Approach of the value of a rent when non-central moments of the capitalization factor are known: an R application with interest rates following normal and beta distributions Ratio Mathematica Volume 40, 2021, pp. 179-190 179 Intuitionistic FWI-ideals of residuated lattice Wajsberg algebras R. Shanmugapriya* A. Ibrahim† Abstract The notions of intuitionistic Fuzzy Wajsberg Implicative ideal (πΉπ‘ŠπΌ –ideal) and intuitionistic fuzzy lattice ideal of residuated Wajsberg algebras are introduced. Also, we show that every intuitionistic πΉπ‘ŠπΌ- ideal of residuated lattice Wajsberg algebra is an intuitionistic fuzzy lattice ideal of residuated lattice Wajsberg algebra. Further, we discussed its converse part. Keywords: Wajsberg algebra; Lattice Wajsberg algebra; Residuated lattice Wajsberg algebra; π‘ŠπΌβ€“ideal; πΉπ‘ŠπΌ –ideal; Intuitionistic πΉπ‘ŠπΌ –ideal; Intuitionistic fuzzy lattice ideal. 2010 AMS subject classification: 06B10, 03E72, 03G10. *Research Scholar, P. G. and Research Department of Mathematics, H. H. The Rajah’s College, Pudukkotai, Affiliated to Bharathidasan University, Trichirappalli, Tamilnadu, India; priyasanmu@gmail.com †Assistant Professor, P.G. and Research Department of Mathematics, H. H. The Rajah’s College, Pudukkotai, Affiliated to Bharathidasan University, Trichirappalli, Tamilnadu, India; ibrahimaadhil@yahoo.com; dribra@hhrc.ac.in †Received on January 12th, 2021. Accepted on May 12th, 2021. Published on June 30th, 2021. doi: 10.23755/rm.v40i1.587. ISSN: 1592-7415. eISSN: 2282-8214. Β©The Authors. This paper is published under the CC-BY licence agreement. Shanmugapriya and Ibrahim 180 1. Introduction The concept of fuzzy set was introduced by Zadeh [13] in 1935. The concept of intuitionistic fuzzy set was introduced by Atanassov [1, 2]. The idea of Wajsberg algebra was introduced by Mordchaj Wajsberg [10]. The author [8] introduced the notions of FWI-ideals and investigated their properties with illustrations. In the present paper, we introduce the notions of intuitionistic πΉπ‘ŠπΌ –ideal and intuitionistic fuzzy lattice ideal of residuated lattice Wajsberg algebras. Also, we show that every intuitionistic πΉπ‘ŠπΌβ€“ideal of residuated lattice Wajsberg algebra is an intuitionistic fuzzy lattice ideal of residuated lattice Wajsberg algebra. Further, we verify its converse part. 2. Preliminaries In this section, we recall some basic definitions and properties which are helpful to develop our main results. Definition 2.1[3]. Let (𝐴, β†’,βˆ— ,1) bean algebra with a binary operation β€œ β†’ " and a quasi-complement β€œ βˆ— ”. Then it is called a Wajsberg algebra, if the following axioms are satisfied for all π‘₯, 𝑦, 𝑧 ∈ 𝐴, (i) 1 β†’ π‘₯ = π‘₯ (ii) (π‘₯ β†’ 𝑦) β†’ 𝑦 = ((𝑦 β†’ 𝑧) β†’ (π‘₯ β†’ 𝑧)) = 1 (iii) (π‘₯ β†’ 𝑦) β†’ 𝑦 = (𝑦 β†’ π‘₯) β†’ π‘₯ (iv) (π‘₯βˆ— β†’ π‘¦βˆ—) β†’ (𝑦 β†’ π‘₯) = 1. Definition 2.2[3].Let(𝐴, β†’,βˆ— ,1) be a Wajsberg algebra. Then the following axioms are satisfied for all π‘₯, 𝑦, 𝑧 ∈ 𝐴, (i) π‘₯ β†’ π‘₯ = 1 (ii) If (π‘₯ β†’ 𝑦) = (𝑦 β†’ π‘₯) = 1 then π‘₯ = 𝑦 (iii) π‘₯ β†’ 1 = 1 (iv) (π‘₯ β†’ (𝑦 β†’ π‘₯)) = 1 (v) If (π‘₯ β†’ 𝑦) = (𝑦 β†’ 𝑧) = 1 then π‘₯ β†’ 𝑧 = 1 (vi) (π‘₯ β†’ 𝑦) β†’ ((𝑧 β†’ π‘₯) β†’ (𝑧 β†’ 𝑦)) = 1 (vii) π‘₯ β†’ (𝑦 β†’ 𝑧) = 𝑦 β†’ (π‘₯ β†’ 𝑧) (viii) π‘₯ β†’ 0 = π‘₯ β†’ 1βˆ— = π‘₯βˆ— (ix) (π‘₯βˆ—)βˆ— = π‘₯ (x) (π‘₯βˆ— β†’ π‘¦βˆ—) = 𝑦 β†’ π‘₯. Definition 2.3[3]. Let (𝐴, β†’,βˆ— ,1) be a Wajsberg algebra. Then it is called a lattice Wajsberg algebra, if the following axioms are satisfied for all π‘₯, 𝑦 ∈ 𝐴, Intuitionistic FWI-ideals of residuated lattice Wajsberg algebras 181 (i) The partial ordering " ≀ " on a Wajsberg algebra such that π‘₯ ≀ 𝑦 if and only if π‘₯ β†’ 𝑦 = 1 (ii) π‘₯ ∨ 𝑦 = (π‘₯ β†’ 𝑦) β†’ 𝑦 (iii) π‘₯ ∧ 𝑦 = ((π‘₯βˆ— β†’ π‘¦βˆ—) β†’ π‘¦βˆ—)βˆ—. Thus, (𝐴, ∨, ∧, βˆ— ,0 , 1) is a lattice Wajsberg algebra with lower bound 0 and upper bound 1. Proposition 2.4[3].Let(𝐴, β†’, βˆ— ,1) be a lattice Wajsberg algebra. Then the following axioms are satisfied for all π‘₯, 𝑦, 𝑧 ∈ 𝐴, (i) If π‘₯ ≀ 𝑦 then π‘₯ β†’ 𝑧 β‰₯ 𝑦 β†’ 𝑧 and 𝑧 β†’ π‘₯ ≀ 𝑧 β†’ 𝑦 (ii) π‘₯ ≀ 𝑦 β†’ 𝑧 if and only 𝑖𝑓 𝑦 ≀ π‘₯ β†’ 𝑧 (iii) (π‘₯ ∨ 𝑦)βˆ— = (π‘₯βˆ—Λ„ π‘¦βˆ—) (iv) (π‘₯ ∧ 𝑦)βˆ— = (π‘₯βˆ— ∨ π‘¦βˆ—) (v) (π‘₯ ∨ 𝑦) β†’ 𝑧 = (π‘₯ β†’ 𝑧) ∧ (𝑦 β†’ 𝑧) (vi) π‘₯ β†’ (𝑦 ∧ 𝑧) = (π‘₯ β†’ 𝑦) ∧ (π‘₯ β†’ 𝑧) (vii) (π‘₯ β†’ 𝑦) ∨ (𝑦 β†’ π‘₯) = 1 (viii) π‘₯ β†’ (𝑦 ∨ 𝑧) = (π‘₯ β†’ 𝑦) ∨ (π‘₯ β†’ 𝑧) (ix) (π‘₯ ∧ 𝑦) β†’ 𝑧 = (π‘₯ β†’ 𝑧) ∨ (𝑦 β†’ 𝑧) (x) (π‘₯ ∧ 𝑦) ∨ 𝑧 = (π‘₯ ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) (xi) (π‘₯ ∧ 𝑦) β†’ 𝑧 = (π‘₯ β†’ 𝑦) β†’ (π‘₯ β†’ 𝑧). Definition 2.5[11]. Let(𝐴, ∨, ∧, βŠ—, β†’, 0, 1) be an algebra of type (2, 2, 2, 2, 0, 0). Then it is called a residuated lattice, if the following axioms are satisfied for all π‘₯, 𝑦, 𝑧 ∈ 𝐴, (i) (𝐴, ∨, ∧, 0, 1) is a bounded lattice, (ii) (𝐴,βŠ—, 1) is commutative monoid, (iii) π‘₯ βŠ— y ≀ 𝑧 if and only if π‘₯ ≀ 𝑦 β†’ 𝑧. Definition 2.6[3]. Let (𝐴, ∨, ∧, βˆ—, β†’, 1) be a lattice Wajsberg algebra. If a binary operation β€œ βŠ— " on 𝐴 satisfies π‘₯ βŠ— 𝑦 = (π‘₯ β†’ π‘¦βˆ—)βˆ— for all π‘₯, 𝑦 ∈ 𝐴. Then (𝐴, ∨, ∧, βŠ—, β†’, βˆ—, 0, 1) is called a residuated lattice Wajsberg algebra. Definition 2.7[4].Let 𝐴 be a lattice Wajsberg algebra. Let 𝐼 be a non-empty subset of 𝐴, then 𝐼 is called aWI-ideal of lattice Wajsberg algebra 𝐴, if the following axioms are satisfied for allπ‘₯, 𝑦 ∈ 𝐴, (i) 0 ∈ 𝐼 (ii) (π‘₯ β†’ 𝑦)βˆ— ∈ 𝐼and 𝑦 ∈ 𝐼 imply π‘₯ ∈ 𝐼 . Definition 2.8[4].Let 𝐿 be a lattice. An ideal 𝐼 of 𝐿 is a non-empty subset of 𝐿 is called a lattice ideal, if the following axioms are satisfied for all π‘₯, 𝑦 ∈ 𝐴, (i) π‘₯ ∈ 𝐼, 𝑦 ∈ 𝐿 and 𝑦 ≀ π‘₯ imply 𝑦 ∈ 𝐼 Shanmugapriya and Ibrahim 182 (ii) π‘₯, 𝑦 ∈ 𝐼 implies π‘₯ ∨ 𝑦 ∈ 𝐼. Definition 2.9[7]. Let 𝐴 be a residuated lattice Wajsberg algebra and 𝐼 be a non-empty subset of 𝐴.Then 𝐼 is called a π‘ŠπΌ-ideal of residuated lattice Wajsberg algebra 𝐴, if the following axioms are satisfiedfor all π‘₯, 𝑦 ∈ 𝐴, (i) 0 ∈ 𝐼 (ii) π‘₯ βŠ— 𝑦 ∈ 𝐼 and 𝑦 ∈ 𝐼 imply π‘₯ ∈ 𝐼 (iii) (π‘₯ β†’ 𝑦)βˆ— ∈ 𝐼 and 𝑦 ∈ 𝐼 imply π‘₯ ∈ 𝐼. Definition 2.10[13].Let 𝐴 be a set. A function πœ‡: 𝐴 β†’ [0, 1] is called a fuzzy subset on 𝐴 for each π‘₯ ∈ 𝐴, the value of πœ‡(π‘₯) describes a degree of membership of π‘₯ in πœ‡. Definition 2.11[5].Let 𝐴 be a lattice Wajsberg algebra. Then the fuzzy subset πœ‡ of 𝐴 is called a fuzzy π‘ŠπΌ-ideal of 𝐴, if the following axioms are satisfied for all π‘₯, 𝑦 ∈ 𝐴, (i) πœ‡(0) β‰₯ πœ‡(π‘₯) (ii) πœ‡(π‘₯) β‰₯ min{ πœ‡((π‘₯ β†’ 𝑦)βˆ—), πœ‡(𝑦)}. Definition 2.12[5].A fuzzy subsetπœ‡ of a lattice Wajsberg algebra 𝐴 is called a fuzzy lattice ideal if for all π‘₯, 𝑦 ∈ 𝐴, (i) If 𝑦 ≀ π‘₯ then πœ‡(𝑦) β‰₯ πœ‡(π‘₯) (ii) πœ‡(π‘₯ ∨ 𝑦) β‰₯ min{πœ‡(π‘₯), πœ‡(𝑦)}. Definition 2.13[8]. Let 𝐴 be a residuated lattice Wajsberg algebra. Then the fuzzy subset πœ‡ of 𝐴 is called a πΉπ‘ŠπΌ-ideal of residuated lattice Wajsberg algebra 𝐴, if the following axioms are satisfied for all π‘₯, 𝑦 ∈ 𝐴, (i) πœ‡(0) β‰₯ πœ‡(π‘₯) (ii) πœ‡(π‘₯) β‰₯ min{ πœ‡(π‘₯ βŠ— 𝑦), πœ‡(𝑦)} (iii) πœ‡(π‘₯) β‰₯ min{ πœ‡((π‘₯ β†’ 𝑦)βˆ—), πœ‡(𝑦)}. Definition 2.14[2]. An intuitionistic fuzzy subset 𝑆 is a non-empty set 𝑋 is an object having the form 𝑆 = {(π‘₯, πœ‡π‘ (π‘₯), 𝛾𝑠(π‘₯))|π‘₯ ∈ 𝑋} = (πœ‡π‘ , 𝛾𝑠)where the functions πœ‡π‘ (π‘₯): 𝑋 β†’ [0, 1]denote the degree of membership and the degree of non-membership respectively and 0 ≀ πœ‡π‘ (π‘₯) + 𝛾𝑠(π‘₯) ≀ 1 for any π‘₯ ∈ 𝑋. Definition 2.15[13]. If πœ‡ and Ρ΅ are fuzzy sets in 𝐴, define πœ‡ ≀ Ρ΅ if and only if πœ‡(π‘₯) ≀ Ρ΅(π‘₯) for all π‘₯ ∈ 𝐴. Definition 2.16[13]. The level set πœ‡π‘‘ defined by πœ‡π‘‘ = {π‘₯ ∈ 𝐴/πœ‡(π‘₯) β‰₯ 𝑑}, where𝑑 ∈ [0, 1], then πœ‡π‘‘ is also denoted by π‘ˆ(πœ‡; 𝑑). Intuitionistic FWI-ideals of residuated lattice Wajsberg algebras 183 3. Properties of Intuitionistic FWI-ideal of a residuated lattice Wajsberg algebra In this section, we introduce the concept of an intuitionistic FWI-ideal and intuitionistic fuzzy lattice ideals. Also, we obtain some properties of an intuitionistic πΉπ‘ŠπΌ-ideal. Definition 3.1. Let 𝐴 be a residuated lattice Wajsberg algebra. An intuitionistic fuzzy set 𝑆 = (πœ‡π‘ , 𝛾𝑠) of 𝐴 is called an intuitionistic FWI-ideal of residuated lattice Wajsberg algebra 𝐴 if it satisfies the following inequalities for all π‘₯, 𝑦 ∈ 𝐴, (i) πœ‡π‘ (0) β‰₯ πœ‡π‘ (π‘₯) and 𝛾𝑠(0) ≀ 𝛾𝑠(π‘₯) (ii) πœ‡π‘ (π‘₯) β‰₯ min {πœ‡π‘ (π‘₯ βŠ— 𝑦), πœ‡π‘ (𝑦)} (iii) 𝛾𝑠(π‘₯) ≀ max {𝛾𝑠(π‘₯ βŠ— 𝑦), 𝛾𝑠(𝑦)} (iv) πœ‡π‘ (π‘₯) β‰₯ min {πœ‡π‘ ((π‘₯ β†’ 𝑦) βˆ—, πœ‡π‘ (𝑦) (v) 𝛾𝑠(π‘₯) ≀ max {𝛾𝑠((π‘₯ β†’ 𝑦) βˆ—, 𝛾𝑠(𝑦)} . Example 3.2. Consider a set 𝐴={0, π‘Ž, 𝑏, 𝑐, 𝑑,π‘Ÿ, 𝑠, 𝑑, 1}. Define a partial ordering β€œβ‰€β€ on 𝐴, such that 0 ≀ π‘Ž ≀ 𝑏 ≀ 𝑐 ≀ 𝑑 ≀ π‘Ÿ ≀ 𝑠 ≀ 𝑑 ≀ 1 with a binary operationsβ€œ βŠ— ”and" β†’ ”and a quasi-complement " βˆ— "on 𝐴 as in following tables 3.1 and 3.2. Table 3.1: Complement Table 3.2: Implication Define ∨ and ∧ operations on 𝐴 as follows: (π‘₯ ∨ 𝑦) = (π‘₯ β†’ 𝑦) β†’ 𝑦, (π‘₯ ∧ 𝑦) = (π‘₯βˆ— β†’ π‘¦βˆ—) β†’ π‘¦βˆ—)βˆ—, π‘₯ π‘₯ βˆ— 0 1 π‘Ž 𝑑 𝑏 𝑏 𝑐 π‘Ÿ 𝑑 𝑑 π‘Ÿ 𝑐 𝑠 𝑏 𝑑 π‘Ž 1 0 β†’ 0 π‘Ž 𝑏 𝑐 𝑑 π‘Ÿ 𝑠 𝑑 1 0 1 1 1 1 1 1 1 1 1 π‘Ž 𝑑 1 1 𝑑 1 1 𝑑 1 1 𝑏 𝑏 𝑑 1 𝑠 𝑑 1 𝑠 𝑑 1 𝑐 π‘Ÿ π‘Ÿ π‘Ÿ 1 1 1 1 1 1 𝑑 𝑑 π‘Ÿ π‘Ÿ 𝑑 1 1 𝑑 1 1 π‘Ÿ 𝑐 𝑑 π‘Ÿ 𝑠 𝑑 1 𝑠 𝑑 1 𝑠 𝑏 𝑏 𝑏 π‘Ÿ π‘Ÿ π‘Ÿ 1 1 1 𝑑 π‘Ž 𝑏 𝑏 𝑑 π‘Ÿ π‘Ÿ 𝑑 1 1 1 0 π‘Ž 𝑏 𝑐 𝑑 π‘Ÿ 𝑠 𝑑 1 Shanmugapriya and Ibrahim 184 π‘₯ βŠ— 𝑦 = (π‘₯ β†’ π‘¦βˆ—)βˆ— for all π‘₯, 𝑦 ∈ 𝐴. Then, 𝐴 is a residuated lattice Wajsberg algebra. Consider an intuitionistic fuzzy set 𝑆 = (πœ‡π‘ , 𝛾𝑠) on 𝐴 as, πœ‡π‘ (π‘₯) = { 1 if π‘₯ ∈ (0, π‘ž) for all π‘₯ ∈ 𝐴 0.54 otherwise for all π‘₯ ∈ 𝐴 ; 𝛾𝑠(π‘₯) = { 0 if π‘₯ ∈ (0, π‘ž) for all π‘₯ ∈ 𝐴 0.36 otherwise for all π‘₯ ∈ 𝐴 Then, 𝑆 is an intuitionistic FWI-ideal of 𝐴. In the same Example 3.2, we consider an intuitionistic fuzzy set 𝑆 = (πœ‡π‘ , 𝛾𝑠) on 𝐴 as, πœ‡π‘ (π‘₯) = { 1 if π‘₯ ∈ {0, π‘Ž, 𝑏} for all π‘₯ ∈ 𝐴 0.55 otherwise for all π‘₯ ∈ 𝐴 ; 𝛾𝑠(π‘₯) = { 0 if π‘₯ ∈ {0, π‘Ž, 𝑏} for all π‘₯ ∈ 𝐴 0.42 otherwise for all π‘₯ ∈ 𝐴 Then, 𝑆 is not an intuitionistic πΉπ‘ŠπΌ-ideal of 𝐴. Since πœ‡π‘ (π‘₯) ≱ min {πœ‡π‘ (𝑠 βŠ— 𝑏), πœ‡π‘ (𝑏)} and 𝛾𝑠(π‘₯) β‰° max{𝛾𝑠(𝑠 βŠ— 𝑏), 𝛾𝑠(𝑏)}. Proposition 3.3. Every intuitionistic πΉπ‘ŠπΌ-ideal 𝑆 = (πœ‡π‘ , 𝛾𝑠) of residuated lattice Wajsberg algebra 𝐴 is an intuitionistic monotonic. That is, if π‘₯ ≀ 𝑦, then πœ‡π‘ (π‘₯) β‰₯ πœ‡π‘ (𝑦) and 𝛾𝑠(π‘₯) ≀ 𝛾𝑠(𝑦). Proof. Let 𝑆 = (πœ‡π‘ , 𝛾𝑠) be an intuitionistic πΉπ‘ŠπΌ-ideal of 𝐴. Let π‘₯, 𝑦 ∈ 𝐴, π‘₯ ≀ 𝑦. Then π‘₯ βŠ— 𝑦 = (π‘₯ β†’ π‘¦βˆ—)βˆ— [From the definition 2.6] = (π‘₯ β†’ π‘₯)βˆ— = 1βˆ— = 0 [From (i) of definition 2.2] πœ‡π‘ (π‘₯) β‰₯ min {πœ‡π‘ (π‘₯ βŠ— 𝑦), πœ‡π‘ (𝑦)} [From (ii) of definition 3.1] We have πœ‡π‘ (π‘₯) β‰₯ πœ‡π‘ (𝑦) Now,𝛾𝑠(π‘₯) ≀ max{𝛾𝑠(π‘₯ βŠ— 𝑦), 𝛾𝑠(𝑦)} [From (iii) of definition 3.1] = max{𝛾𝑠(0), 𝛾𝑠(𝑦)} = 𝛾𝑠 (𝑦) [From the definition 2.6] Hence 𝛾𝑠(π‘₯) ≀ 𝛾𝑠(𝑦) And πœ‡π‘ (π‘₯) β‰₯ min {πœ‡π‘ (π‘₯ β†’ 𝑦) βˆ—, πœ‡π‘ (𝑦)} [From (iv) of definition 3.1] = min{πœ‡π‘ (0), πœ‡π‘ (𝑦)} = πœ‡π‘ (𝑦) [From (ii) of definition 2.7] We have πœ‡π‘ (π‘₯) β‰₯ πœ‡π‘ (𝑦) Now, 𝛾𝑠(π‘₯) ≀ max{𝛾𝑠(π‘₯ β†’ 𝑦) βˆ—, 𝛾𝑠(𝑦)} [From (v) of definition 3.1] = max{𝛾𝑠(0), 𝛾𝑠(𝑦)} = 𝛾𝑠 (𝑦) [From (ii) of definition 2.7] Therefore, 𝛾𝑠(π‘₯) ≀ 𝛾𝑠(𝑦). ∎ Example 3.4. Let 𝐴 be a residuated lattice Wajsberg algebra defined in example 3.2, define an intuitionistic fuzzy set 𝑆 = (πœ‡π‘ , 𝛾𝑠) of 𝐴 as follows, Intuitionistic FWI-ideals of residuated lattice Wajsberg algebras 185 (i) πœ‡π‘ (0) = πœ‡π‘ (𝑐) = 1 (ii) πœ‡π‘ (π‘₯) = π‘š for any π‘₯ ∈ {π‘Ž, 𝑏, 𝑐, 𝑑, π‘Ÿ, 𝑠, 𝑑, 1} (iii) 𝛾𝑠(0) = 𝛾𝑠(𝑐) = 0 (iv) 𝛾𝑠(π‘₯) = 𝑛 for any π‘₯ ∈ {π‘Ž, 𝑏, 𝑐, 𝑑, π‘Ÿ, 𝑠, 𝑑, 1}. Where π‘š, 𝑛 ∈ [0, 1] and π‘š + 𝑛 ≀ 1. Then 𝑆 = (πœ‡π‘ , 𝛾𝑠) is an intuitionistic πΉπ‘ŠπΌ-ideal of 𝐴. Example 3.5. Consider a set𝐴 = {π‘Ž, 𝑏, 𝑝, π‘ž, 𝑐, 𝑑, 1}. Define a partial ordering β€œβ‰€β€ on 𝐴, such that 0 ≀ π‘Ž ≀ 𝑏 ≀ 𝑝 ≀ π‘ž ≀ 𝑐 ≀ 𝑑 ≀ 1 with a binary operationsβ€œ βŠ— ”and " β†’ ”and a quasi-complement " βˆ— "on 𝐴 as in following tables 3.3 and 3.4. Table 3.3: Complement Table 3.4: Implication Define ∨ and ∧ operations on 𝐴 as follows: (π‘₯ ∨ 𝑦) = (π‘₯ β†’ 𝑦) β†’ 𝑦, (π‘₯ ∧ 𝑦) = (π‘₯βˆ— β†’ π‘¦βˆ—) β†’ π‘¦βˆ—)βˆ—, π‘₯ βŠ— 𝑦 = (π‘₯ β†’ π‘¦βˆ—)βˆ— for all π‘₯, 𝑦 ∈ 𝐴. Then, 𝐴 is a residuated lattice Wajsberg algebra. Consider an intuitionistic fuzzy set 𝑆 = (πœ‡π‘ , 𝛾𝑠) on 𝐴 as, πœ‡π‘ (π‘₯) = { 1 if π‘₯ ∈ (0, π‘ž) for all π‘₯ ∈ 𝐴 0.54 otherwise for all π‘₯ ∈ 𝐴 ; 𝛾𝑠(π‘₯) = { 0 if π‘₯ ∈ (0, π‘ž) for all π‘₯ ∈ 𝐴 0.36 otherwise for all π‘₯ ∈ 𝐴 Then, 𝑆 is an intuitionistic πΉπ‘ŠπΌ-ideal of 𝐴. In the same Example 3.5, we consider an intuitionistic fuzzy set 𝑆 = (πœ‡π‘ , 𝛾𝑠) on 𝐴 as, π‘₯ π‘₯ βˆ— 0 1 π‘Ž 𝑏 𝑏 π‘Ž 𝑝 0 π‘ž 0 𝑐 0 𝑑 0 1 0 β†’ 0 π‘Ž 𝑏 𝑝 π‘ž 𝑐 𝑑 1 0 1 1 1 1 1 1 1 1 π‘Ž 𝑏 1 𝑏 1 1 1 1 1 𝑏 π‘Ž π‘Ž 1 1 1 1 1 1 𝑝 0 π‘Ž 𝑏 1 1 1 1 1 π‘ž 0 π‘Ž 𝑏 𝑝 1 1 1 1 𝑐 0 π‘Ž 𝑏 𝑝 𝑑 1 𝑑 1 𝑑 0 π‘Ž 𝑏 𝑝 𝑐 𝑐 1 1 1 0 π‘Ž 𝑏 𝑝 π‘ž 𝑐 𝑑 1 Shanmugapriya and Ibrahim 186 πœ‡π‘ (π‘₯) = { 1 if π‘₯ ∈ {0, π‘Ž, 𝑏} for all π‘₯ ∈ 𝐴 0.55 otherwise for all π‘₯ ∈ 𝐴 ; 𝛾𝑠(π‘₯) = { 0 if π‘₯ ∈ {0, π‘Ž, 𝑏} for all π‘₯ ∈ 𝐴 0.42 otherwise for all π‘₯ ∈ 𝐴 Then, 𝑆 is not an intuitionistic πΉπ‘ŠπΌ-ideal of 𝐴. Since πœ‡π‘ (π‘₯) ≱ min {πœ‡π‘ (𝑐 βŠ— π‘Ž), πœ‡π‘ (π‘Ž)} and 𝛾𝑠(π‘₯) β‰° max{𝛾𝑠(𝑐 βŠ— π‘Ž), 𝛾𝑠(π‘Ž)}. Proposition 3.6. Let 𝑆 = (πœ‡π‘ , 𝛾𝑠) be an intuitionistic πΉπ‘ŠπΌ-ideal of residuated lattice Wajsberg algebra 𝐴. For any π‘₯, 𝑦, 𝑧 ∈ 𝐴 which satisfies π‘₯ ≀ π‘¦βˆ— β†’ 𝑧 then πœ‡π‘ (π‘₯) β‰₯ min {πœ‡π‘ (𝑦), πœ‡π‘ (𝑧)} and 𝛾𝑠(π‘₯) ≀ max{𝛾𝑠(𝑦), 𝛾𝑠(𝑧)}. Proof. Let𝑆 = (πœ‡π‘ , 𝛾𝑠) be an intuitionistic πΉπ‘ŠπΌ-ideal of 𝐴. If π‘₯ ≀ 𝑦 βˆ— β†’ 𝑧 Then, we have 1 = π‘₯ β†’ (π‘¦βˆ— β†’ 𝑧) = π‘§βˆ— β†’ (π‘₯ β†’ 𝑦) = (π‘₯ β†’ 𝑦)βˆ— β†’ 𝑧 for all π‘₯, 𝑦, 𝑧 ∈ 𝐴 [From (x) of definition 2.2] And ((π‘₯ β†’ 𝑦)βˆ— β†’ 𝑧)βˆ—) = 0. It follows that, πœ‡π‘ (π‘₯) β‰₯ min{πœ‡π‘ (π‘₯ βŠ— 𝑦), πœ‡π‘ (𝑦)} [From (ii) of definition 3.1] β‰₯ min {min {πœ‡π‘ ((π‘₯ βŠ— 𝑦) β†’ 𝑧), πœ‡π‘ (𝑧)}, πœ‡π‘ (𝑦)} = min{min{πœ‡π‘ ((0) β†’ 𝑧), πœ‡π‘ (𝑧)} , πœ‡π‘ (𝑦)} [From the definition 2.6] = min{min{πœ‡π‘ (0), πœ‡π‘ (𝑧)} , πœ‡π‘ (𝑦)} = min{πœ‡π‘ (𝑦), πœ‡π‘ (𝑧)} [From (ii) of definition 3.1] We have πœ‡π‘ (π‘₯) β‰₯ min {πœ‡π‘ (𝑦), πœ‡π‘ (𝑧)} for all π‘₯, 𝑦, 𝑧 ∈ 𝐴 Now,𝛾𝑠(π‘₯) ≀ max {max{𝛾𝑠((π‘₯ βŠ— 𝑦), 𝛾𝑠(𝑦))} ≀ max {max{ 𝛾𝑠 (((π‘₯ βŠ— 𝑦) β†’ 𝑧), 𝛾𝑠(𝑧)} , 𝛾𝑠(𝑦)} = max{max{𝛾𝑠((0) β†’ 𝑧), 𝛾𝑠(𝑧)} , 𝛾𝑠(𝑦)} [From the definition 2.6] = max {max{𝛾𝑠(0), 𝛾𝑠(𝑧)} , 𝛾𝑠 (𝑦)} = max {𝛾𝑠(𝑦), 𝛾𝑠(𝑧)} [From (iii) of definition 3.1] Hence 𝛾𝑠(π‘₯) ≀ max {𝛾𝑠(𝑦), 𝛾𝑠(𝑧)} for all π‘₯, 𝑦, 𝑧 ∈ 𝐴 Now, πœ‡π‘ (π‘₯) β‰₯ min{πœ‡π‘ ((π‘₯ β†’ 𝑦) βˆ—), πœ‡π‘ (𝑦)} [From (iv) of definition 3.1] β‰₯ min{min{πœ‡π‘ (π‘₯ β†’ 𝑦) βˆ— β†’ 𝑧)βˆ—) , πœ‡π‘ (𝑧)} , πœ‡π‘ (𝑦)} = min {min{πœ‡π‘ (0), πœ‡π‘ (𝑧)} , πœ‡π‘ (𝑦)} = min {πœ‡π‘ (𝑦), πœ‡π‘ (𝑧)} [From (ii) of definition 3.1] We have πœ‡π‘ (π‘₯) β‰₯ min {πœ‡π‘ (𝑦), πœ‡π‘ (𝑧)} for all π‘₯, 𝑦, 𝑧 ∈ 𝐴 And 𝛾𝑠(π‘₯) ≀ max{𝛾𝑠((π‘₯ β†’ 𝑦 βˆ—), 𝛾𝑠(𝑦))} [From (v) of definition 3.1] ≀ max {max{𝛾𝑠((π‘₯ β†’ 𝑦 βˆ—) β†’ 𝑧)βˆ—), 𝛾𝑠(𝑧)} , 𝛾𝑠(𝑦)} = max {max{𝛾𝑠(0), 𝛾𝑠(𝑧)} , 𝛾𝑠(𝑦)} = max {𝛾𝑠(𝑦), 𝛾𝑠(𝑧)} [From (iii) of definition 3.1] Hence, 𝛾𝑠(π‘₯) ≀ max {𝛾𝑠(𝑦), 𝛾𝑠(𝑧)} for all π‘₯, 𝑦, 𝑧 ∈ 𝐴.∎ Intuitionistic FWI-ideals of residuated lattice Wajsberg algebras 187 Definition 3.7. An intuitionistic fuzzy set 𝑆 = (πœ‡π‘ , 𝛾𝑠) of residuated lattice Wajsberg algebra 𝐴 is called an intuitionistic fuzzy lattice ideal of 𝐴 if it satisfies the following axioms for allπ‘₯, 𝑦 ∈ 𝐴, (i) 𝑆 = (πœ‡π‘ , 𝛾𝑠) is intuitionistic monotonic (ii) πœ‡π‘ (π‘₯ ∨ 𝑦) β‰₯ min{πœ‡π‘ (π‘₯), πœ‡π‘ (𝑦)} (iii) 𝛾𝑠(π‘₯ ∨ 𝑦) ≀ max{𝛾𝑠(π‘₯), 𝛾𝑠(𝑦)}. Remark 3.8. In the Definition 3.7(ii) and (iii) can be equivalently replaced by πœ‡π‘ (π‘₯ ∨ 𝑦) = min{πœ‡π‘ (π‘₯), πœ‡π‘ (𝑦)} and 𝛾𝑠(π‘₯ ∨ 𝑦) = max {𝛾𝑠(π‘₯), 𝛾𝑠(𝑦)} respectively by 𝛾. Example 3.9. Let 𝐴 be a residuated lattice Wajsberg algebra defined in the Example 3.2 and 𝑆 = (πœ‡π‘ , 𝛾𝑠) be an intuitionistic fuzzy set of 𝐴 defined by πœ‡π‘ (π‘₯) = { 1 if π‘₯ ∈ (0, 𝑑) for all π‘₯ ∈ 𝐴 π‘š otherwise for all π‘₯ ∈ 𝐴 ; 𝛾𝑠(π‘₯) = { 0 if π‘₯ ∈ (0, 𝑑) for all π‘₯ ∈ 𝐴 𝑛 otherwise for all π‘₯ ∈ 𝐴 Where π‘š, 𝑛 ∈ [0, 1] and π‘š + 𝑛 ≀ 1. [From the definition 3.11] Then, 𝑆 = (πœ‡π‘ , 𝛾𝑠) is an intuitionistic fuzzy lattice ideal of residuated lattice Wajsberg algebra 𝐴. Proposition 3.10. Let𝐴be a residuated lattice Wajsberg algebra. Every intuitionistic πΉπ‘ŠπΌ-ideal of 𝐴 is an intuitionistic fuzzy lattice ideal of 𝐴. Proof. Let 𝑆 = (πœ‡π‘ , 𝛾𝑠) be an intuitionistic fuzzy lattice ideal of 𝐴. Then we have 𝑆 = (πœ‡π‘ , 𝛾𝑠) is intuitionistic monotonic. [From proposition 3.6] Now ((π‘₯ ∨ 𝑦) β†’ 𝑦)βˆ— = (((π‘₯ β†’ 𝑦) β†’ 𝑦)) β†’ 𝑦)βˆ— From (ii) of definition 2.3] = (π‘₯ β†’ 𝑦)βˆ— ≀ (π‘₯βˆ—)βˆ— for all π‘₯, 𝑦 ∈ 𝐴 [From (ix) of proposition 2.2] It follows that πœ‡π‘ (π‘₯ ∨ 𝑦) β‰₯ min{πœ‡π‘ (π‘₯ ∨ 𝑦) βŠ— 𝑦, πœ‡π‘ (𝑦)} [From definition 3.1 and definition 3.7] β‰₯ min{πœ‡π‘ (π‘₯ β†’ 𝑦) β†’ 𝑦) βŠ— 𝑦, πœ‡π‘ (𝑦)} [From (ii) of definition 2.3] β‰₯ min {πœ‡π‘ (0), πœ‡π‘ (𝑦)} β‰₯ min{πœ‡π‘ (π‘₯), πœ‡π‘ (𝑦)}for all π‘₯, 𝑦 ∈ 𝐴 [From (i) of proposition 2.10] 𝛾𝑠(π‘₯) ≀ max {𝛾𝑠((π‘₯ ∨ 𝑦) βŠ— 𝑦), 𝛾𝑠(𝑦)} ≀ max{𝛾𝑠((π‘₯ β†’ 𝑦) β†’ 𝑦) βŠ— 𝑦) , 𝛾𝑠(𝑦)} [From (ii) of definition 2.3] ≀ max {𝛾𝑠(0), 𝛾𝑠(𝑦)} Shanmugapriya and Ibrahim 188 ≀ max{𝛾𝑠(π‘₯), 𝛾𝑠(𝑦)}for all π‘₯, 𝑦 ∈ 𝐴 [From (ii) of definition 2.10] And we have πœ‡π‘ (π‘₯ ∨ 𝑦) β‰₯ min{πœ‡π‘ (π‘₯ ∨ 𝑦) β†’ 𝑦) βˆ—) , πœ‡π‘ (𝑦)} β‰₯ min {πœ‡π‘ (π‘₯), πœ‡π‘ (𝑦)} 𝛾𝑠(π‘₯) ≀ max {𝛾𝑠((π‘₯ ∨ 𝑦) β†’ 𝑦) βˆ—), 𝛾𝑠(𝑦)} ≀ max{𝛾𝑠(π‘₯), 𝛾𝑠(𝑦)} for all π‘₯, 𝑦 ∈ 𝐴. Hence, we have 𝑆 = (πœ‡π‘ , 𝛾𝑠)is an intuitionistic fuzzy lattice ideal of residuated lattice Wajsberg algebra 𝐴. ∎ Proposition 3.11. Let 𝐴 be a residuated lattice Wajsberg algebra. An intuitionistic fuzzy set 𝑆 = (πœ‡π‘ , 𝛾𝑠) is an intuitionistic FWI-ideal of 𝐴 if and only if the fuzzy subsets πœ‡π‘  and 𝛾𝑠 𝑐 are πΉπ‘ŠπΌ-ideal of 𝐴, where 𝛾𝑠 𝑐 (π‘₯) = 1 βˆ’ 𝛾𝑠(π‘₯)for all π‘₯ ∈ 𝐴. Proof. Let 𝑆 = (πœ‡π‘ , 𝛾𝑠) be an intuitionistic FWI-ideal of 𝐴. Then πœ‡π‘  is a FWI-ideal of 𝐴. Now, we have 𝛾𝑠 𝑐 = 1 βˆ’ 𝛾𝑠(0) β‰₯ 1 βˆ’ 𝛾𝑠(π‘₯) [From (i) of proposition 2.10] 𝛾𝑠 𝑐 (0) = 𝛾𝑠 𝑐 (π‘₯) for all π‘₯, 𝑦 ∈ 𝐴 And 𝛾𝑠 𝑐 (π‘₯) = 1 βˆ’ 𝛾𝑠(π‘₯) β‰₯ 1 βˆ’ max {𝛾𝑠(π‘₯ βŠ— 𝑦), 𝛾𝑠(𝑦)} = min{ 1 βˆ’ 𝛾𝑠(π‘₯ βŠ— 𝑦), 1 βˆ’ 𝛾𝑠(𝑦)} = min{ 𝛾𝑠 𝑐 (π‘₯ βŠ— 𝑦), 𝛾𝑠(𝑦)} 𝛾𝑠 𝑐 (π‘₯) = 1 βˆ’ 𝛾𝑠(π‘₯) β‰₯ 1 βˆ’ max {𝛾𝑠((π‘₯ β†’ 𝑦) βˆ—), 𝛾𝑠(𝑦)} = min{ 1 βˆ’ 𝛾𝑠((π‘₯ β†’ 𝑦) βˆ—), 1 βˆ’ 𝛾𝑠(𝑦)} 𝛾𝑠 𝑐 (π‘₯) = min{ 𝛾𝑠 𝑐 ((π‘₯ β†’ 𝑦)βˆ—), 𝛾𝑠(𝑦)}for all π‘₯, 𝑦 ∈ 𝐴 Hence, we have 𝛾𝑠 𝑐 is a FWI-ideal of 𝐴. Conversely, assume that πœ‡π‘  and 𝛾𝑠 𝑐 are FWI-ideal of 𝐴. Then, we have πœ‡π‘ (0) β‰₯ πœ‡π‘ (π‘₯)and 1 βˆ’ 𝛾𝑠(0) = 𝛾𝑠 𝑐 (0) β‰₯ 𝛾𝑠 𝑐 (π‘₯) = 1 βˆ’ 𝛾𝑠(π‘₯) 𝛾𝑠(0) ≀ 𝛾𝑠(π‘₯) for all π‘₯, 𝑦 ∈ 𝐴 Now, πœ‡π‘ (π‘₯) β‰₯ min {πœ‡π‘  𝑐 (π‘₯ βŠ— 𝑦), πœ‡π‘  𝑐 (𝑦)} = min {1 βˆ’ πœ‡π‘ (π‘₯ βŠ— 𝑦), 1 βˆ’ πœ‡π‘ (𝑦)} = 1 βˆ’ max {πœ‡π‘ (π‘₯ βŠ— 𝑦), πœ‡π‘ (𝑦)} 𝛾𝑠(π‘₯) ≀ max {𝛾𝑠(π‘₯ βŠ— 𝑦), 𝛾𝑠(𝑦)} for all π‘₯, 𝑦 ∈ 𝐴 πœ‡π‘ (π‘₯) β‰₯ min {πœ‡π‘  𝑐 (π‘₯ β†’ 𝑦)βˆ—, πœ‡π‘  𝑐 (𝑦)} = min {1 βˆ’ πœ‡π‘ ((π‘₯ β†’ 𝑦) βˆ—), 1 βˆ’ πœ‡π‘ (𝑦)} = 1 βˆ’ max {πœ‡π‘ ((π‘₯ β†’ 𝑦) βˆ—), πœ‡π‘ (𝑦)} 𝛾𝑠(π‘₯) ≀ max{𝛾((π‘₯ β†’ 𝑦) βˆ—), 𝛾𝑠(𝑦)}for all π‘₯, 𝑦 ∈ 𝐴 Hence, we have 𝑆 = (πœ‡π‘ , 𝛾𝑠) is an intuitionistic πΉπ‘ŠπΌ-ideal of 𝐴.∎ Intuitionistic FWI-ideals of residuated lattice Wajsberg algebras 189 Proposition 3.12. Let 𝐴 be a residuated lattice Wajsberg algebra and 𝑆 = (πœ‡π‘ , 𝛾𝑠) is an intuitionistic πΉπ‘ŠπΌ-ideal of𝐴. Then 𝑆 = (πœ‡π‘ , 𝛾𝑠) is an intuitionistic FWI-ideal of 𝐴 if and only if (πœ‡π‘ , πœ‡π‘  𝑐 ) and (𝛾𝑠 𝑐 , 𝛾𝑠) are intuitionistic πΉπ‘ŠπΌ-ideal of 𝐴. Proof. Let 𝑆 = (πœ‡π‘ , 𝛾𝑠) be an intuitionistic πΉπ‘ŠπΌ-ideal of 𝐴. Then, πœ‡π‘  and 𝛾𝑠 𝑐 are πΉπ‘ŠπΌ-ideal of 𝐴[From proposition 3.11] Hence, we have (πœ‡π‘ , πœ‡π‘  𝑐 ) and (𝛾𝑠 𝑐 , 𝛾𝑠) are intuitionistic πΉπ‘ŠπΌ-ideal of 𝐴. Conversely, if (πœ‡π‘ , πœ‡π‘  𝑐 ) and (𝛾𝑠 𝑐 , 𝛾𝑠) are intuitionistic πΉπ‘ŠπΌ-idealof 𝐴 [From proposition 3.11] Then, the fuzzy sets πœ‡π‘  and 𝛾𝑠 𝑐 are πΉπ‘ŠπΌ-ideal of 𝐴 Hence, 𝑆 = (πœ‡π‘ , 𝛾𝑠) is an intuitonistic πΉπ‘ŠπΌ-ideal of 𝐴. ∎ Proposition 3.13. Let 𝐴 be residuated lattice Wajsberg algebra, 𝑉 a non-empty subset of [0, 1] and {𝐼𝑑 / 𝑑 ∈ 𝑉} a collection of πΉπ‘ŠπΌ -ideal of 𝐴 such that (i) 𝐴 = 𝐼𝑑 π‘‘βˆˆπ‘£ ⋃ (ii) π‘Ÿ > 𝑑 if and only if πΌπ‘Ÿ βŠ† 𝐼𝑑 for any π‘Ÿ, 𝑑 ∈ 𝑉 then the intuitionistic fuzzy set 𝑆 = (πœ‡π‘ , 𝛾𝑠) of 𝐴 defined by πœ‡π‘  = sup{𝑑 ∈ 𝑉/π‘₯ ∈ 𝐼𝑑 } and𝛾𝑠 = inf{𝑑 ∈ 𝑉/π‘₯ ∈ 𝐼𝑑 } for any π‘₯ ∈ 𝐴 is intuitionistic πΉπ‘ŠπΌ -ideal of 𝐴. Proof. According to proposition 3.10, it is sufficient to show that πœ‡π‘  and 𝛾𝑠 𝑐 are πΉπ‘ŠπΌβ€“idealof 𝐴 for allπ‘₯ ∈ 𝐴. πœ‡π‘ (0) = sup {𝑑 ∈ 𝑉/0 ∈ 𝐼𝑑 } = sup𝑉 β‰₯ πœ‡π‘ (π‘₯) [From (i) of definition 3.1] If there exists π‘₯, 𝑦 ∈ 𝐴 such that πœ‡π‘ (π‘₯) < min {πœ‡π‘ (π‘₯ βŠ— 𝑦), πœ‡π‘ (𝑦)} and πœ‡π‘ (π‘₯) < min {πœ‡π‘ ((π‘₯ β†’ 𝑦) βˆ—), πœ‡π‘ (𝑦)}. There exists 𝑑1 such that πœ‡π‘ (π‘₯) < 𝑑1 < min {πœ‡π‘ (π‘₯ βŠ— 𝑦), πœ‡π‘ (𝑦)} and πœ‡π‘ (π‘₯) < 𝑑1 < min {πœ‡π‘ ((π‘₯ β†’ 𝑦) βˆ—), πœ‡π‘ (𝑦)} It follows that 𝑑1 such that𝑑1 < πœ‡π‘ (π‘₯ βŠ— 𝑦),𝑑1 < πœ‡π‘ ((π‘₯ β†’ 𝑦) βˆ—),𝑑1 < πœ‡π‘ (𝑦) and Hence, there exist 𝑑2, 𝑑3 ∈ 𝑉, 𝑑2 > 𝑑1, 𝑑3 > 𝑑1, (π‘₯ βŠ— 𝑦) ∈ 𝐼𝑑2 , (π‘₯ β†’ 𝑦) βˆ—) ∈ 𝐼𝑑2 and 𝑦 ∈ 𝐼𝑑3 It follows that (π‘₯ βŠ— 𝑦) ∈ 𝐼𝑑2⋀𝑑3 , (π‘₯ β†’ 𝑦) βˆ—) ∈ 𝐼𝑑2⋀𝑑3 and 𝑦 ∈ 𝐼𝑑2⋀𝑑3 Now, we have π‘₯ ∈ 𝐼𝑑2⋀𝑑3 That is, πœ‡π‘ (π‘₯) = sup {𝑑 ∈ 𝑉 π‘₯ ∈ 𝐼𝑑 } β‰₯ 𝑑2⋀𝑑3 > 𝑑1 [From definition 2.16] Therefore, πœ‡π‘ (π‘₯) > 𝑑1 This is a contradiction. Hence, we have πœ‡π‘  is a πΉπ‘ŠπΌ -ideal of 𝐴. 𝛾𝑠 𝑐 is aπΉπ‘ŠπΌ -ideal, which can be proved by similar method. ∎ Shanmugapriya and Ibrahim 190 4. Conclusions In this paper, we have introduced the notions of intuitionistic πΉπ‘ŠπΌ –ideal and intuitionistic fuzzy lattice ideal of residuated Wajsberg algebras. Also, we have shown that every intuitionistic πΉπ‘ŠπΌ- ideal of residuated lattice Wajsberg algebra is an intuitionistic fuzzy lattice ideal of residuated lattice Wajsberg algebra. Further, we have discussed its converse part. References [1] K. T. Atanassav, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, 20(1):87-96,1986. [2] K. T. Atanassov, New Operations Defined Over the Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems,61(2):137-142, 1994. [3] J. M. Font, A. J. Rodriguez and A. Torrens, Wajsberg Algebras, STOCHASTICA, 8 (1): 5-31, 1984. [4] A. Ibrahim and C. Shajitha Begum, On WI-Ideals of Residuated Lattice Wajsberg Algebras, Global Journal of Pure and Applied Mathematics, 13(10): 7237-7254, 2017. [5] A.Ibrahim and C.Shajitha Begum, Fuzzy and Normal Fuzzy WI-ideals of Lattice Wajsberg Algebras, International Journal of Mathematical Archive, 8(11):122-130, 2017. [6] A. Ibrahim and C. Shajitha Begum, Intuitionistic Fuzzy WI-ideals of Lattice Wajsberg algebras, International Journal of Mathematical Archive, 7-17, 2018. [7] A. Ibrahim and R.Shanmugapriya, WI-Ideals of Residuated Lattice Wajsberg Algebras Journal of Applied Science and Computations, 792-798, 2018. [8] A. Ibrahim and R. Shanmugapriya, FWI-Ideals of Residuated Lattice Wajsberg algebras, Journal of Computer and Mathematical Sciences, 491-501, 2019. [9] A. Ibrahim and R. Shanmugapriya, Anti FWI-Ideals of Residuated Lattice Wajsberg Algebras, Advances in Mathematics: Scientific Journal 8:300-306, 2019. [10] M. Wajsberg, Beitrage zum Metaaussagenkalkul, Monat. Mat. Phy. 42: 221-242, 1935. [11] M. Word and R. P. Dilworth, Residuated Lattices, Transactions the American Mathematical Society 45: 335-354, 1939. [12] Yi Liu, Ya Qin, Qin Xiaoyan and Xu Yang, Ideals and Fuzzy Ideals on Residuated Lattices, International Journal of Machine Learning and Cybernetics, Volume 8(1): 239-253, 2017. [13] L. A. Zadeh, Fuzzy Sets, Information and Control, 8(3):338-353, 1965.