the continuity of Eq.(4.4), let 𝔉𝑛 β†’ 0as 𝑛 β†’ ∞in 𝔖+(ℝ). Then 𝔉𝑛 βˆŽπœ‚π‘› 𝔐 β†’ 0 as 𝑛 β†’ ∞by Lemma 4.6, and hence [ π”‰βˆŽπœ‚π‘› 𝔐 πœ‚π‘› 𝔐 ] β†’ 0,as 𝑛 β†’ ∞ in 𝔹(𝔛 𝔐). βŒ‚ 5. The Mahgoub transform of Bohemians Let β„Œ = [ 𝔉𝑛 πœ‚π‘› ] ∈ 𝔹(𝔛), then we delineate the Mahgoub transform of β„Œ by the relation β„Œ1 𝔐 = [ 𝔉𝑛 𝔐 πœ‚π‘› 𝔐 ]in 𝔹(𝔛 𝔐). (5.1) Theorem 5.1 β„Œ1 𝔐: 𝔹(𝔛) β†’ 𝔹(𝔛𝔐) is well defined. Proof. Let β„Œ1 = β„Œ2 ∈ 𝔹(𝔛), where β„Œ1 = [ 𝔉𝑛 πœ‚π‘› ] , β„Œ2 = [ 𝑔𝑛 πœπ‘› ]Then the concept of quotients yields 𝔉𝑛 ⋆ πœπ‘š = π‘”π‘š ⋆ πœ‚π‘› . Applying Theorem 3.9, we get 1 πœ‰ 𝔉𝑛 𝔐(πœ‰)πœπ‘š 𝔐(πœ‰) = 1 πœ‰ π‘”π‘š 𝔐(πœ‰)πœ‚π‘› 𝔐(πœ‰), 𝑖. 𝑒. 𝔉𝑛 π”βˆŽπœπ‘š 𝔐 = π‘”π‘š π”βˆŽπœ‚π‘› 𝔐 β‡’ 𝑓𝑛 𝔐 πœ‚π‘› 𝔐 ~ 𝑔𝑛 𝔐 πœπ‘› 𝔐 . Thus β„Œ1 𝔐 = β„Œ2 𝔐. βŒ‚ Theorem 5.2 β„Œπ”: 𝔹(𝔛) β†’ 𝔹(𝔛𝔐) is continuous regards to 𝛿-convergence. Proof. Let β„Œπ‘› β†’ 0 in 𝔹(𝔛)as 𝑛 β†’ ∞. using [4] we get,β„Œπ‘› = [ 𝔉𝑛,𝓀 πœ‚π“€ ] and 𝔉𝑛,𝓀 β†’ 0 in 𝔖+(ℝ) as 𝑛 β†’ ∞ in 𝔖+(ℝ). Now we apply the Mahgoub transform to both sides revenue 𝔉𝑛,π‘˜ 𝔐 β†’ 0 as 𝑛 β†’ ∞. Hence β„Œπ‘› 𝔐 = [ 𝔉𝑛,𝓀 𝔐 πœ‚π“€ 𝔐 ] β†’ 0 as 𝑛 β†’ ∞ in 𝔹(𝔛 𝔐). βŒ‚ Yogesh Khandelwal and Priti Chaudhary 58 Theorem 5.3 β„Œπ” ∢ 𝔹(𝔛) β†’ 𝔹(𝔛𝔐)is one-to-one mapping. Proof. Let β„Œ1 𝔐 = [ 𝔉𝑛 𝔐 πœ‚π‘› 𝔐] = [ 𝑔𝑛 𝔐 πœπ‘› 𝔐 ] = β„Œ2 𝔐,then 𝔉𝑛 π”βˆŽπœπ‘š 𝔐 = π‘”π‘š π”βˆŽπœ‚π‘› 𝔐 . Hence (𝔉𝑛 ⋆ πœπ‘š) 𝔐 = (π‘”π‘š ⋆ πœ‚π‘› ) 𝔐. Since the Mahgoub transform is one to one, we get 𝔉𝑛 ⋆ πœπ‘š = π‘”π‘š ⋆ πœ‚π‘› .Thus 𝔉𝑛 πœ‚π‘› ~ 𝑔𝑛 πœπ‘› . Hence [ 𝔉𝑛 πœ‚π‘› ] = β„Œ1 = [ 𝑔𝑛 πœπ‘› ] = β„Œ2. βŒ‚ Theorem 5.4 Let β„Œ1, β„Œ2 ∈ 𝔹(𝔛), then (1) (β„Œ1 + β„Œ2) 𝔐 = β„Œ1 𝔐 + β„Œ2 𝔐; (2) (π“€β„Œ)𝔐 = 𝓀 β„Œπ” , 𝓀 ∈ β„‚ . Theorem5.5 β„Œπ” ∢ 𝔹(𝔛) β†’ 𝔹(𝔛𝔐) is continuous regards to βˆ†+ - convergence. Proof. Let β„Œπ‘› βˆ† β†’ β„Œ in 𝔹(𝔛) as 𝑛 β†’ ∞ Then βˆƒπ”‰π‘› β†’ 0 𝔖+(ℝ) and (πœ‚π‘›) ∈ βˆ†+ such that (β„Œπ‘› βˆ’ β„Œ) βˆ— πœ‚π‘› = [ π”‰π‘›βˆ—πœ‚π“€ πœ‚π“€ ] and 𝔉𝑛 β†’ 0 as 𝑛 β†’ ∞.Applying in Eq.(5.1) , we get 𝔐((β„Œπ‘› βˆ’ β„Œ) βˆ— πœ‚π‘› ) = [ 𝔐(𝔉𝑛 βˆ— πœ‚π“€) πœ‚π“€ 𝔐 ]. Hence we have 𝔐((β„Œπ‘› βˆ’ β„Œ) βˆ— πœ‚π‘› ) = [ 𝔉𝑛 π”πœ‚π“€ 𝔐 πœ‰πœ‚π“€ 𝔐 ] β†’ 0 as 𝑛 β†’ ∞ in 𝔹(𝔛𝔐). therefore 𝔐((β„Œπ‘› βˆ’ β„Œ) βˆ— πœ‚π‘› ) = 1 πœ‰ (β„Œπ‘› 𝔐 βˆ’ β„Œπ”)πœ‚π‘› 𝔐 β†’ 0 as 𝑛 β†’ ∞. βŒ‚ Theorem5.6 Let β„Œπ” ∢ 𝔹(𝔛) β†’ 𝔹(𝔛𝔐) is onto. Proof. Let [ 𝔉𝑛 𝔐 πœ‚π‘› 𝔐] ∈ 𝔹(𝔛 𝔐) be arbitrary then 𝔉𝑛 𝔐 βˆŽπœ‚π‘š 𝔐 = π”‰π‘š 𝔐 βˆŽπœ‚π‘› 𝔐 for each π‘š, 𝑛 ∈ 𝑁.Then 𝔉𝑛 ⋆ πœ‚π‘š = π”‰π‘š ⋆ πœ‚π‘›.That is, 𝔉𝑛 πœ‚π‘› is the corresponding quotient of sequences of 𝔉𝑛 𝔐 πœ‚π‘› 𝔐. Thus 𝔉𝑛 πœ‚π‘› ∈ 𝔹(𝔛) is such that 𝔐 [ 𝔉𝑛 πœ‚π‘› ] = [ 𝔉𝑛 𝔐 πœ‚π‘› 𝔐 ] in 𝔹(𝔛 𝔐). Let β„Œπ” = [ 𝔉𝑛 𝔐 πœ‚π‘› 𝔐] ∈ 𝔹(𝔛 𝔐), then we express the inverse of Mahgoub transform of β„Œπ” given by An Reckon of Mahgoub Transform for Boehmians 59 β„Œπ” βˆ’1 = [ 𝔉𝑛 πœ‚π‘› ] in the space 𝔹(𝔛). βŒ‚ Theorem5.7 Let [ 𝔉𝑛 𝔐 πœ‚π‘› 𝔐] ∈ 𝔹(𝔛 𝔐) and 𝔑𝔐 ∈ π’ž0+ βˆžπ” (ℝ), 𝔑 ∈ π’ž0+ ∞ (ℝ). β„Œ ([ 𝔉𝑛 πœ‚π‘› ] ⋆ 𝔑) = [ 𝔉𝑛 𝔐 πœ‚π‘› 𝔐] βˆŽπ”‘ 𝔐andβ„Œπ” βˆ’1 ([ 𝔉𝑛 𝔐 πœ‚π‘› 𝔐] βˆŽπ”‘ 𝔐) = [ 𝔉𝑛 πœ‚π‘› ] ⋆ 𝔑. We can easily proof from the definitions. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. References [1] Al-Omari, S., KΔ±lΔ±Γ§man, A. An estimate of Sumudu transforms for Boehmians. Advances in Difference Equations , 77(1),1-10.2013. [2] Boehme, T.K: The support of Mikusinski operators. Trans. Am. Math. Soc., 1973. [3] Zemanian, A.H. Generalized Integral Transformation. Dover, New York, 1987. [4] Mikusinski, P. Fourier transform for integrable Boehmians. Rocky Mt. J. Math.,17(3),1987. [5] Mikusinski, P. Tempered Boehmians and ultra distributions. Proc. Am. Math. Soc.,123(3),813-817.1995. [6] Roopkumar, R. Mellin transform for Boehmians. Bull. Inst. Math. Acad. Sin., 4(1),75-96.2009. [7] Eltayeb, H., KΔ±lΔ±Γ§man, A.Fisher, B. A new integral transform and associated distributions. Integral Transforms and Special Functions .,21(5),367-379.2009. [8] Mahgoub , A,M. The new Integral transform Mahgoub transform. Adva. in Theoretical and Applied Math., 11(4),391-398.2016. [9] Khandelwal,Y., Umar, B,A., Kumawat ,P . Solution of the Blasius Equation by using Adomain Mahgoub transform. International Journal of Mathematics Trends and Technology., 56(5),303-306.2018 [10] Khandelwal, R.,Khandelwal,Y., Chanchal,P. Mahgoub deterioration method and its application in solving duo-combination of nonlinear PDE’s.Math. J. Inter discip. Sci., 7(1), 37–44.2018. Yogesh Khandelwal and Priti Chaudhary 60 [11] Khandelwal, Y.,Singh,S., Khandelwal,R. Solution of fractional ordinary differential equation by Mahgoub transform. Inte. Jour. of Crea. Rese. Thou., 6(1),1494-1499.2018. [12] Chaudhary,P.,Chanchal,P.,Khandelwal,Y. Duality of Some Famous Integral Transforms from the polynomial Integral Transform. International Journal of Mathematics Trends and Technology., 55(5), 345-349.2018.