Approach of the value of a rent when non-central moments of the capitalization factor are known: an R application with interest rates following normal and beta distributions Ratio Mathematica Volume 41, 2021, pp. 206-222 206 On the solutions of Pellian equation π‘ΌπŸ βˆ’ π‘«π‘½πŸ = π’ŒπŸπ‘΅ Bilkis M. Madni * Devbhadra V. Shah † Abstract In this paper we consider a class of Pell’s equation π‘ˆ2 βˆ’ 𝐷𝑉2 = π‘˜2𝑁, where 𝐷, 𝑁 are positive integers, 𝐷 is non-square and π‘˜ is any integer. When (𝑒, 𝑣) satisfy this equation, we define 𝑒+π‘£βˆšπ· π‘˜ to be its solution. We first introduce the class of solutions of this equation and call 𝑒+π‘£βˆšπ· π‘˜ to be the fundamental solution of the class, if 𝑣 is the smallest positive value which occurs in the solutions of that class. We first derive the necessary and sufficient condition for any two solutions of proposed equation to belong to the same class and the bounds for the values of 𝑒, 𝑣 occurring in the fundamental solution. We also derive an explicit formula which gives all the solutions of this equation. We further present some interesting recurrence relations connecting the values of 𝑒, 𝑣. Finally, we obtain the results for total number of positive solutions of proposed equation not exceeding any given positive real number 𝑍. Keywords: Pell’s equation, Solutions of Pell’s equation, Recurrence relations. 2010 AMS subject classification‑: 11D09, 11D45. * Bilkis Madni (Department of Mathematics, Veer Narmad South Gujarat University, Surat, India); bilkis1110@gmail.com † Devbhadra Shah (Department of Mathematics, Veer Narmad South Gujarat University, Surat, India); drdvshah@yahoo.com ‑Received on July 15, 2021. Accepted on December 25, 2021. Published on December 31, 2021. doi: 10.23755/rm.v41i0.628. ISSN: 1592-7415. eISSN: 2282-8214. Β©The Authors. This paper is published under the CC-BY licence agreement. On the solutions of Pellian equation π‘ˆ2 βˆ’ 𝐷𝑉2 = π‘˜2𝑁 207 1. Introduction In number theory, Pell’s equation falls in the category of Diophantine equations and it is considered to be one of the oldest Diophantine equations. Specifically, the term Pell’s equation is used to refer any Diophantine equation of the form 𝑒2 βˆ’ 𝐷𝑣 2 = 𝑁, (1.1) where 𝐷 and 𝑁 are fixed non-zero integers and we wish to find integers 𝑒 and 𝑣 that satisfy the equation. Throughout, we consider the integer 𝐷 to be positive and non-square. This condition is helpful because only it leaves open the possibility of infinitely many solutions in positive integers 𝑒, 𝑣. Pellian equation π‘₯2 βˆ’ 𝐷𝑦2 = 1, (1.2) where 𝐷 is fixed positive non-square integer, attracted attention of early mathematicians. It is known that (1.2) always has infinitude of solutions. We refer to Stolt [11, 12] who nicely studied the equation π‘₯2 βˆ’ 𝐷𝑦2 = Β±4𝑁. In this paper we use the notions proposed by Stolt. Many authors considered some specific Pell equations and discussed about their solutions. For completeness we recall that there are many papers which considered different types of Pell’s equation. For extensive resources on Pell’s equation, one can refer [1] – [14]. In the present paper we consider the Pellian equation π‘ˆ2 βˆ’ 𝐷𝑉 2 = π‘˜2𝑁, (1.3) where 𝐷, 𝑁 are positive integers, 𝐷 is non-square and π‘˜ is any integer. Throughout we assume that (1.3) is solvable. If (𝑒, 𝑣) satisfy this equation, we define 𝑒+π‘£βˆšπ· π‘˜ to be the solution of (1.3). If 𝑒+π‘£βˆšπ· π‘˜ is any solution of (1.3), π‘₯ + π‘¦βˆšπ· is any solution of (1.2) and π‘₯1 + 𝑦1√𝐷 is its smallest positive solution, then it is easy to observe that 𝑒+π‘£βˆšπ· π‘˜ Γ— (π‘₯ + π‘¦βˆšπ·) is also a solution of (1.3). This solution is said to be associated with the solution 𝑒+π‘£βˆšπ· π‘˜ . Here we note that if two positive solutions 𝑒𝛼+π‘£π›Όβˆšπ· π‘˜ and 𝑒𝛽+π‘£π›½βˆšπ· π‘˜ are associated then there exists an integer 𝑑 such that 𝑒𝛽+π‘£π›½βˆšπ· π‘˜ = 𝑒𝛼+π‘£π›Όβˆšπ· π‘˜ Γ— (π‘₯1 + 𝑦1√𝐷) 𝑑 ; 𝑑 = 0, Β±1, Β± 2, … . (1.4) The set of all solutions associated with other forms a class of solutions of (1.3). Among all the solutions 𝑒+π‘£βˆšπ· π‘˜ in any given class 𝐾 we now choose a solution 𝑒1+𝑣1√𝐷 π‘˜ in the following way: Let 𝑣1 be the least non-negative value of 𝑣 which occurs in 𝐾. Then in this case, 𝑒1 is also uniquely determined. The solution 𝑒1+𝑣1√𝐷 π‘˜ defined in this way is said to be fundamental solution of Bilkis M. Madni, Devbhadra V. Shah 208 the class. It can be observed that 𝑒1+𝑣1√𝐷 π‘˜ is a fundamental solution of class 𝐾 if 𝑒1+𝑣1√𝐷 π‘˜ Γ— (π‘₯1 βˆ’ 𝑦1√𝐷) is not a positive solution of (1.3). Thus if 𝑒𝛼+π‘£π›Όβˆšπ· π‘˜ is any fixed fundamental solution then all the positive solutions given by (1.4) are associated with each other. Moreover, we observe that if (1.3) is solvable, then it has only finite number of classes of solutions. 2. The equation π‘ΌπŸ βˆ’ π‘«π‘½πŸ = π’ŒπŸπ‘΅ It is easy to observe that if 𝑒+π‘£βˆšπ· π‘˜ and 𝑒′+π‘£β€²βˆšπ· π‘˜ are any two integer solutions of (1.3) such that 𝑒 ≑ 𝑒′ and 𝑣 ≑ 𝑣′(π‘šπ‘œπ‘‘ 𝑁), then ( π‘’π‘’β€²βˆ’π·π‘£π‘£β€² π‘˜π‘ , π‘’π‘£β€²βˆ’π‘’β€²π‘£ π‘˜π‘ ) is the positive solution of the equation 𝑅2 βˆ’ 𝐷𝑆2 = π‘˜2. We first present the necessary and sufficient condition for any two solutions of (1.3) to be associated with each other. Theorem 2.1. If 𝑒+π‘£βˆšπ· π‘˜ and 𝑒′+π‘£β€²βˆšπ· π‘˜ are any two solutions of (1.3) then the necessary and sufficient condition for these two solutions to be associated with each other is that 𝑒𝑣′ βˆ’π‘’β€²π‘£ π‘˜π‘ is an integer. Proof. Since 𝑒+π‘£βˆšπ· π‘˜ and 𝑒′+π‘£β€²βˆšπ· π‘˜ are solutions of (1.3), we get 𝑒2 βˆ’ 𝐷𝑣2 = π‘˜2𝑁 and 𝑒′ 2 βˆ’ 𝐷𝑣′ 2 = π‘˜2𝑁. Multiplying these two equations we get ( π‘’π‘’β€²βˆ’π·π‘£π‘£β€² π‘˜π‘ ) 2 βˆ’ 𝐷 ( π‘’π‘£β€²βˆ’π‘’β€²π‘£ π‘˜π‘ ) 2 = π‘˜2. We first show that the solutions 𝑒+π‘£βˆšπ· π‘˜ and 𝑒′+π‘£β€²βˆšπ· π‘˜ of the Pellian equation (1.3) are associated with each other if and only if both π‘’π‘’β€²βˆ’π·π‘£π‘£β€² π‘˜π‘ and π‘’π‘£β€²βˆ’π‘’β€²π‘£ π‘˜π‘ are integers. If two numbers 𝑒𝑒′ βˆ’π·π‘£π‘£β€² π‘˜π‘ and π‘£π‘’β€²βˆ’π‘’π‘£β€² π‘˜π‘ are integers, then ( π‘’π‘’β€²βˆ’π·π‘£π‘£β€² π‘˜π‘ ) 2 βˆ’ 𝐷 ( π‘’π‘£β€²βˆ’π‘’β€²π‘£ π‘˜π‘ ) 2 = π‘˜2. Thus π‘’π‘’β€²βˆ’π·π‘£π‘£β€² π‘˜π‘ + π‘’π‘£β€²βˆ’π‘’β€²π‘£ π‘˜π‘ √𝐷 π‘˜ is a solution of Pellian equation 𝑅2 βˆ’ 𝐷𝑆2 = π‘˜2. Now 𝑒+π‘£βˆšπ· π‘˜ 𝑒′+π‘£β€²βˆšπ· π‘˜ = 𝑒+π‘£βˆšπ· 𝑒′+π‘£β€²βˆšπ· = (𝑒 + π‘£βˆšπ·) Γ— π‘’β€²βˆ’π‘£β€²βˆšπ· Β±π‘˜2𝑁 = π‘’π‘’β€²βˆ’π·π‘£π‘£β€² π‘˜2𝑁 βˆ’ π‘’π‘£β€²βˆ’π‘’β€²π‘£ π‘˜2𝑁 √𝐷. Clearly this is a solution of (1.2). Thus, both the solutions π‘’π‘’β€²βˆ’π·π‘£π‘£β€² π‘˜π‘ and π‘£π‘’β€²βˆ’π‘’π‘£β€² π‘˜π‘ of (1.3) are associated. Conversely let two solutions 𝑒+π‘£βˆšπ· π‘˜ and 𝑒′+π‘£β€²βˆšπ· π‘˜ of (1.3) be associated with each other. Then clearly, they should lie in the same solution class of (1.3). Then On the solutions of Pellian equation π‘ˆ2 βˆ’ 𝐷𝑉2 = π‘˜2𝑁 209 we have 𝑒+π‘£βˆšπ· π‘˜ 𝑒′+π‘£β€²βˆšπ· π‘˜ = π‘’π‘’β€²βˆ’π·π‘£π‘£β€² π‘˜2𝑁 βˆ’ π‘’π‘£β€²βˆ’π‘’β€²π‘£ π‘˜2𝑁 √𝐷, which should be some solution of (1.2). In this case we have 𝑒2 βˆ’ 𝐷𝑣2 = π‘˜2𝑁 and 𝑒′ 2 βˆ’ 𝐷𝑣′ 2 = π‘˜2𝑁. This gives ( π‘’π‘’β€²βˆ’π·π‘£π‘£β€² π‘˜π‘ ) 2 βˆ’ 𝐷 ( π‘£π‘’β€²βˆ’π‘’π‘£β€² π‘˜π‘ ) 2 = π‘˜2. Thus, π‘˜ Γ— ( π‘’π‘’β€²βˆ’π·π‘£π‘£β€² π‘˜2𝑁 , π‘’π‘£β€²βˆ’π‘’β€²π‘£ π‘˜2𝑁 ) = ( π‘’π‘’β€²βˆ’π·π‘£π‘£β€² π‘˜π‘ , π‘’π‘£β€²βˆ’π‘’β€²π‘£ π‘˜π‘ ) is an integer solution of 𝑅2 βˆ’ 𝐷𝑆2 = π‘˜2. Hence π‘’π‘’β€²βˆ’π·π‘£π‘£β€² π‘˜π‘ and π‘’π‘£β€²βˆ’π‘’β€²π‘£ π‘˜π‘ are integers. Thus, it is now sufficient to show that 𝑒𝑒′ βˆ’π·π‘£π‘£β€² π‘˜π‘ is an integer when π‘’π‘£β€²βˆ’π‘’β€²π‘£ π‘˜π‘ is an integer; and π‘’π‘£β€²βˆ’π‘’β€²π‘£ π‘˜π‘ is not an integer when π‘’π‘’β€²βˆ’π·π‘£π‘£β€² π‘˜π‘ is not an integer. Since 𝑒+π‘£βˆšπ· π‘˜ and 𝑒′+π‘£β€²βˆšπ· π‘˜ are solutions of (1.3), we have 𝑒2 βˆ’ 𝐷𝑣2 = Β±π‘˜2𝑁 , 𝑒′ 2 βˆ’ 𝐷𝑣′ 2 = Β±π‘˜2𝑁. Multiplying these two equations we get (𝑒𝑒′ βˆ’ 𝑣𝑣′𝐷)2 βˆ’ 𝐷(𝑒𝑣′ βˆ’ 𝑣𝑒′)2 = π‘˜2(π‘˜π‘)2. (2.1) It is obvious from (2.1) that 𝑒𝑒′ βˆ’ 𝐷𝑣𝑣 β€² is divisible by π‘˜π‘ when 𝑒𝑣′ βˆ’ 𝑒′𝑣 is divisible by π‘˜π‘. That is, π‘’π‘’β€²βˆ’π·π‘£π‘£β€² π‘˜π‘ is an integer when π‘’π‘£β€²βˆ’π‘’β€²π‘£ π‘˜π‘ is an integer. Conversely, if π‘’π‘’β€²βˆ’π·π‘£π‘£β€² π‘˜π‘ is not an integer, then there exists an integer 𝑑 such that 𝑑 | π‘˜π‘ but 𝑑 ∀ (𝑒𝑒′ βˆ’ 𝐷𝑣𝑣′). Now from (2.1) it is seen that if 𝑑 | (𝑒𝑣′ βˆ’ 𝑒′𝑣), then 𝑑 | (𝑒𝑒′ βˆ’ 𝑣𝑣′𝐷) too, which is contrary to the assumption. Thus 𝑑 ∀ (𝑒𝑣′ βˆ’ 𝑒′𝑣), that is π‘’π‘£β€²βˆ’π‘’β€²π‘£ π‘˜π‘ is not an integer, as required. This proves the required result. We now derive the bounds for the values of 𝑒, 𝑣 occurring in the fundamental solutions. Theorem 2.2. If 𝑒+π‘£βˆšπ· π‘˜ is the smallest fundamental solution of the class 𝐾 of the Pellian equation (1.3) and if π‘₯1 + 𝑦1√𝐷 is the fundamental solution of (1.2), then 0 < |𝑒| ≀ π‘˜βˆš (π‘₯1+1)𝑁 2 and 0 ≀ 𝑣 ≀ π‘˜π‘¦1√ 𝑁 2(π‘₯1+1) . Proof. If both the inequalities to be proved are true for a class 𝐾, then they are also true for the conjugate class οΏ½Μ…οΏ½. Thus, we can assume that 𝑒 is positive. Note that 𝑒π‘₯1βˆ’π·π‘£π‘¦1 π‘˜ = 𝑒π‘₯1 π‘˜ βˆ’ (𝑦1√𝐷) ( π‘£βˆšπ· π‘˜ ) = 𝑒π‘₯1 π‘˜ βˆ’ √π‘₯1 2 βˆ’ 1 √ 𝑒2βˆ’π‘˜2𝑁 π‘˜2 = 𝑒π‘₯1 π‘˜2 βˆ’ √(π‘₯1 2 βˆ’ 1) ( 𝑒2 π‘˜2 βˆ’ 𝑁) > 0. Bilkis M. Madni, Devbhadra V. Shah 210 Now consider the solution ( 𝑒+π‘£βˆšπ· π‘˜ ) (π‘₯1 βˆ’ 𝑦1√𝐷) = 𝑒π‘₯1βˆ’π·π‘£π‘¦1+(π‘₯1π‘£βˆ’π‘¦1𝑒)√𝐷 π‘˜ of (1.3) which belongs to the same class as 𝑒+π‘£βˆšπ· π‘˜ . But 𝑒+π‘£βˆšπ· π‘˜ is the fundamental solution of the class and by above 𝑒π‘₯1βˆ’π·π‘£π‘¦1 π‘˜ is positive. Thus, we must have 𝑒π‘₯1βˆ’π·π‘£π‘¦1 π‘˜ β‰₯ 𝑒 π‘˜ , as 𝑒 π‘˜ occurs in fundamental solution of (1.3). From this inequality it now follows that 𝑒π‘₯1 βˆ’ 𝐷𝑣𝑦1 β‰₯ 𝑒. This gives 𝑒(π‘₯1 βˆ’ 1) β‰₯ 𝐷𝑣𝑦1, which gives 𝑒2(π‘₯1 βˆ’ 1) 2 β‰₯ 𝐷2𝑣2𝑦1 2 = (𝑒2 βˆ’ π‘˜2𝑁)(π‘₯1 2 βˆ’ 1). This can be written as 𝑒2 π‘₯1βˆ’1 π‘₯1+1 β‰₯ 𝑒2 βˆ’ π‘˜2𝑁, which eventually gives 𝑒2 ≀ (π‘₯1+1)π‘˜ 2𝑁 2 . This proves the first of required inequality. Again by (1.3) we have 𝐷𝑣2 = 𝑒2 βˆ’ π‘˜2𝑁. Using above inequality, we get 𝐷𝑣2 ≀ (π‘₯1+1)π‘˜ 2𝑁 2 βˆ’ π‘˜2𝑁 = (π‘₯1βˆ’1)π‘˜ 2𝑁 2 . This gives 𝑣 ≀ π‘˜βˆš (π‘₯1βˆ’1)𝑁 2𝐷 = π‘˜βˆš (π‘₯1 2βˆ’1)𝑁 2𝐷(π‘₯1+1) . Since π‘₯1 + 𝑦1√𝐷 is the solution of (1.2), we thus get 0 ≀ 𝑣 ≀ π‘˜π‘¦1√ 𝑁 2(π‘₯1+1) , as required. We now present an illustration to demonstrate the results of this theorem. Illustration. Consider the Pellian equation π‘ˆ2 βˆ’ 7𝑉2 = 18. Then clearly, 𝐷 = 7, π‘˜ = 3 and 𝑁 = 2. If we consider the equation π‘₯2 βˆ’ 7𝑦2 = 1, then it is easy to see that 8 + 3√7 is its fundamental solution. This gives π‘₯1 = 8, 𝑦1 = 3. Now if 𝑒+π‘£βˆš7 3 is the smallest fundamental solution of equation π‘ˆ2 βˆ’ 7𝑉2 = 18, then by above theorem we should have 0 < |𝑒| ≀ 3 Γ— √ 9Γ—2 2 and 0 ≀ 𝑣 ≀ 3 Γ— 3√ 2 2Γ—9 . This gives 0 < |𝑒| ≀ 9 and 0 ≀ 𝑣 ≀ 3. These are indeed true as 5+√7 3 is the smallest fundamental solution of the equation π‘ˆ2 βˆ’ 7𝑉2 = 18. We now prove a very important result which produces all the fundamental solutions of (1.3). Theorem 2.3. If 𝑒𝑖 + 𝑣𝑖 √𝐷 runs through all the fundamental solutions of (1.1) and π‘Ÿπ‘—+π‘ π‘—βˆšπ· π‘˜ runs through all the fundamental solutions of 𝑅2 βˆ’ 𝐷𝑆2 = π‘˜2, then all the fundamental solutions of π‘ˆ2 βˆ’ 𝐷𝑉2 = π‘˜2𝑁 are covered by 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ = ( π‘Ÿπ‘—+π‘ π‘—βˆšπ· π‘˜ ) (𝑒𝑖 Β± 𝑣𝑖 √𝐷). (2.2) On the solutions of Pellian equation π‘ˆ2 βˆ’ 𝐷𝑉2 = π‘˜2𝑁 211 Proof. If we multiply the surd conjugate of (2.2) with (2.2) then we get 𝐴𝑖𝑗 2 βˆ’π·π΅π‘–π‘— 2 π‘˜2 = ( π‘Ÿπ‘— 2βˆ’π·π‘ π‘— 2 π‘˜2 ) (𝑒𝑖 2 βˆ’ 𝐷𝑣𝑖 2). Since 𝑒𝑖 2 βˆ’ 𝐷𝑣𝑖 2 = 𝑁 and π‘Ÿπ‘— 2 βˆ’ 𝐷𝑠𝑗 2 = π‘˜2, we get 𝐴𝑖𝑗 2 βˆ’ 𝐷𝐡𝑖𝑗 2 = π‘˜2𝑁. This shows that 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ defined by (2.2) are the solutions of (1.3). We next show that the solutions 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ defined by (2.2) covers all the fundamental solutions of (1.3). On the contrary assume that there exists some positive solution, say 𝑋+π‘Œβˆšπ· π‘˜ of (1.3) which is not covered by (2.2). Then this solution will lie between any two successive solutions of (1.3) of some fixed class generated by π‘Ÿπ‘—+π‘ π‘—βˆšπ· π‘˜ . This means for some fixed 𝑗, we have ( π‘Ÿπ‘—+π‘ π‘—βˆšπ· π‘˜ ) (𝑒𝑖 Β± 𝑣𝑖 √𝐷) ≀ 𝑋+π‘Œβˆšπ· π‘˜ < ( π‘Ÿπ‘—+π‘ π‘—βˆšπ· π‘˜ ) (𝑒𝑖+1 Β± 𝑣𝑖+1√𝐷). Then 𝑒𝑖 Β± 𝑣𝑖 √𝐷 ≀ ( 𝑋+π‘Œβˆšπ· π‘˜ ) ( π‘˜ π‘Ÿπ‘—+π‘ π‘—βˆšπ· ) < 𝑒𝑖+1 Β± 𝑣𝑖+1√𝐷. This gives 𝑒𝑖 Β± 𝑣𝑖 √𝐷 ≀ ( 𝑋+π‘Œβˆšπ· π‘˜ ) ( π‘Ÿπ‘—βˆ’π‘ π‘—βˆšπ· π‘˜ ) < 𝑒𝑖+1 Β± 𝑣𝑖+1√𝐷. We denote πœ– + π›Ώβˆšπ· = ( 𝑋+π‘Œβˆšπ· π‘˜ ) ( π‘Ÿπ‘—βˆ’π‘ π‘—βˆšπ· π‘˜ ). (2.3) Then 𝑒𝑖 Β± 𝑣𝑖 √𝐷 ≀ πœ– + π›Ώβˆšπ· < 𝑒𝑖+1 Β± 𝑣𝑖+1√𝐷. (2.4) To prove the required result, it is sufficient to prove that (i) πœ– + π›Ώβˆšπ· is a solution of (1.1), and (ii) πœ– > 0 and 𝛿 > 0 or 𝛿 < 0 depending on the sign of 𝑒𝑖 Β± 𝑣𝑖 √𝐷. This will produce one positive solution of (1.1) between two consecutive fundamental solutions of (1.1) for any fixed class 𝑗, which is a contradiction. To prove (i), we multiply surd conjugate of (2.3) with (2.3). This gives πœ– 2 βˆ’ 𝐷𝛿 2 = ( 𝑋2βˆ’π·π‘Œ2 π‘˜2 ) ( π‘Ÿπ‘— 2βˆ’π·π‘ π‘— 2 π‘˜2 ). Since 𝑋2 βˆ’ π·π‘Œ2 = π‘˜2𝑁 and π‘Ÿπ‘— 2 βˆ’ 𝐷𝑠𝑗 2 = π‘˜2, we get πœ– 2 βˆ’ 𝐷𝛿 2 = 𝑁, which proves the first part. Next, we show that πœ– and 𝛿 defined by (2.3) are positive. Now π‘Ÿπ‘— 2 βˆ’ 𝐷𝑠𝑗 2 = π‘˜2 implies ( π‘Ÿπ‘—+π‘ π‘—βˆšπ· π‘˜ ) ( π‘Ÿπ‘—βˆ’π‘ π‘—βˆšπ· π‘˜ ) = 1 and 𝑋+π‘Œβˆšπ· π‘˜ > 1. Since 0 < π‘Ÿπ‘—+π‘ π‘—βˆšπ· π‘˜ < ∞, clearly 0 < π‘Ÿπ‘—βˆ’π‘ π‘—βˆšπ· π‘˜ < ∞. Since πœ– + π›Ώβˆšπ· = ( 𝑋+π‘Œβˆšπ· π‘˜ ) ( π‘Ÿπ‘—βˆ’π‘ π‘—βˆšπ· π‘˜ ), we get 0 < πœ– + π›Ώβˆšπ· < ∞. Also, since πœ– 2 βˆ’ 𝐷𝛿 2 = 𝑁, we get 0 < 𝑁 πœ–βˆ’π›Ώβˆšπ· < ∞, that is 0 < πœ–βˆ’π›Ώβˆšπ· 𝑁 < ∞. This gives 0 < πœ– βˆ’ π›Ώβˆšπ· < ∞. Adding this result with 0 < πœ– + π›Ώβˆšπ· < ∞ proves that πœ– > 0. Bilkis M. Madni, Devbhadra V. Shah 212 We further observe by (2.4) that 1 < 𝑒𝑖 Β± 𝑣𝑖 √𝐷 ≀ πœ– + π›Ώβˆšπ· < 𝑒𝑖+1 Β± 𝑣𝑖+1√𝐷 < ∞. By considering the β€˜+’ sign, we get 0 < 1 πœ–+π›Ώβˆšπ· ≀ 1 𝑒𝑖+π‘£π‘–βˆšπ· < 1. Then 0 < πœ–βˆ’π›Ώβˆšπ· 𝑁 ≀ π‘’π‘–βˆ’π‘£π‘–βˆšπ· 𝑁 , which gives 0 < πœ– βˆ’ π›Ώβˆšπ· ≀ 𝑒𝑖 βˆ’ 𝑣𝑖 √𝐷. Subsequently we get 2π›Ώβˆšπ· = (πœ– + π›Ώβˆšπ·) βˆ’ (πœ– βˆ’ π›Ώβˆšπ·) β‰₯ (𝑒𝑖 + 𝑣𝑖 √𝐷) βˆ’ (𝑒𝑖 βˆ’ 𝑣𝑖 √𝐷) = 2𝑣𝑖 √𝐷. This gives 𝛿 β‰₯ 𝑣𝑖 > 0. Also, if we select β€˜β€“β€™ sign in 𝑒𝑖 Β± 𝑣𝑖 √𝐷, then we have πœ– + π›Ώβˆšπ· < 𝑒𝑖+1 βˆ’ 𝑣𝑖+1√𝐷 < ∞, which implies that 0 < 1 𝑒𝑖+1βˆ’π‘£π‘–+1√𝐷 < 1 πœ–+π›Ώβˆšπ· . Then 0 < 𝑒𝑖+1+𝑣𝑖+1√𝐷 𝑁 < πœ–βˆ’π›Ώβˆšπ· 𝑁 . This gives πœ– βˆ’ π›Ώβˆšπ· > 𝑒𝑖+1 + 𝑣𝑖+1√𝐷. Thus, we get 2π›Ώβˆšπ· = (πœ– + π›Ώβˆšπ·) βˆ’ (πœ– βˆ’ π›Ώβˆšπ·) < (𝑒𝑖+1 βˆ’ 𝑣𝑖+1√𝐷) βˆ’ (𝑒𝑖+1 + 𝑣𝑖+1√𝐷) = βˆ’2𝑣𝑖+1√𝐷. This gives 𝛿 < βˆ’π‘£π‘–+1 < 0. Hence 𝛿 > 0 or 𝛿 < 0 depends on the sign of 𝑒𝑖 Β± 𝑣𝑖 √𝐷, which proves (ii). Hence all the fundamental solutions 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ of (1.3) are covered by (2.2). We illustrate this by an example which justifies the meaning of β€œβ€¦ covered by (2.2)”. Illustration. As earlier we once again consider the equation π‘ˆ2 βˆ’ 7𝑉2 = 18. Then we have 𝐷 = 7, π‘˜ = 3 and 𝑁 = 2. Next, we consider the Pellian equation 𝑅2 βˆ’ 7𝑆2 = 9 and if π‘Ÿπ‘—+π‘ π‘—βˆš7 3 runs through all of its fundamental solutions, then it can be observed that π‘Ÿ1+𝑠1√7 3 = 4+√7 3 , π‘Ÿ2+𝑠2√7 3 = 11+4√7 3 , π‘Ÿ3+𝑠3√7 3 = 24+9√7 3 . Also 𝑒𝑖 + 𝑣𝑖 √7 runs through all the fundamental solutions of 𝑒 2 βˆ’ 7𝑣2 = 2, then we have 𝑒1 Β± 𝑣1√7 = 3 Β± √7. Then above theorem claims that all the fundamental solutions of π‘ˆ2 βˆ’ 7𝑉2 = 18 are covered by 𝐴1𝑗+𝐡1π‘—βˆš2 3 = ( π‘Ÿπ‘—+π‘ π‘—βˆšπ· 3 ) (3 Β± √7); 𝑗 = 1, 2, 3. Thus, 𝐴11+𝐡11√2 3 = ( 4+√7 3 ) (3 Β± √7) = 19+7√7 3 , 5βˆ’βˆš7 3 ; 𝐴12+𝐡12√2 3 = ( 11+4√7 3 ) (3 Β± √7) = 61+23√7 3 , πŸ“+βˆšπŸ• πŸ‘ and 𝐴13+𝐡13√2 3 = ( 24+9√7 3 ) (3 Β± √7) = 135+51√7 3 , πŸ—+πŸ‘βˆšπŸ• πŸ‘ . On the solutions of Pellian equation π‘ˆ2 βˆ’ 𝐷𝑉2 = π‘˜2𝑁 213 It can be observed that 5+√7 3 , 9+3√7 3 and 19+7√7 3 are the only three fundamental solutions of the equation π‘ˆ2 βˆ’ 7𝑉2 = 18. Thus 𝐴1𝑗+𝐡1π‘—βˆš2 3 ; 𝑗 = 1,2,3 covers all the fundamental solutions of π‘ˆ2 βˆ’ 7𝑉2 = 18. Here the smallest fundamental solution of π‘ˆ2 βˆ’ 7𝑉2 = 18 is 5+√7 3 and π‘₯1 + 𝑦1√𝐷 = 8 + 3√7 is the fundamental solution of π‘₯ 2 βˆ’ 7𝑦2 = 1. Then every fundamental solution of π‘ˆ2 βˆ’ 7𝑉2 = 18 should be smaller than 5+√7 3 Γ— (8 + 3√7) = 61+23√7 3 . This is indeed true as the only fundamental solutions of π‘ˆ2 βˆ’ 7𝑉2 = 18 are 𝐴11+𝐡11√2 3 = 19+7√7 3 , 𝐴12+𝐡12√2 3 = 5+√7 3 and 𝐴13+𝐡13√2 3 = 9+3√7 3 . We next derive an explicit formula which produces all the positive solutions of (1.3). Theorem 2.4. If π‘₯1 + 𝑦1√𝐷 is the smallest positive solution of (1.2) and 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ defined by (2.2) runs through all the fundamentals solutions of (1.3), then all the integer solutions 𝑒𝑖𝑗,𝑛+𝑣𝑖𝑗,π‘›βˆšπ· π‘˜ of π‘ˆ2 βˆ’ 𝐷𝑉2 = π‘˜2𝑁 are given by 𝑒𝑖𝑗,𝑛+𝑣𝑖𝑗,π‘›βˆšπ· π‘˜ = ( 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ ) (π‘₯1 + 𝑦1√𝐷) 𝑛 ; 𝑛 β‰₯ 0. (2.5) Proof. If we consider the surd conjugate of (2.5) and multiply with (2.5), we get 𝑒𝑖𝑗,𝑛 2 βˆ’π·π‘£π‘–π‘—,𝑛 2 π‘˜2 = ( 𝐴𝑖𝑗 2 βˆ’π·π΅π‘–π‘— 2 π‘˜2 ) (π‘₯1 2 βˆ’ 𝐷𝑦1 2)𝑛. Since 𝐴𝑖𝑗 2 βˆ’ 𝐷𝐡𝑖𝑗 2 = π‘˜2𝑁 and π‘₯1 2 βˆ’ 𝐷𝑦1 2 = 1, we get 𝑒𝑖𝑗,𝑛 2 βˆ’ 𝐷𝑣𝑖𝑗,𝑛 2 = π‘˜2𝑁. Thus 𝑒𝑖𝑗,𝑛+𝑣𝑖𝑗,π‘›βˆšπ· π‘˜ defined by (2.5) are the solutions of (1.3). We next show that the solutions 𝑒𝑖𝑗,𝑛+𝑣𝑖𝑗,π‘›βˆšπ· π‘˜ defined by (2.5) gives all the positive solutions of (1.3). On the contrary assume that there exists some positive solution, say 𝑋+π‘Œβˆšπ· π‘˜ of (1.3) which is not covered by (2.5). Then this solution will lie between any two successive solutions of (1.3) of some classes generated by 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ (for a fixed 𝑖, 𝑗). This means for some fixed 𝑖, 𝑗 and for some fixed π‘š, we have ( 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ ) (π‘₯1 + 𝑦1√𝐷) π‘š ≀ 𝑋+π‘Œβˆšπ· π‘˜ < ( 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ ) (π‘₯1 + 𝑦1√𝐷) π‘š+1 . Then ( 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ ) ≀ ( 𝑋+π‘Œβˆšπ· π‘˜ ) (π‘₯1 βˆ’ 𝑦1√𝐷) π‘š < ( 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ ) (π‘₯1 + 𝑦1√𝐷). We denote Bilkis M. Madni, Devbhadra V. Shah 214 πœ–+π›Ώβˆšπ· π‘˜ = ( 𝑋+π‘Œβˆšπ· π‘˜ ) (π‘₯1 βˆ’ 𝑦1√𝐷) π‘š . (2.6) Thus, ( 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ ) ≀ πœ–+π›Ώβˆšπ· π‘˜ < ( 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ ) (π‘₯1 + 𝑦1√𝐷). (2.7) To prove the required result, it is sufficient to prove that (i) πœ–+π›Ώβˆšπ· π‘˜ is a solution of (1.3) (ii) πœ– > 0, 𝛿 > 0. (iii) πœ–+π›Ώβˆšπ· π‘˜ is the solution of (1.3) smaller than all its fundamental solutions for the fixed classes 𝑖, 𝑗. This will contradict the fact that 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ runs through every fundamental solution of (1.3) for some fixed value of 𝑖, 𝑗. To prove (i), we take surd conjugate of (2.6) and multiply it with (2.6). This gives πœ–2βˆ’π·π›Ώ2 π‘˜2 = ( 𝑋2βˆ’π·π‘Œ2 π‘˜2 ) (π‘₯1 2 βˆ’ 𝐷𝑦1 2)π‘š. Since 𝑋2 βˆ’ π·π‘Œ2 = π‘˜2𝑁 and π‘₯1 2 βˆ’ 𝐷𝑦1 2 = 1, we get πœ– 2 βˆ’ 𝐷𝛿 2 = π‘˜2𝑁, as required. Again, since 1 < (π‘₯1 + 𝑦1√𝐷) π‘š < ∞ and 𝑋+π‘Œβˆšπ· π‘˜ > 1, we have 0 < (π‘₯1 βˆ’ 𝑦1√𝐷) π‘š < 1. Hence, we get 0 < πœ–+π›Ώβˆšπ· π‘˜ < ∞, as πœ–+π›Ώβˆšπ· π‘˜ = ( 𝑋+π‘Œβˆšπ· π‘˜ ) (π‘₯1 βˆ’ 𝑦1√𝐷) π‘š . This gives 0 < πœ–βˆ’π›Ώβˆšπ· π‘˜π‘ < ∞, that is 0 < πœ–βˆ’π›Ώβˆšπ· π‘˜ < ∞, as πœ– 2 βˆ’ 𝐷𝛿 2 = π‘˜2𝑁. Adding this result with 0 < πœ–+π›Ώβˆšπ· π‘˜ < ∞ proves that πœ– > 0. We further observe by (2.7) that 1 < 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ ≀ πœ–+π›Ώβˆšπ· π‘˜ < ∞. Taking reciprocal, we get 0 < π‘˜ πœ–+π›Ώβˆšπ· ≀ π‘˜ 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· < 1. Then 0 < πœ–βˆ’π›Ώβˆšπ· π‘˜π‘ ≀ π΄π‘–π‘—βˆ’π΅π‘–π‘—βˆšπ· π‘˜π‘ . This gives 0 < πœ–βˆ’π›Ώβˆšπ· π‘˜ ≀ π΄π‘–π‘—βˆ’π΅π‘–π‘—βˆšπ· π‘˜ . Subsequently we get 2π›Ώβˆšπ· π‘˜ = ( πœ–+π›Ώβˆšπ· π‘˜ ) βˆ’ ( πœ–βˆ’π›Ώβˆšπ· π‘˜ ) β‰₯ ( 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ ) βˆ’ ( π΄π‘–π‘—βˆ’π΅π‘–π‘—βˆšπ· π‘˜ ) = 2π΅π‘–π‘—βˆšπ· π‘˜ . This now gives 𝛿 β‰₯ 𝐡𝑖𝑗 > 0. Hence both πœ– > 0, 𝛿 > 0, which proves (ii). Finally, we prove that πœ–+π›Ώβˆšπ· π‘˜ is the smallest solution of (1.3) for the fixed classes 𝑖, 𝑗. On the contrary suppose πœ–+π›Ώβˆšπ· π‘˜ is positive solution of (1.3) but not the smallest solution of any fixed classes 𝑖, 𝑗. In this case πœ–+π›Ώβˆšπ· π‘˜ (π‘₯1 βˆ’ 𝑦1√𝐷) will be the positive solution of (1.3). Then by (2.7) we have 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ ≀ πœ–+π›Ώβˆšπ· π‘˜ < ( 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ ) (π‘₯1 + 𝑦1√𝐷), which gives ( 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ ) (π‘₯1 βˆ’ 𝑦1√𝐷) ≀ πœ–+π›Ώβˆšπ· π‘˜ (π‘₯1 βˆ’ 𝑦1√𝐷) < 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ . On the solutions of Pellian equation π‘ˆ2 βˆ’ 𝐷𝑉2 = π‘˜2𝑁 215 Here 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ runs through every fundamental solution of (1.3). Thus, we can now say that πœ–+π›Ώβˆšπ· π‘˜ (π‘₯1 βˆ’ 𝑦1√𝐷) is a positive solution of (1.3) smaller than all the fundamental solutions 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ of (1.3), which is a contradiction. This contradiction finally assures that there cannot exist any solution of (1.3) which is not covered by (2.5), as required. We illustrate this theorem by the following example: Illustration. Once again we consider the Pellian equation π‘ˆ2 βˆ’ 7𝑉2 = 18 whose all the fundamental solutions are given by 𝐴11+𝐡11√2 3 = 19+7√7 3 ; 𝐴12+𝐡12√2 3 = 5+√7 3 and 𝐴13+𝐡13√2 3 = 9+3√7 3 and π‘₯1 + 𝑦1√𝐷 = 8 + 3√7 is the fundamental solution of π‘₯2 βˆ’ 7𝑦2 = 1. Then the above theorem asserts that all the integer solutions 𝑒1𝑗,𝑛+𝑣1𝑗,π‘›βˆš7 3 of Pellian equation π‘ˆ2 βˆ’ 7𝑉2 = 18 are covered by 𝑒1𝑗,𝑛+𝑣1𝑗,π‘›βˆš7 3 = ( 𝐴1𝑗+𝐡1π‘—βˆš7 3 ) (π‘₯1 + 𝑦1√𝐷) 𝑛 ; 𝑗 = 1,2,3 ; 𝑛 β‰₯ 0. This gives 𝑒11,𝑛+𝑣11,π‘›βˆš7 3 = ( 19+7√7 3 ) (8 + 3√7) 𝑛 ; 𝑒12,𝑛+𝑣12,π‘›βˆš7 3 = ( 5+√7 3 ) (8 + 3√7) 𝑛 and 𝑒13,𝑛+𝑣13,π‘›βˆš7 3 = ( 9+3√7 3 ) (8 + 3√7) 𝑛 . We now prove some recurrence relations for the values of 𝑒𝑖𝑗,𝑛 and 𝑣𝑖𝑗,𝑛. We assume that π‘₯1 + 𝑦1√𝐷 is the fundamental solution of (1.2), 𝑒𝑖 + 𝑣𝑖 √𝐷 runs through all the fundamental solutions of (1.1), π‘Ÿπ‘—+π‘ π‘—βˆšπ· π‘˜ runs through all the fundamental solutions of 𝑅2 βˆ’ 𝐷𝑆2 = π‘˜2, π‘Ÿ β‰₯ 1 is a fixed integer and 𝑛 β‰₯ 1. Theorem 2.5. a) 𝑒𝑖𝑗,𝑛+π‘Ÿ = π‘₯π‘Ÿπ‘’π‘–π‘—,𝑛+π·π‘¦π‘Ÿπ‘£π‘–π‘—,𝑛 π‘˜ , 𝑣𝑖𝑗,𝑛+π‘Ÿ = π‘¦π‘Ÿπ‘’π‘–π‘—,𝑛+π‘₯π‘Ÿπ‘£π‘–π‘—,𝑛 π‘˜ . b) 𝑒𝑖𝑗,𝑛+π‘Ÿ = π‘₯1𝑒𝑖𝑗,𝑛+π‘Ÿβˆ’1+𝐷𝑦1𝑣𝑖𝑗,𝑛+π‘Ÿβˆ’1 π‘˜ , 𝑣𝑖𝑗,𝑛+π‘Ÿ = 𝑦1𝑒𝑖𝑗,𝑛+π‘Ÿβˆ’1+π‘₯1𝑣𝑖𝑗,𝑛+π‘Ÿβˆ’1 π‘˜ . c) 𝑒𝑖𝑗,𝑛+2π‘Ÿ = 2π‘˜π‘₯π‘Ÿπ‘’π‘–π‘—,𝑛+π‘Ÿβˆ’π‘’π‘–π‘—,𝑛 π‘˜2 , 𝑣𝑖𝑗,𝑛+2π‘Ÿ = 2π‘˜π‘₯π‘Ÿπ‘£π‘–π‘—,𝑛+π‘Ÿβˆ’π‘£π‘–π‘—,𝑛 π‘˜2 . Proof. (a) By (2.5), we have 𝑒𝑖𝑗,𝑛+π‘Ÿ+𝑣𝑖𝑗,𝑛+π‘Ÿβˆšπ· π‘˜ = ( 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ ) (π‘₯1 + 𝑦1√𝐷) 𝑛+π‘Ÿ = ( 𝑒𝑖𝑗,𝑛+𝑣𝑖𝑗,π‘›βˆšπ· π‘˜ ) (π‘₯π‘Ÿ + π‘¦π‘Ÿ √𝐷) = (π‘₯π‘Ÿπ‘’π‘–π‘—,𝑛+π·π‘¦π‘Ÿπ‘£π‘–π‘—,𝑛)+(π‘¦π‘Ÿπ‘’π‘–π‘—,𝑛+π‘₯π‘Ÿπ‘£π‘–π‘—,𝑛)√𝐷 π‘˜ . Hence 𝑒𝑖𝑗,𝑛+π‘Ÿ = π‘₯π‘Ÿπ‘’π‘–π‘—,𝑛+π·π‘¦π‘Ÿπ‘£π‘–π‘—,𝑛 π‘˜ , 𝑣𝑖𝑗,𝑛+π‘Ÿ = π‘¦π‘Ÿπ‘’π‘–π‘—,𝑛+π‘₯π‘Ÿπ‘£π‘–π‘—,𝑛 π‘˜ . (b) To prove the second result, we first consider π‘Ÿ = 1 and replace 𝑛 by 𝑛 βˆ’ 1 in the above result. We thus get Bilkis M. Madni, Devbhadra V. Shah 216 𝑒𝑖𝑗,𝑛 = π‘₯1𝑒𝑖𝑗,π‘›βˆ’1+𝐷𝑦1𝑣𝑖𝑗,π‘›βˆ’1 π‘˜ , 𝑣𝑖𝑗,𝑛 = 𝑦1𝑒𝑖𝑗,π‘›βˆ’1+π‘₯1𝑣𝑖𝑗,π‘›βˆ’1 π‘˜ . Then 𝑒𝑖𝑗,𝑛+π‘Ÿ = π‘₯π‘Ÿπ‘’π‘–π‘—,𝑛+π·π‘¦π‘Ÿπ‘£π‘–π‘—,𝑛 π‘˜ = 1 π‘˜ {π‘₯π‘Ÿ ( π‘₯1𝑒𝑖𝑗,π‘›βˆ’1+𝐷𝑦1𝑣𝑖𝑗,π‘›βˆ’1 π‘˜ ) + π·π‘¦π‘Ÿ ( 𝑦1𝑒𝑖𝑗,π‘›βˆ’1+π‘₯1𝑣𝑖𝑗,π‘›βˆ’1 π‘˜ )} = 1 π‘˜ {π‘₯1 ( π‘₯π‘Ÿπ‘’π‘–π‘—,π‘›βˆ’1+π·π‘¦π‘Ÿπ‘£π‘–π‘—,π‘›βˆ’1 π‘˜ ) + 𝐷𝑦1 ( π‘₯π‘Ÿπ‘£π‘–π‘—,π‘›βˆ’1+π‘¦π‘Ÿπ‘’π‘–π‘—,π‘›βˆ’1 π‘˜ )} = π‘₯1𝑒𝑖𝑗,𝑛+π‘Ÿβˆ’1+𝐷𝑦1𝑣𝑖𝑗,𝑛+π‘Ÿβˆ’1 π‘˜ Value of 𝑣𝑖𝑗,𝑛+π‘Ÿ can be obtained accordingly. (c) To prove the final part, we replace 𝑛 by 𝑛 + π‘Ÿ in the first result and using that in (a) above, we obtain 𝑒𝑖𝑗,𝑛+2π‘Ÿ = 1 π‘˜ {π‘₯π‘Ÿ 𝑒𝑖𝑗,𝑛+π‘Ÿ + π·π‘¦π‘Ÿ ( π‘¦π‘Ÿπ‘’π‘–π‘—,𝑛+π‘₯π‘Ÿπ‘£π‘–π‘—,𝑛 π‘˜ )} = 1 π‘˜ {π‘₯π‘Ÿ 𝑒𝑖𝑗,𝑛+π‘Ÿ + π·π‘¦π‘Ÿ 2𝑒𝑖𝑗,𝑛 π‘˜ + π‘₯π‘Ÿ ( π·π‘¦π‘Ÿπ‘£π‘–π‘—,𝑛 π‘˜ )} = 1 π‘˜ {π‘₯π‘Ÿ 𝑒𝑖𝑗,𝑛+π‘Ÿ + π·π‘¦π‘Ÿ 2𝑒𝑖𝑗,𝑛 π‘˜ + π‘₯π‘Ÿ (𝑒𝑖𝑗,𝑛+π‘Ÿ βˆ’ π‘₯π‘Ÿπ‘’π‘–π‘—,𝑛 π‘˜ )} = 1 π‘˜ {2π‘₯π‘Ÿ 𝑒𝑖𝑗,𝑛+π‘Ÿ βˆ’ 𝑒𝑖𝑗,𝑛 π‘˜ (π‘₯π‘Ÿ 2 βˆ’ π·π‘¦π‘Ÿ 2)} Since π‘₯π‘Ÿ + π‘¦π‘Ÿ √𝐷 is a solution of (1.2), we have π‘₯π‘Ÿ 2 βˆ’ π·π‘¦π‘Ÿ 2 = 1. Thus, we obtain 𝑒𝑖𝑗,𝑛+2π‘Ÿ = 2π‘˜π‘₯π‘Ÿπ‘’π‘–π‘—,𝑛+π‘Ÿβˆ’π‘’π‘–π‘—,𝑛 π‘˜2 . Value of 𝑣𝑖𝑗,𝑛+2π‘Ÿ can also be obtained accordingly. We further derive some more interesting properties related with the value of 𝑒𝑖𝑗,𝑛 and 𝑣𝑖𝑗,𝑛. The following interesting recursive formula connects three 𝑒𝑖𝑗,𝑛’s as well as 𝑣𝑖𝑗,𝑛’s when the suffixes are in arithmetic progression. Corollary 2.6. (a) 𝑒𝑖𝑗,𝑛𝑒𝑖𝑗,𝑛+2π‘Ÿ βˆ’ 𝑒𝑖𝑗,𝑛+π‘Ÿ 2 = π‘˜2π·π‘π‘¦π‘Ÿ 2. (b) 𝑣𝑖𝑗,𝑛𝑣𝑖𝑗,𝑛+2π‘Ÿ βˆ’ 𝑣𝑖𝑗,𝑛+π‘Ÿ 2 = βˆ’π‘˜2π‘π‘¦π‘Ÿ 2. Proof. By (2.5) we have 𝑒𝑖𝑗,𝑛+𝑣𝑖𝑗,π‘›βˆšπ· π‘˜ = ( 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ ) (π‘₯1 + 𝑦1√𝐷) 𝑛 . Taking its surd conjugate, we get 𝑒𝑖𝑗,π‘›βˆ’π‘£π‘–π‘—,π‘›βˆšπ· π‘˜ = ( π΄π‘–π‘—βˆ’π΅π‘–π‘—βˆšπ· π‘˜ ) (π‘₯1 βˆ’ 𝑦1√𝐷) 𝑛 . For convenience we write 𝛾 = π‘₯1 + 𝑦1√𝐷, οΏ½Μ…οΏ½ = π‘₯1 βˆ’ 𝑦1√𝐷 and πœ‡π‘–π‘— = 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ , πœ‡π‘–π‘—Μ…Μ…Μ…Μ… = π΄π‘–π‘—βˆ’π΅π‘–π‘—βˆšπ· π‘˜ . Then we have 𝑒𝑖𝑗,𝑛+𝑣𝑖𝑗,π‘›βˆšπ· π‘˜ = πœ‡π‘–π‘— 𝛾 𝑛 and 𝑒𝑖𝑗,π‘›βˆ’π‘£π‘–π‘—,π‘›βˆšπ· π‘˜ = πœ‡π‘–π‘—Μ…Μ…Μ…Μ… οΏ½Μ…οΏ½ 𝑛. Adding and subtracting these two relations, we get 𝑒𝑖𝑗,𝑛 = π‘˜ 2 {πœ‡π‘–π‘— 𝛾 𝑛 + πœ‡π‘–π‘—Μ…Μ…Μ…Μ… οΏ½Μ…οΏ½ 𝑛} and 𝑣𝑖𝑗,𝑛 = π‘˜ 2√𝐷 {πœ‡π‘–π‘— 𝛾 𝑛 βˆ’ πœ‡π‘–π‘—Μ…Μ…Μ…Μ… οΏ½Μ…οΏ½ 𝑛}. On the solutions of Pellian equation π‘ˆ2 βˆ’ 𝐷𝑉2 = π‘˜2𝑁 217 It can be easily observed that 𝛾�̅� = π‘₯1 2 βˆ’ 𝐷𝑦1 2 = 1 and πœ‡π‘–π‘— πœ‡π‘–π‘—Μ…Μ…Μ…Μ… = 𝐴𝑖𝑗 2 βˆ’π·π΅π‘–π‘— 2 π‘˜2 = 𝑁. Then 𝑒𝑖𝑗,𝑛𝑒𝑖𝑗,𝑛+2π‘Ÿ βˆ’ 𝑒𝑖𝑗,𝑛+π‘Ÿ 2 = π‘˜2 4 { (πœ‡π‘–π‘— 𝛾 𝑛 + πœ‡π‘–π‘—Μ…Μ…Μ…Μ… οΏ½Μ…οΏ½ 𝑛)(πœ‡π‘–π‘— 𝛾 𝑛+2π‘Ÿ + πœ‡π‘–π‘—Μ…Μ…Μ…Μ… οΏ½Μ…οΏ½ (𝑛+2π‘Ÿ)) βˆ’(πœ‡π‘–π‘— 𝛾 𝑛+π‘Ÿ + πœ‡π‘–π‘—Μ…Μ…Μ…Μ… οΏ½Μ…οΏ½ (𝑛+π‘Ÿ)) 2 } = π‘˜2 4 { πœ‡π‘–π‘— πœ‡π‘–π‘—Μ…Μ…Μ…Μ… (𝛾 𝑛+2π‘Ÿ οΏ½Μ…οΏ½ 𝑛 + 𝛾 𝑛�̅� (𝑛+2π‘Ÿ)) βˆ’2πœ‡π‘–π‘— πœ‡π‘–π‘—Μ…Μ…Μ…Μ… 𝛾 𝑛+π‘Ÿ οΏ½Μ…οΏ½ (𝑛+π‘Ÿ) } = π‘˜2 4 {𝑁(𝛾 2π‘Ÿ + οΏ½Μ…οΏ½ 2π‘Ÿ) βˆ’ 2𝑁} = π‘˜2𝑁 4 (𝛾 π‘Ÿ βˆ’ οΏ½Μ…οΏ½ π‘Ÿ )2. Since π‘₯π‘Ÿ + π‘¦π‘Ÿ √𝐷 = (π‘₯1 + 𝑦1√𝐷) π‘Ÿ = 𝛾 π‘Ÿ and π‘₯π‘Ÿ βˆ’ π‘¦π‘Ÿ √𝐷 = (π‘₯1 βˆ’ 𝑦1√𝐷) π‘Ÿ = οΏ½Μ…οΏ½ π‘Ÿ, we get 𝑒𝑖𝑗,𝑛𝑒𝑖𝑗,𝑛+2π‘Ÿ βˆ’ 𝑒𝑖𝑗,𝑛+π‘Ÿ 2 = π‘˜2π·π‘π‘¦π‘Ÿ 2. Second result can be proved accordingly. Following result gives some more recurrence relations in the form of a determinant. Theorem 2.7. a) | 𝑒𝑖𝑗,𝑛 𝑒𝑖𝑗,𝑛+π‘Ÿ 𝑣𝑖𝑗,𝑛 𝑣𝑖𝑗,𝑛+π‘Ÿ | = π‘˜π‘¦π‘Ÿ 𝑁 b) | 𝑒𝑖𝑗,𝑛+π‘Ÿβˆ’1 𝑒𝑖𝑗,𝑛+π‘Ÿ 𝑣𝑖𝑗,𝑛+π‘Ÿβˆ’1 𝑣𝑖𝑗,𝑛+π‘Ÿ | = π‘˜π‘¦1𝑁 c) | 1 1 1 𝑒𝑖𝑗,π‘›βˆ’π‘Ÿ 𝑒𝑖𝑗,𝑛 𝑒𝑖𝑗,𝑛+π‘Ÿ 𝑣𝑖𝑗,π‘›βˆ’π‘Ÿ 𝑣𝑖𝑗,𝑛 𝑣𝑖𝑗,𝑛+π‘Ÿ | = βˆ’2π‘˜π‘π‘¦π‘Ÿ (π‘₯π‘Ÿ βˆ’ 1). Proof. We only prove (c), since first two results follow easily through theorem 2.5. Now | 1 1 1 𝑒𝑖𝑗,π‘›βˆ’π‘Ÿ 𝑒𝑖𝑗,𝑛 𝑒𝑖𝑗,𝑛+π‘Ÿ 𝑣𝑖𝑗,π‘›βˆ’π‘Ÿ 𝑣𝑖𝑗,𝑛 𝑣𝑖𝑗,𝑛+π‘Ÿ | = | 𝑒𝑖𝑗,𝑛 𝑒𝑖𝑗,𝑛+π‘Ÿ 𝑣𝑖𝑗,𝑛 𝑣𝑖𝑗,𝑛+π‘Ÿ | βˆ’ | 𝑒𝑖𝑗,π‘›βˆ’π‘Ÿ 𝑒𝑖𝑗,𝑛+π‘Ÿ 𝑣𝑖𝑗,π‘›βˆ’π‘Ÿ 𝑣𝑖𝑗,𝑛+π‘Ÿ | + | 𝑒𝑖𝑗,π‘›βˆ’π‘Ÿ 𝑒𝑖𝑗,𝑛 𝑣𝑖𝑗,π‘›βˆ’π‘Ÿ 𝑣𝑖𝑗,𝑛 | = π‘˜π‘¦π‘Ÿ 𝑁 βˆ’ π‘˜π‘¦2π‘Ÿ 𝑁 + π‘˜π‘¦π‘Ÿ 𝑁 = π‘˜π‘(2π‘¦π‘Ÿ βˆ’ 𝑦2π‘Ÿ ). Now (π‘₯1 + 𝑦1√𝐷) 2π‘Ÿ = π‘₯2π‘Ÿ + 𝑦2π‘Ÿ √𝐷 = (π‘₯π‘Ÿ + π‘¦π‘Ÿ √𝐷) 2 . This gives 𝑦2π‘Ÿ = 2π‘₯π‘Ÿ π‘¦π‘Ÿ . Thus | 1 1 1 𝑒𝑖𝑗,π‘›βˆ’π‘Ÿ 𝑒𝑖𝑗,𝑛 𝑒𝑖𝑗,𝑛+π‘Ÿ 𝑣𝑖𝑗,π‘›βˆ’π‘Ÿ 𝑣𝑖𝑗,𝑛 𝑣𝑖𝑗,𝑛+π‘Ÿ | = π‘˜π‘(2π‘¦π‘Ÿ βˆ’ 2π‘₯π‘Ÿ π‘¦π‘Ÿ ) = βˆ’2π‘˜π‘π‘¦π‘Ÿ (π‘₯π‘Ÿ βˆ’ 1). Bilkis M. Madni, Devbhadra V. Shah 218 3. Number of solutions up to a desired limit In this final section, we define and obtain the values of the sums 𝑅(𝑍) = βˆ‘ 1𝑒𝑖𝑗,𝑛+𝑣𝑖𝑗,π‘›βˆšπ· π‘˜ ≀ 𝑍 π‘ˆ2βˆ’π·π‘‰2=π‘˜2𝑁 , 𝑆(𝑍) = βˆ‘ 1𝑒𝑖𝑗,𝑛 ≀ 𝑍 π‘ˆ2βˆ’π·π‘‰2=π‘˜2𝑁 and 𝑇(𝑍) = βˆ‘ 1𝑣𝑖𝑗,𝑛≀ 𝑍 π‘ˆ2βˆ’π·π‘‰2=π‘˜2𝑁 , the total number of positive solutions 𝑒𝑖𝑗,𝑛+𝑣𝑖𝑗,π‘›βˆšπ· π‘˜ , 𝑒𝑖𝑗,𝑛 and 𝑣𝑖𝑗,𝑛 respectively of (1.3) that do not exceed any given large positive real number 𝑍. For convenience, we denote 𝛿 = 1 log 𝛾 , 𝛾 = π‘₯1 + 𝑦1√𝐷 and let π’œπ‘–π‘— = 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ runs through all the fundamental solutions of (1.3) for any fixed class 𝑖. We also assume that (1.1) has 𝛽 fundamental solutions and the equation 𝑅2 βˆ’ 𝐷𝑆2 = π‘˜2 has πœ‚ fundamental solutions. Thus, throughout we have 1 ≀ 𝑖 ≀ 𝛽 and 1 ≀ 𝑗 ≀ πœ‚. We first obtain the value of 𝑅(𝑍) which gives the number of all the solutions of (1.3) not exceeding any fixed given positive real number 𝑍. Theorem 3.1. 𝑅(𝑍) = 𝛿 {π›½πœ‚ log(𝑍) βˆ’ log(∏ ∏ π’œπ‘–π‘— πœ‚ 𝑗=1 𝛽 𝑖=1 )} + 𝐢, where 𝐢 is the effective constant such that 0 ≀ 𝐢 < π›½πœ‚. Proof. To find the value of 𝑅(𝑍) = βˆ‘ 1𝑒𝑖𝑗,𝑛+𝑣𝑖𝑗,π‘›βˆšπ· π‘˜ ≀ 𝑍 π‘ˆ2βˆ’π·π‘‰2=π‘˜2𝑁 , we first find the number of positive solutions 𝑒𝑖𝑗,𝑛+𝑣𝑖𝑗,π‘›βˆšπ· π‘˜ of (1.3) that do not exceed 𝑍 for some fixed class 𝑖 = 𝛼 (1 ≀ 𝑗 ≀ πœ‚). Since 𝛾 and π’œπ‘–π‘— are solutions of (1.2) and (1.3) respectively, (2.5) can be written as 𝑒𝛼𝑗,𝑛+π‘£π›Όπ‘—π‘›βˆšπ· π‘˜ = π’œπ›Όπ‘— 𝛾 𝑛. Now, for any given 𝑍, it is clear that for some fixed class 𝑖 = 𝛼, there exists some n such that 𝑒𝛼𝑗,𝑛+𝑣𝛼𝑗,π‘›βˆšπ· π‘˜ ≀ 𝑍 < 𝑒𝛼𝑗,𝑛+1+𝑣𝛼𝑗,𝑛+1√𝐷 π‘˜ . Then we get π’œπ›Όπ‘— 𝛾 𝑛 ≀ 𝑍 < π’œπ›Όπ‘— 𝛾 𝑛+1. This implies 𝑛 < log π‘βˆ’log π’œπ›Όπ‘— log 𝛾 < 𝑛 + 1. Since n is an integer, we get 𝑛 = [ log π‘βˆ’log π’œπ›Όπ‘— log 𝛾 ], where [π‘₯] denotes the integer part of π‘₯. Now since [π‘₯] = π‘₯ βˆ’ {π‘₯}, where {π‘₯} is the fractional part of π‘₯ and as 0 ≀ {π‘₯} < 1, we have 𝑅(𝑍) = βˆ‘ βˆ‘ [ log π‘βˆ’log π’œπ‘–π‘— log 𝛾 ] πœ‚ 𝑗=1 𝛽 𝑖=1 = βˆ‘ βˆ‘ ( log π‘βˆ’log π’œπ‘–π‘— log 𝛾 + 𝑐′) πœ‚ 𝑗=1 𝛽 𝑖=1 , where 0 ≀ cβ€² < 1. Thus 𝑅(𝑍) = 1 π‘™π‘œπ‘” 𝛾 βˆ‘ βˆ‘ (log 𝑍 βˆ’ log π’œπ‘–π‘— ) πœ‚ 𝑗=1 𝛽 𝑖=1 + π›½πœ‚π‘ β€². If we write 𝐢 = π›½πœ‚π‘β€², then we get 0 ≀ 𝐢 < π›½πœ‚ and 𝑅(𝑍) = 𝛿 {π›½πœ‚ log(𝑍) βˆ’ log(∏ ∏ π’œπ‘–π‘— πœ‚ 𝑗=1 𝛽 𝑖=1 )} + 𝐢. On the solutions of Pellian equation π‘ˆ2 βˆ’ 𝐷𝑉2 = π‘˜2𝑁 219 We next find the value of 𝑆(𝑍). Theorem 3.2. 𝑆(𝑍) = 𝛿 {π›½πœ‚ log(2𝑍/π‘˜) βˆ’ log(∏ ∏ π’œπ‘–π‘— πœ‚ 𝑗=1 𝛽 𝑖=1 )} + 𝐢, where 𝐢 is the effective constant such that βˆ’π›½πœ‚ ≀ 𝐢 < π›½πœ‚. Proof. To find the value of 𝑆(𝑍), we first find the number of positive solutions of (1.3) where the values 𝑒𝑖𝑗,𝑛 of π‘ˆ do not exceed 𝑍 for some fixed class 𝑖 = 𝛼 (1 ≀ 𝑗 ≀ πœ‚). Now (2.5) can be written as 𝑒𝛼𝑗,𝑛+π‘£π›Όπ‘—π‘›βˆšπ· π‘˜ = π’œπ›Όπ‘— 𝛾 𝑛. Then for any given 𝑍, it is clear that for some fixed class 𝑖 = 𝛼, there exists some n such that 𝑒𝛼𝑗,𝑛 ≀ 𝑍 < 𝑒𝛼𝑗,𝑛+1. Since π’œπ‘–π‘— = 𝐴𝑖𝑗+π΅π‘–π‘—βˆšπ· π‘˜ , we write π’œπ‘–π‘—Μ…Μ… Μ…Μ… Μ… = π΄π‘–π‘—βˆ’π΅π‘–π‘—βˆšπ· π‘˜ . We also have 𝛾 βˆ’1 = π‘₯1 βˆ’ 𝑦1√𝐷. Since 𝛾 and π’œπ‘–π‘— , π’œπ‘–π‘—Μ…Μ… Μ…Μ… Μ… are the solutions of (1.2) and (1.3) respectively, we have 𝛾𝛾 βˆ’1 = 1 and π’œπ›Όπ‘— π’œπ›Όπ‘—Μ…Μ… Μ…Μ… Μ… = 𝑁. Then (2.5) can be written as 𝑒𝛼𝑗,𝑛+𝑣𝛼𝑗,π‘›βˆšπ· π‘˜ = π’œπ›Όπ‘— 𝛾 𝑛. (3.1) Now taking surd-conjugate of (3.1) we get 𝑒𝛼𝑗,π‘›βˆ’π‘£π›Όπ‘—,π‘›βˆšπ· π‘˜ = π’œπ›Όπ‘—Μ…Μ… Μ…Μ… ̅𝛾 βˆ’π‘›. Adding this with (3.1) we now have 𝑒𝛼𝑗,𝑛 = π‘˜ 2 {π’œπ›Όπ‘— 𝛾 𝑛 + π’œπ›Όπ‘—Μ…Μ… Μ…Μ… ̅𝛾 βˆ’π‘›} = π‘˜ 2 {π’œπ›Όπ‘— 𝛾 𝑛 + 𝑁 π’œπ›Όπ‘— 𝛾 βˆ’π‘›}. Since 𝑒𝛼𝑗,𝑛 ≀ 𝑍 < 𝑒𝛼𝑗,𝑛+1, for some n, we get π’œπ›Όπ‘— 𝛾 𝑛 + 𝑁 π’œπ›Όπ‘— 𝛾 βˆ’π‘› ≀ 2𝑍 π‘˜ < π’œπ›Όπ‘— 𝛾 𝑛+1 + 𝑁 π’œπ›Όπ‘— 𝛾 βˆ’π‘›βˆ’1. Also, since 𝑁 π’œπ›Όπ‘— 𝛾 βˆ’π‘› > 0, π’œπ›Όπ‘—Μ…Μ… Μ…Μ… Μ… = 𝑁 π’œπ›Όπ‘— < π’œπ›Όπ‘— and 𝛾 βˆ’1 < 𝛾, we have π’œπ›Όπ‘— 𝛾 𝑛 < 2𝑍 π‘˜ < 2π’œπ›Όπ‘— 𝛾 𝑛+1. Now 𝛾 = π‘₯1 + 𝑦1√𝐷 > 2. Then we have π’œπ›Όπ‘— 𝛾 𝑛 < 2𝑍 π‘˜ < π’œπ›Όπ‘— 𝛾 𝑛+2. This implies 𝑛 < log 2π‘βˆ’log π’œπ›Όπ‘—βˆ’log π‘˜ log 𝛾 < 𝑛 + 2. Since n is an integer, we get 𝑛 ≀ [ log 2π‘βˆ’log π’œπ›Όπ‘—βˆ’log π‘˜ log 𝛾 ] ≀ 𝑛 + 1. This implies 𝑛 = [ log 2π‘βˆ’log π’œπ›Όπ‘— βˆ’log π‘˜ log 𝛾 ] or 𝑛 = [ log 2π‘βˆ’log π’œπ›Όπ‘— βˆ’log π‘˜ log 𝛾 ] βˆ’ 1. Thus 𝑆(𝑍) = βˆ‘ βˆ‘ [ log 2π‘βˆ’log π’œπ›Όπ‘—βˆ’log π‘˜ log 𝛾 ] πœ‚ 𝑗=1 𝛽 𝑖=1 + 𝑐, where 𝑐 = 0 or βˆ’1. Then 𝑆(𝑍) = 1 π‘™π‘œπ‘” 𝛾 βˆ‘ βˆ‘ (log 2𝑍 βˆ’ log π’œπ‘–π‘— βˆ’ log π‘˜ + 𝑐 + 𝑐 β€²) πœ‚ 𝑗=1 𝛽 𝑖=1 , where 0 ≀ cβ€² < 1. Now considering 𝑐 + 𝑐′ = 𝐢′, we have βˆ’1 ≀ 𝐢′ < 1. We can now write 𝑆(𝑍) = π›½πœ‚ π‘™π‘œπ‘” 𝛾 log(2𝑍/π‘˜) βˆ’ 1 π‘™π‘œπ‘” 𝛾 βˆ‘ βˆ‘ log π’œπ‘–π‘— πœ‚ 𝑗=1 𝛽 𝑖=1 + π›½πœ‚πΆ β€². If we write 𝐢 = π›½πœ‚πΆβ€², then we get βˆ’π›½πœ‚ ≀ 𝐢 < π›½πœ‚ and 𝑆(𝑍) = 𝛿 {π›½πœ‚ log(2𝑍/π‘˜) βˆ’ log(∏ ∏ π’œπ‘–π‘— πœ‚ 𝑗=1 𝛽 𝑖=1 )} + 𝐢. Finally, we find the value of 𝑇(𝑍). Bilkis M. Madni, Devbhadra V. Shah 220 Theorem 3.3. 𝑇(𝑍) = 𝛿 {π›½πœ‚ log(2βˆšπ·π‘/π‘˜) βˆ’ log(∏ ∏ π’œπ‘–π‘— πœ‚ 𝑗=1 𝛽 𝑖=1 )} + 𝐢, where 𝐢 is the effective constant such that 0 ≀ 𝐢 < 2π›½πœ‚. Proof. To find the value of 𝑇(𝑍), we first find the number of positive solutions of (1.3) where the values 𝑣𝑖𝑗,𝑛 of 𝑉 do not exceed 𝑍 for some fixed class 𝑖 = 𝛼 (1 ≀ 𝑗 ≀ πœ‚). Now by (2.5) since 𝑒𝛼𝑗,𝑛+𝑣𝛼𝑗,π‘›βˆšπ· π‘˜ = π’œπ›Όπ‘— 𝛾 𝑛 and 𝑒𝛼𝑗,π‘›βˆ’π‘£π›Όπ‘—,π‘›βˆšπ· π‘˜ = π’œπ›Όπ‘—Μ…Μ… Μ…Μ… ̅𝛾 βˆ’π‘›, on subtraction, we get 𝑣𝛼𝑗,𝑛 = π‘˜ 2√𝐷 {π’œπ›Όπ‘— 𝛾 𝑛 βˆ’ π’œπ›Όπ‘—Μ…Μ… Μ…Μ… ̅𝛾 βˆ’π‘›} = π‘˜ 2√𝐷 {π’œπ›Όπ‘— 𝛾 𝑛 βˆ’ 𝑁 π’œπ›Όπ‘— 𝛾 βˆ’π‘›}. Since 𝑣𝛼𝑗,𝑛 ≀ 𝑍 < 𝑣𝛼𝑗,𝑛+1, for some n, we have π’œπ›Όπ‘— 𝛾 𝑛 βˆ’ 𝑁 π’œπ›Όπ‘— 𝛾 βˆ’π‘› ≀ 2βˆšπ·π‘ π‘˜ < π’œπ›Όπ‘— 𝛾 𝑛+1 βˆ’ 𝑁 π’œπ›Όπ‘— 𝛾 βˆ’π‘›βˆ’1. Thus, we have π’œπ›Όπ‘— 𝛾 π‘›βˆ’1 ≀ 2βˆšπ·π‘ π‘˜ < π’œπ›Όπ‘— 𝛾 𝑛+1. This implies 𝑛 βˆ’ 1 < log 2βˆšπ·π‘βˆ’log π’œπ›Όπ‘— βˆ’log π‘˜ log 𝛾 < 𝑛 + 1. Since n is an integer, we have 𝑛 = [ log 2βˆšπ·π‘βˆ’log π’œπ›Όπ‘—βˆ’ log π‘˜ log 𝛾 ] or𝑛 = [ log 2βˆšπ·π‘βˆ’log π’œπ›Όπ‘—βˆ’log π‘˜ log 𝛾 ] + 1. Thus 𝑇(𝑍) = βˆ‘ βˆ‘ [ log 2βˆšπ·π‘βˆ’log π’œπ›Όπ‘—βˆ’log π‘˜ log 𝛾 ] πœ‚ 𝑗=1 𝛽 𝑖=1 + 𝑐, where 𝑐 = 0 or 1. Then 𝑇(𝑍) = 1 π‘™π‘œπ‘” 𝛾 βˆ‘ βˆ‘ (log 2βˆšπ·π‘ βˆ’ log π’œπ‘–π‘— βˆ’ log π‘˜ + 𝑐 + 𝑐 β€²) πœ‚ 𝑗=1 𝛽 𝑖=1 , where 0 ≀ cβ€² < 1. Considering 𝑐 + 𝑐′ = 𝐢′, we have 0 ≀ 𝐢′ < 2. Thus, we now write 𝑇(𝑍) = π›½πœ‚ π‘™π‘œπ‘” 𝛾 log(2βˆšπ·π‘/π‘˜) βˆ’ 1 π‘™π‘œπ‘” 𝛾 βˆ‘ βˆ‘ log π’œπ‘–π‘— πœ‚ 𝑗=1 𝛽 𝑖=1 + π›½πœ‚πΆ β€². If we write 𝐢 = π›½πœ‚πΆβ€², then we get 0 ≀ 𝐢 < 2π›½πœ‚ and 𝑇(𝑍) = 𝛿 {π›½πœ‚ log(2βˆšπ·π‘/π‘˜) βˆ’ log(∏ ∏ π’œπ‘–π‘— πœ‚ 𝑗=1 𝛽 𝑖=1 )} + 𝐢. The Following interesting conclusions are now an easy consequence from these theorems. Corollary 3.4. 𝑇(𝑍) βˆ’ 𝑆(𝑍) β‰ˆ π›Ώπ›½πœ‚ log √𝐷. Corollary 3.5. If the solutions 𝑒𝑖𝑗,𝑛+𝑣𝑖𝑗,π‘›βˆšπ· π‘˜ of π‘ˆ2 βˆ’ 𝐷𝑉2 = π‘˜2𝑁 are considered as lattice points within the square [0, 𝑍] Γ— [0, 𝑍], then density of these lattice points is zero. This follows from the fact that lim π‘›β†’βˆž log 𝑍 𝑍 = 0. On the solutions of Pellian equation π‘ˆ2 βˆ’ 𝐷𝑉2 = π‘˜2𝑁 221 4. Conclusions In this paper, we derived the necessary and sufficient condition for any two solutions of π‘ˆ2 βˆ’ 𝐷𝑉2 = π‘˜2𝑁 to belong to the same class and the bounds for the values of 𝑒, 𝑣 occurring in the fundamental solution. We also derived an explicit formula which gives all its positive solutions. We further obtained some interesting recurrence relations connecting the values of 𝑒, 𝑣. Finally, we obtained the results for total number of its positive solutions not exceeding any given positive real number 𝑍. References [1] Andreescu Titu, Andrica Dorin, Cucurezeanu Ion. An Introduction to Diophantine Equations. BirkhΓ€user Boston Inc, Secaucus, United States. 2010. [2] Burton D. M. Elementary Number Theory. Tata Mc Graw–Hill Pub. Co. Ltd., New Delhi. 2007. [3] Kaplan P., Williams K. S. Pell’s Equation π‘₯2 βˆ’ 𝐷𝑦2 = βˆ’1, βˆ’4 and continued fractions. Journal of Number Theory. 23, 169 – 182, 1986. [4] LeVeque William J. Topics in Number Theory, Vol. I. Addition-Wesley Pub. Co., Inc. 137 – 158, 1956. [5] Madni Bilkis M., Shah Devbhadra V. Alternate proofs for the infinite number of solutions of Pell’s equation. International Journal of Engineering, Science and Mathematics. 7 (4), 255 – 259, April 2018. [6] Matthews K. The Diophantine Equation π‘₯2 βˆ’ 𝐷𝑦2 = 𝑁, 𝐷 > 0. Expositiones Mathematicae.18, 323 – 331, 2000. [7] Mollin R. A., Poorten A. J., Williams H. C. Halfway to a solution of π‘₯2 βˆ’ 𝐷𝑦2 = βˆ’3. Journal de Theorie des Nombres Bordeaux. 6, 421 – 457, 1994. [8] Shah Devbhadra V. On the solutions of Diophantine Equations π‘₯2 βˆ’ 𝐷𝑦2 = Β±4𝑁. Journal of V.N.S.G. University. 4 – B, 56 – 65, 2007. [9] Steuding JΓΆrn. Diophantine Analysis. Chapman & Hall/CRC, Taylor & Francis Group, Boca Raton. 2005. [10] Stevenhagen P. A density conjecture for the negative Pell equation. Computational Algebra and Number Theory, Mathematics and its Applications. 325, 1995. [11] Stolt Bengt. On the Diophantine equation 𝑒2 βˆ’ 𝐷𝑣2 = Β±4𝑁, Part I. Arkiv fΓΆr Matematik. 2 (1), 1 – 23, 1951. [12] Stolt Bengt. On the Diophantine equation 𝑒2 βˆ’ 𝐷𝑣2 = Β±4𝑁, Part II. Arkiv fΓΆr Matematik. 2 (10), 251 – 268, 1951. Bilkis M. Madni, Devbhadra V. Shah 222 [13] Tekcan A. The Pell Equation π‘₯2 βˆ’ 𝐷𝑦2 = Β±4. Applied Mathematical Sciences. 1 (8), 363 – 369, 2007. [14] Telang S. G. Number Theory. Tata Mc Graw–Hill Pub. Co. Ltd., New Delhi. 2004.