Ratio Mathematica Volume 42, 2022 Insertion of terms satisfying the recurrence relations of Horadam sequence and Bifurcating Fibonacci sequences Khushbu Das * Devbhadra Shah † Abstract In this article, we consider the problem of finding general formula for the terms introduced between two given positive integers β€˜π‘Žβ€™ and β€˜π‘β€™ in such a way that the terms of newly formed finite sequence satisfy the recurrence relations of Horadam sequence and some bifurcating Fibonacci sequences. Keywords: Generalized Fibonacci sequences, Horadam sequence, Bifurcating sequence, Inserted terms, Missing terms. 2010 AMS Subject Classification: 11B37, 11B39, 11B99. ‑ * Khushbu Das (Department of Mathematics, Veer Narmad South Gujarat University, Surat, India); khushbudas14@gmail.com. † Devbhadra Shah (Department of Mathematics, Veer Narmad South Gujarat University, Surat, India); drdvshah@yahoo.com. ‑ Received on September 15th, 2021. Accepted on April 17th, 2022. Published on June 30th, 2022. doi: 10.23755/rm.v39i0.639. ISSN: 1592-7415. eISSN: 2282-8214. Β©The Authors. This paper is published under the CC-BY licence agreement. 7 Khushbu J. Das and Devbhadra V. Shah 1 Introduction Consider any two fixed given positive integers π‘Ž and 𝑏 such that π‘Ž < 𝑏. We insert π‘˜ number of terms between π‘Ž and 𝑏 so that every term inserted between follows the given recurrence relation of any generalized Fibonacci sequence. Then we say π‘₯𝑛 (1 ≀ 𝑛 ≀ π‘˜) to be the inserted term (or missing term, as defined by some of the authors) in the finite (generalized Fibonacci-like) sequence π‘Ž,π‘₯1,π‘₯2,π‘₯3,…. ,π‘₯π‘˜,𝑏. The problem of insertion of terms in arithmetic, harmonic, geometric sequence is considered to be elementary which occurs in the high school mathematics. However, not much work is done regarding the general formula for the inserted terms in a Fibonacci-like sequences. Howell [8] presented a proof for finding the 𝑛th term of Fibonacci sequence using vectors and eigenvalues. But he said nothing for the Fibonacci-like sequences. Agnes, et al. [1] provided a formula for inclusion of three consecutive missing terms in Fibonacci-like sequence. Horadam [7] defined a linear recurrence sequence of second order 𝐹𝑛(𝑝,π‘ž), acknowledged as Horadam sequence, by the recurrence relation 𝐹𝑛 (𝑝,π‘ž) = π‘πΉπ‘›βˆ’1 (𝑝,π‘ž) + π‘žπΉπ‘›βˆ’2 (𝑝,π‘ž) with the initial conditions 𝐹0 (𝑝,π‘ž) = π‘Ž,𝐹1 (𝑝,π‘ž) = 𝑐, where π‘Ž,𝑐 and 𝑝,π‘ž are arbitrary positive integers. First few terms of this sequence are shown in the Table 1. n 𝑭𝒏 (𝒑,𝒒) 0 π‘Ž 1 𝑐 2 𝑝𝑐 + π‘žπ‘Ž 3 𝑝2𝑐 + π‘π‘žπ‘Ž + π‘žπ‘ 4 𝑝3𝑐 + 𝑝2π‘žπ‘Ž + 2π‘π‘žπ‘ + π‘ž2π‘Ž 5 𝑝4𝑐 + 𝑝3π‘žπ‘Ž + 3𝑝2π‘žπ‘ + 2π‘π‘ž2π‘Ž + π‘ž2𝑐 6 𝑝5𝑐 + 𝑝4π‘žπ‘Ž + 4𝑝3π‘žπ‘ + 3𝑝2π‘ž2π‘Ž + 3π‘π‘ž2𝑐 + π‘ž3π‘Ž Table 1 8 Insertion of terms satisfying the recurrence relations of Horadam sequence and Bifurcating Fibonacci sequences The Binet-type explicit formula for the terms of this sequence is given by πΉπ‘˜ (𝑝,π‘ž) = (π‘βˆ’π‘Žπ›½)π›Όπ‘˜βˆ’(π‘βˆ’π‘Žπ›Ό)π›½π‘˜ π›Όβˆ’π›½ , where 𝛼 = 𝑝+βˆšπ‘2+4π‘ž 2 ,𝛽 = π‘βˆ’βˆšπ‘2+4π‘ž 2 . Here we note that 𝛼 βˆ’ 𝛽 = βˆšπ‘2 + 4π‘ž, 𝛼 + 𝛽 = 𝑝 and 𝛼𝛽 = βˆ’π‘ž. Diwan, Shah [4,5] considered the sequence {𝐹𝑛 (𝑝,π‘ž,π‘Ÿ,𝑠) } defined by the recurrence relation 𝐹𝑛 (𝑝,π‘ž,π‘Ÿ,𝑠) = π‘πœ’(𝑛)π‘ž1βˆ’πœ’(𝑛)πΉπ‘›βˆ’1 (𝑝,π‘ž,π‘Ÿ,𝑠) + π‘Ÿπœ’(𝑛)𝑠1βˆ’πœ’(𝑛)πΉπ‘›βˆ’2 (𝑝,π‘ž,π‘Ÿ,𝑠) , (1.1) where 𝑝,π‘ž,π‘Ÿ,𝑠 are any fixed positive integers and πœ’(𝑛) = { 1;if 𝑛 is odd 0;if 𝑛 is even . They studied this sequence extensively for some explicit values of 𝑝,π‘ž,π‘Ÿ,𝑠. Verma and Bala, Bilgici, Yayenie [2,9,10] also studied this sequence for some specific values of 𝑝,π‘ž,π‘Ÿ,𝑠. It is easy to observe that this sequence is bifurcating sequence depending on the parity of 𝑛. In this paper we derive the general formula which gives the value of any inserted term π‘₯𝑛 (1 ≀ 𝑛 ≀ π‘˜) for the sequence {𝐹𝑛(𝑝,π‘ž)} and various bifurcating subsequence of {𝐹𝑛 (𝑝,π‘ž,π‘Ÿ,𝑠) } by considering some fixed values of 𝑝,π‘ž,π‘Ÿ,𝑠. Throughout we assume that the positive integers π‘Ž,𝑏 are the given first and last term respectively in the sequence to be considered. 2 Insertion of terms satisfying the recurrence relation of Horadam sequence In this section, we find the formula for the inserted terms between the given fixed positive integers π‘Ž,𝑏 so that terms of the sequence π‘Ž,π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜,𝑏 satisfies the recurrence relation of 𝐹𝑛(𝑝,π‘ž). Before finding the general formula, we find the formula for the first term π‘₯1 in the finite sequence π‘Ž,π‘₯1,π‘₯2,π‘₯3,…. ,π‘₯π‘˜,𝑏. This value of π‘₯1 will be further used to find the general formula for any π‘₯𝑛 (1 ≀ 𝑛 ≀ π‘˜). In [7], Horadam obtained only the formula for the first missing term (inserted term) π‘₯1 when π‘˜ terms are inserted between given two positive 9 Khushbu J. Das and Devbhadra V. Shah integers π‘Ž and 𝑏, so that all π‘₯𝑖’s satisfy the recurrence relation of 𝐹𝑛 (𝑝,π‘ž) . In fact, he proved that π‘₯1 = π‘βˆ’π‘Žπ‘žπΉπ‘˜ (𝑝,π‘ž) 𝐹 π‘˜+1 (𝑝,π‘ž) . (2.1) In the following theorem, we obtain the general formula for any arbitrary term π‘₯𝑛 (1 ≀ 𝑛 ≀ π‘˜) when π‘˜ terms π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜ are inserted between positive integers π‘Ž and 𝑏, so that all π‘₯𝑖’s satisfy the recurrence relation of 𝐹𝑛 (𝑝,π‘ž) . Theorem 2.1. When the terms π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜ are inserted between given integers π‘Ž and 𝑏 in such a way that the finite sequence π‘Ž,π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜,𝑏 satisfy the recurrence relation of 𝐹𝑛 (𝑝,π‘ž) , then the general formula for any arbitrary term π‘₯𝑛 (1 ≀ 𝑛 ≀ π‘˜) is given by π‘₯𝑛 = 𝐹𝑛 (𝑝,π‘ž) 𝑏(π›Όβˆ’π›½)βˆ’π‘Žπ‘žπΉπ‘› (𝑝,π‘ž) {(π‘βˆ’π‘Žπ›½)π›Όπ‘˜βˆ’(π‘βˆ’π‘Žπ›Ό)𝛽 π‘˜ }+π‘Žπ‘žπΉπ‘›βˆ’1 (𝑝,π‘ž) {(π‘βˆ’π‘Žπ›½)π›Όπ‘˜+1βˆ’(π‘βˆ’π‘Žπ›Ό)𝛽 π‘˜+1 } (π‘βˆ’π‘Žπ›½)π›Όπ‘˜+1βˆ’(π‘βˆ’π‘Žπ›Ό)𝛽 π‘˜+1 . (2.2) Proof. We prove the result by the principle of mathematical induction. For we π‘˜ = 1, we get 𝑛 = 1 and π‘₯1 = 𝐹1 (𝑝,π‘ž) 𝑏(π›Όβˆ’π›½)βˆ’π‘Žπ‘žπΉ1 (𝑝,π‘ž) {(π‘βˆ’π‘Žπ›½)π›Όβˆ’(π‘βˆ’π‘Žπ›Ό)𝛽}+π‘Žπ‘žπΉ0 (𝑝,π‘ž) {(π‘βˆ’π‘Žπ›½)𝛼2βˆ’(π‘βˆ’π‘Žπ›Ό)𝛽 2 } (π‘βˆ’π‘Žπ›½)𝛼2βˆ’(π‘βˆ’π‘Žπ›Ό)𝛽 2 = π‘βˆ’π‘Žπ‘žπ‘ 𝑐𝑝+π‘Žπ‘ž , which is same as (2.1). Next, we assume that (2.2) holds for some positive integer not exceeding 𝑛. Then both the following results hold: π‘₯π‘›βˆ’1 = πΉπ‘›βˆ’1 (𝑝,π‘ž) 𝑏(π›Όβˆ’π›½)βˆ’π‘Žπ‘žπΉπ‘›βˆ’1 (𝑝,π‘ž) {(π‘βˆ’π‘Žπ›½)π›Όπ‘˜βˆ’(π‘βˆ’π‘Žπ›Ό)𝛽 π‘˜ }+π‘Žπ‘žπΉπ‘›βˆ’2 (𝑝,π‘ž) {(π‘βˆ’π‘Žπ›½)π›Όπ‘˜+1βˆ’(π‘βˆ’π‘Žπ›Ό)𝛽 π‘˜+1 } (π‘βˆ’π‘Žπ›½)π›Όπ‘˜+1βˆ’(π‘βˆ’π‘Žπ›Ό)𝛽 π‘˜+1 and π‘₯𝑛 = 𝐹𝑛 (𝑝,π‘ž) 𝑏(π›Όβˆ’π›½)βˆ’π‘Žπ‘žπΉπ‘› (𝑝,π‘ž) {(π‘βˆ’π‘Žπ›½)π›Όπ‘˜βˆ’(π‘βˆ’π‘Žπ›Ό)𝛽 π‘˜ }+π‘Žπ‘žπΉπ‘›βˆ’1 (𝑝,π‘ž) {(π‘βˆ’π‘Žπ›½)π›Όπ‘˜+1βˆ’(π‘βˆ’π‘Žπ›Ό)𝛽 π‘˜+1 } (π‘βˆ’π‘Žπ›½)π›Όπ‘˜+1βˆ’(π‘βˆ’π‘Žπ›Ό)𝛽 π‘˜+1 Now consider 𝑝π‘₯𝑛 + π‘žπ‘₯π‘›βˆ’1 = (𝑝𝐹𝑛 (𝑝,π‘ž) +π‘žπΉπ‘›βˆ’1 (𝑝,π‘ž) )𝑏(π›Όβˆ’π›½)βˆ’π‘Žπ‘ž(𝑝𝐹𝑛 (𝑝,π‘ž) +π‘žπΉπ‘›βˆ’1 (𝑝,π‘ž) ){(π‘βˆ’π‘Žπ›½)π›Όπ‘˜βˆ’(π‘βˆ’π‘Žπ›Ό)π›½π‘˜} +π‘Žπ‘ž(π‘πΉπ‘›βˆ’1 (𝑝,π‘ž) +π‘žπΉπ‘›βˆ’2 (𝑝,π‘ž) ){(π‘βˆ’π‘Žπ›½)π›Όπ‘˜+1βˆ’(π‘βˆ’π‘Žπ›Ό)π›½π‘˜+1} (π‘βˆ’π‘Žπ›½)π›Όπ‘˜+1βˆ’(π‘βˆ’π‘Žπ›Ό)π›½π‘˜+1 = 𝐹𝑛+1 (𝑝,π‘ž) 𝑏(π›Όβˆ’π›½)βˆ’π‘Žπ‘žπΉπ‘›+1 (𝑝,π‘ž) {(π‘βˆ’π‘Žπ›½)π›Όπ‘˜βˆ’(π‘βˆ’π‘Žπ›Ό)π›½π‘˜} +π‘Žπ‘žπΉπ‘› (𝑝,π‘ž) {(π‘βˆ’π‘Žπ›½)π›Όπ‘˜+1βˆ’(π‘βˆ’π‘Žπ›Ό)π›½π‘˜+1} (π‘βˆ’π‘Žπ›½)π›Όπ‘˜+1βˆ’(π‘βˆ’π‘Žπ›Ό)π›½π‘˜+1 . It can be observed that the right side of this result simplifies to π‘₯𝑛+1. Thus, by (2.2) is true for every positive integer 𝑛. 10 Insertion of terms satisfying the recurrence relations of Horadam sequence and Bifurcating Fibonacci sequences 3 Insertion of terms satisfying the recurrence relation of bifurcating sequence 𝑭𝒏 (𝒑,𝒒,𝟏,𝟏) In this section, we find the formula for the inserted terms between the numbers π‘Ž and 𝑏 so that terms of the sequence π‘Ž,π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜,𝑏 satisfies the recurrence relation (1.2). If we let 𝑝 = π‘ž = π‘Ÿ = 𝑠 = 1, the sequence {𝐹𝑛 (𝑝,π‘ž,π‘Ÿ,𝑠) } is the sequence of usual Fibonacci numbers. If we define 𝐹0 (𝑝,π‘ž,π‘Ÿ,𝑠) = 0,𝐹1 (𝑝,π‘ž,π‘Ÿ,𝑠) = 1, then first few terms of this sequence are shown in Table 2. n 𝑭𝒏 (𝒑,𝒒,𝒓,𝒔) 0 0 1 1 2 π‘ž 3 π‘π‘ž + π‘Ÿ 4 π‘π‘ž2 + π‘žπ‘Ÿ + π‘žπ‘  5 𝑝2π‘ž2 + 2π‘π‘žπ‘Ÿ + π‘π‘žπ‘  + π‘Ÿ2 6 𝑝2π‘ž3 + 2π‘π‘ž2π‘Ÿ + 2π‘π‘ž2𝑠 + π‘Ÿ2π‘ž + π‘ π‘žπ‘Ÿ + π‘žπ‘ 2 Table 2 If we consider π‘Ÿ = 𝑠 = 1 in (1.1), we get the sequence {𝐹𝑛 (𝑝,π‘ž,1,1) } whose terms are defined by the recurrence relation 𝐹𝑛 (𝑝,π‘ž,1,1) = π‘πœ’(𝑛)π‘ž1βˆ’πœ’(𝑛)πΉπ‘›βˆ’1 (𝑝,π‘ž,1,1) + πΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) , where 𝐹0 (𝑝,π‘ž,1,1) = 0,𝐹1 (𝑝,π‘ž,1,1) = 1. This can be written in the form 𝐹𝑛 (𝑝,π‘ž,1,1) = { π‘πΉπ‘›βˆ’1 (𝑝,π‘ž,1,1) + πΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) ;when 𝑛 is odd π‘žπΉπ‘›βˆ’1 (𝑝,π‘ž,1,1) + πΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) ;when 𝑛 is even (𝑛 β‰₯ 2) (3.1) with the initial conditions 𝐹0 (𝑝,π‘ž,1,1) = 0,𝐹1 (𝑝,π‘ž,1,1) = 1. First few terms of this sequence are shown in Table 3. This sequence was studied in detail by Diwan, Shah [4] as well as Edson, Yayenie [6]. They derived the Binet-type explicit formula for the terms of this sequence as πΉπ‘˜ (𝑝,π‘ž,1,1) = π‘ž1βˆ’πœ’(π‘˜) (π‘π‘ž) [ π‘˜ 2 ] ( π›Όπ‘˜βˆ’π›½π‘˜ π›Όβˆ’π›½ ), where 𝛼 = π‘π‘ž+βˆšπ‘2π‘ž2+4π‘π‘ž 2 ,𝛽 = π‘π‘žβˆ’βˆšπ‘2π‘ž2+4π‘π‘ž 2 . Here we note that 𝛼 βˆ’ 𝛽 = βˆšπ‘2π‘ž2 + 4π‘π‘ž, 𝛼 + 𝛽 = π‘π‘ž and 𝛼𝛽 = βˆ’π‘π‘ž. 11 Khushbu J. Das and Devbhadra V. Shah n 𝑭𝒏 (𝒑,𝒒,𝟏,𝟏) 0 0 1 1 2 π‘ž 3 π‘π‘ž + 1 4 π‘π‘ž2 + 2π‘ž 5 𝑝2π‘ž2 + 3π‘π‘ž + 1 6 𝑝2π‘ž3 + 4π‘π‘ž2 + 3π‘ž Table 3 When we consider the sequence π‘Ž,π‘₯1,𝑏, where π‘₯1 is the only inserted term between π‘Ž and 𝑏, then using 𝐹2 (𝑝,π‘ž,1,1) = π‘žπΉ1 (𝑝,π‘ž,1,1) + 𝐹0 (𝑝,π‘ž,1,1) , we get 𝑏 = π‘žπ‘₯1 + π‘Ž. Thus π‘₯1 = π‘βˆ’π‘Ž π‘ž . When we consider the finite sequence π‘Ž,π‘₯1,π‘₯2,𝑏, so that it satisfies (3.1), we observe that π‘₯1 = π‘₯2βˆ’π‘Ž π‘ž and π‘₯2 = π‘βˆ’π‘₯1 𝑝 . This gives π‘₯2 = π‘π‘ž+π‘Ž π‘π‘ž+1 and π‘₯1 = π‘βˆ’π‘Žπ‘ π‘π‘ž+1 . Further, considering the sequence π‘Ž,π‘₯1,π‘₯2,π‘₯3,𝑏, it is now easy to observe that π‘₯1 = π‘₯2βˆ’π‘Ž π‘ž ,π‘₯2 = π‘₯3βˆ’π‘₯1 𝑝 and π‘₯3 = bβˆ’π‘₯2 π‘ž . Solving these three equations in three variables π‘₯1,π‘₯2,π‘₯3 we get π‘₯1 = π‘βˆ’π‘Ž(π‘π‘ž+1) π‘π‘ž2+2π‘ž ,π‘₯2 = π‘π‘ž+π‘Žπ‘ž π‘π‘ž2+2π‘ž ,π‘₯3 = π‘βˆ’π‘Ž+π‘π‘π‘ž π‘π‘ž2+2π‘ž . If we continue extending the above finite sequence one more time, then we get the sequence π‘Ž,π‘₯1,π‘₯2,π‘₯3,π‘₯4,𝑏. Using the similar approach as above, we obtain π‘₯1 = π‘βˆ’π‘Ž(𝑝2π‘ž+2𝑝) 𝑝2π‘ž2+3π‘π‘ž+1 ,π‘₯2 = π‘π‘ž+π‘Žπ‘π‘ž+π‘Ž 𝑝2π‘ž2+3π‘π‘ž+1 ,π‘₯3 = π‘βˆ’π‘Žπ‘+π‘π‘π‘ž 𝑝2π‘ž2+3π‘π‘ž+1 and π‘₯4 = π‘Ž+2π‘π‘ž+π‘π‘π‘ž2 𝑝2π‘ž2+3π‘π‘ž+1 . We mention these results in the Table 4. Number of inserted terms Formula x1 x2 x3 x4 1 𝑏 βˆ’ π‘Ž π‘ž --- --- --- 2 𝑏 βˆ’ π‘Žπ‘ π‘π‘ž + 1 π‘π‘ž + π‘Ž π‘π‘ž + 1 --- --- 3 𝑏 βˆ’ π‘Ž(π‘π‘ž + 1) π‘π‘ž2 + 2π‘ž π‘π‘ž + π‘Žπ‘ž π‘π‘ž2 + 2π‘ž 𝑏 βˆ’ π‘Ž + π‘π‘π‘ž π‘π‘ž2 + 2π‘ž --- 4 𝑏 βˆ’ π‘Ž(𝑝2π‘ž + 2𝑝) 𝑝2π‘ž2 + 3π‘π‘ž + 1 π‘π‘ž + π‘Žπ‘π‘ž + π‘Ž 𝑝2π‘ž2 + 3π‘π‘ž + 1 𝑏 βˆ’ π‘Žπ‘ + π‘π‘π‘ž 𝑝2π‘ž2 + 3π‘π‘ž + 1 π‘Ž + 2π‘π‘ž + π‘π‘π‘ž2 𝑝2π‘ž2 + 3π‘π‘ž + 1 Table 4 12 Insertion of terms satisfying the recurrence relations of Horadam sequence and Bifurcating Fibonacci sequences From this table, we observe that there is a similar pattern for the first inserted term in case of any number of inserted terms. We thus generalize it for the case of any number of inserted terms and when the terms π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜ are inserted between given two positive integers π‘Ž and 𝑏, we can now write the general formula for π‘₯1 as π‘₯1 = π‘βˆ’π‘Žπ‘1βˆ’πœ’(π‘˜)π‘žπœ’(π‘˜)βˆ’1𝐹 π‘˜ (𝑝,π‘ž,1,1) 𝐹 π‘˜+1 (𝑝,π‘ž,1,1) . (3.2) Next, when the terms π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜ are inserted between given two positive integers π‘Ž and 𝑏, we obtain the general formula for 𝑛th inserted term (1 ≀ 𝑛 ≀ π‘˜) using the recurrence relation (3.1). Theorem 3.1. When the terms π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜ are inserted between given integers π‘Ž and 𝑏, so that all π‘₯𝑖’s satisfy the recurrence relation of 𝐹𝑛 (𝑝,π‘ž,1,1) , the general formula for any arbitrary term π‘₯𝑛 (1 ≀ 𝑛 ≀ π‘˜) is given by π‘₯𝑛 = 𝐹𝑛 (𝑝,π‘ž,1,1) π‘βˆ’π‘ŽπΉπ‘› (𝑝,π‘ž,1,1) 𝑝1βˆ’πœ’(π‘˜)π‘žπœ’(π‘˜)βˆ’1πΉπ‘˜ (𝑝,π‘ž,1,1) +π‘Žπ‘πœ’(𝑛)π‘žβˆ’πœ’(𝑛)πΉπ‘›βˆ’1 (𝑝,π‘ž,1,1) πΉπ‘˜+1 (𝑝,π‘ž,1,1) 𝐹 π‘˜+1 (𝑝,π‘ž,1,1) . Proof. We use the principle of mathematical induction to prove the result. Since by (3.2), we have π‘₯1 = π‘βˆ’π‘Žπ‘1βˆ’πœ’(π‘˜)π‘žπœ’(π‘˜)βˆ’1𝐹 π‘˜ (𝑝,π‘ž,1,1) 𝐹 π‘˜+1 (𝑝,π‘ž,1,1) , which proves the result for 𝑛 = 1. We next assume that it is true for all positive integers not exceeding 𝑛. Then the following holds: π‘₯π‘›βˆ’1 = πΉπ‘›βˆ’1 (𝑝,π‘ž,1,1) π‘βˆ’π‘ŽπΉπ‘›βˆ’1 (𝑝,π‘ž,1,1) 𝑝1βˆ’πœ’(π‘˜)π‘žπœ’(π‘˜)βˆ’1πΉπ‘˜ (𝑝,π‘ž,1,1) +π‘Žπ‘πœ’(π‘›βˆ’1)π‘žβˆ’πœ’(π‘›βˆ’1)πΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) πΉπ‘˜+1 (𝑝,π‘ž,1,1) 𝐹 π‘˜+1 (𝑝,π‘ž,1,1) π‘₯π‘›βˆ’2 = πΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) π‘βˆ’π‘ŽπΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) 𝑝1βˆ’πœ’(π‘˜)π‘žπœ’(π‘˜)βˆ’1πΉπ‘˜ (𝑝,π‘ž,1,1) +π‘Žπ‘πœ’(π‘›βˆ’2)π‘žβˆ’πœ’(π‘›βˆ’2)πΉπ‘›βˆ’3 (𝑝,π‘ž,1,1) πΉπ‘˜+1 (𝑝,π‘ž,1,1) 𝐹 π‘˜+1 (𝑝,π‘ž,1,1) . Now, π‘πœ’(𝑛)π‘ž1βˆ’πœ’(𝑛)π‘₯π‘›βˆ’1 + π‘₯π‘›βˆ’2 = { (𝑝 πœ’(𝑛)π‘ž1βˆ’πœ’(𝑛)πΉπ‘›βˆ’1 (𝑝,π‘ž,1,1) +πΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) )π‘βˆ’π‘Ž(π‘πœ’(𝑛)π‘ž1βˆ’πœ’(𝑛)πΉπ‘›βˆ’1 (𝑝,π‘ž,1,1) +πΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) ) ×𝑝1βˆ’πœ’(π‘˜)π‘žπœ’(π‘˜)βˆ’1πΉπ‘˜ (𝑝,π‘ž,1,1) +π‘Ž(π‘πœ’(𝑛)π‘ž1βˆ’πœ’(𝑛)π‘πœ’(π‘›βˆ’1)π‘žβˆ’πœ’(π‘›βˆ’1)πΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) +π‘πœ’(π‘›βˆ’2)π‘žβˆ’πœ’(π‘›βˆ’2)πΉπ‘›βˆ’3 (𝑝,π‘ž,1,1) )πΉπ‘˜+1 (𝑝,π‘ž,1,1) } 𝐹 π‘˜+1 (𝑝,π‘ž,1,1) = { 𝐹𝑛 (𝑝,π‘ž,1,1) π‘βˆ’π‘ŽπΉπ‘› (𝑝,π‘ž,1,1) 𝑝1βˆ’πœ’(π‘˜)π‘žπœ’(π‘˜)βˆ’1πΉπ‘˜ (𝑝,π‘ž,1,1) +π‘Ž(π‘πœ’(𝑛)+πœ’(π‘›βˆ’1)π‘ž1βˆ’(πœ’(𝑛)+πœ’(π‘›βˆ’1))πΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) +π‘πœ’(𝑛)π‘žβˆ’πœ’(𝑛)πΉπ‘›βˆ’3 (𝑝,π‘ž,1,1) )πΉπ‘˜+1 (𝑝,π‘ž,1,1) } 𝐹 π‘˜+1 (𝑝,π‘ž,1,1) 13 Khushbu J. Das and Devbhadra V. Shah = { 𝐹𝑛 (𝑝,π‘ž,1,1) π‘βˆ’π‘ŽπΉπ‘› (𝑝,π‘ž,1,1) 𝑝1βˆ’πœ’(π‘˜)π‘žπœ’(π‘˜)βˆ’1πΉπ‘˜ (𝑝,π‘ž,1,1) +π‘Ž(π‘πΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) +π‘πœ’(𝑛)π‘žβˆ’πœ’(𝑛)πΉπ‘›βˆ’3 (𝑝,π‘ž,1,1) )πΉπ‘˜+1 (𝑝,π‘ž,1,1) } 𝐹 π‘˜+1 (𝑝,π‘ž,1,1) . Now, when 𝑛 is odd, we get π‘πΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) + π‘πœ’(𝑛)π‘žβˆ’πœ’(𝑛)πΉπ‘›βˆ’3 (𝑝,π‘ž,1,1) = π‘πœ’(𝑛)π‘ž1βˆ’πœ’(𝑛)πΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) + π‘πœ’(𝑛)π‘žβˆ’πœ’(𝑛)πΉπ‘›βˆ’3 (𝑝,π‘ž,1,1) = π‘πœ’(𝑛)π‘žβˆ’πœ’(𝑛) (π‘žπΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) + πΉπ‘›βˆ’3 (𝑝,π‘ž,1,1) ) = π‘πœ’(𝑛)π‘žβˆ’πœ’(𝑛) (π‘πœ’(π‘›βˆ’1)π‘ž1βˆ’πœ’(π‘›βˆ’1)πΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) + πΉπ‘›βˆ’3 (𝑝,π‘ž,1,1) ) = π‘πœ’(𝑛)π‘žβˆ’πœ’(𝑛)πΉπ‘›βˆ’1 (𝑝,π‘ž,1,1) . Also, when 𝑛 is even, we get π‘πΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) + π‘πœ’(𝑛)π‘žβˆ’πœ’(𝑛)πΉπ‘›βˆ’3 (𝑝,π‘ž,1,1) = 𝑝1βˆ’πœ’(𝑛)π‘žπœ’(𝑛)πΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) + π‘πœ’(𝑛)π‘žβˆ’πœ’(𝑛)πΉπ‘›βˆ’3 (𝑝,π‘ž,1,1) = π‘πœ’(𝑛)π‘žβˆ’πœ’(𝑛) (𝑝1βˆ’2πœ’(𝑛)π‘ž2πœ’(𝑛)πΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) + πΉπ‘›βˆ’3 (𝑝,π‘ž,1,1) ) = π‘πœ’(𝑛)π‘žβˆ’πœ’(𝑛) (π‘πœ’(π‘›βˆ’1)π‘ž1βˆ’πœ’(π‘›βˆ’1)πΉπ‘›βˆ’2 (𝑝,π‘ž,1,1) + πΉπ‘›βˆ’3 (𝑝,π‘ž,1,1) ) = π‘πœ’(𝑛)π‘žβˆ’πœ’(𝑛)πΉπ‘›βˆ’1 (𝑝,π‘ž,1,1) Therefore, we have π‘₯𝑛 = 𝑝 πœ’(𝑛)π‘ž1βˆ’πœ’(𝑛)π‘₯π‘›βˆ’1 + π‘₯π‘›βˆ’2 = { 𝐹𝑛 (𝑝,π‘ž,1,1) π‘βˆ’π‘ŽπΉπ‘› (𝑝,π‘ž,1,1) 𝑝1βˆ’πœ’(π‘˜)π‘žπœ’(π‘˜)βˆ’1πΉπ‘˜ (𝑝,π‘ž,1,1) +π‘Ž(π‘πœ’(𝑛)π‘žβˆ’πœ’(𝑛)πΉπ‘›βˆ’1 (𝑝,π‘ž,1,1) )πΉπ‘˜+1 (𝑝,π‘ž,1,1) } 𝐹 π‘˜+1 (𝑝,π‘ž,1,1) , which proves the result for every positive integer 𝑛. 4 Insertion of terms satisfying the recurrence relation of bifurcating sequence 𝑭𝒏 (𝒑,𝟏,𝟏,𝒔) If we consider π‘ž = π‘Ÿ = 1 in (1.1), the sequence {𝐹𝑛 (𝑝,1,1,𝑠) } whose terms are defined by the recurrence relation 𝐹𝑛 (𝑝,1,1,𝑠) = π‘πœ’(𝑛)πΉπ‘›βˆ’1 (𝑝,1,1,𝑠) + 𝑠1βˆ’πœ’(𝑛)πΉπ‘›βˆ’2 (𝑝,1,1,𝑠) , where 𝐹0 (𝑝,1,1,𝑠) = 0,𝐹1 (𝑝,1,1,𝑠) = 1. This can be written in the form 𝐹𝑛 (𝑝,1,1,𝑠) = { π‘πΉπ‘›βˆ’1 (𝑝,1,1,𝑠) + πΉπ‘›βˆ’2 (𝑝,1,1,𝑠) ;when 𝑛 is odd πΉπ‘›βˆ’1 (𝑝,1,1,𝑠) + π‘ πΉπ‘›βˆ’2 (𝑝,1,1,𝑠) ;when 𝑛 is even (𝑛 β‰₯ 2) (4.1) 14 Insertion of terms satisfying the recurrence relations of Horadam sequence and Bifurcating Fibonacci sequences with the initial conditions 𝐹0 (𝑝,1,1,𝑠) = 0,𝐹1 (𝑝,1,1,𝑠) = 1. First few terms of this sequence are shown in Table 5. n 𝑭𝒏 (𝒑,𝟏,𝟏,𝒔) 0 0 1 1 2 1 3 1 + 𝑝 4 1 + 𝑝 + 𝑠 5 1 + 2𝑝 + 𝑝𝑠 + 𝑝2 6 1 + 𝑠 + 2𝑝 + 2𝑝𝑠 + 𝑝2 + 𝑠2 Table 5 This sequence was studied by Diwan, Shah [4]. They obtained Binet-type explicit formula for the terms of this sequence as 𝐹𝑛 (𝑝,1,1,𝑠) = (π›Όβˆ’π‘ )πœ’(𝑛)𝛼 [ 𝑛 2 ] βˆ’(π›½βˆ’π‘ )πœ’(𝑛)𝛽 [ 𝑛 2 ] π›Όβˆ’π›½ , where 𝛼 = (𝑝+𝑠+1)+√(𝑝+𝑠+1)2βˆ’4𝑠 2 ,𝛽 = (𝑝+𝑠+1)βˆ’βˆš(𝑝+𝑠+1)2βˆ’4𝑠 2 . This gives 𝛼 βˆ’ 𝛽 = √(𝑝 + 𝑠 + 1)2 βˆ’ 4𝑠,𝛼 + 𝛽 = 𝑝 + 𝑠 + 1 and 𝛼𝛽 = 𝑠. In this section, we find the formula for the inserted terms between the numbers π‘Ž and 𝑏 so that terms of the sequence π‘Ž,π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜,𝑏 satisfies the recurrence relation (4.1). When we consider the sequence π‘Ž,π‘₯1,𝑏, by using 𝐹2 (𝑝,1,1,𝑠) = 𝐹1 (𝑝,1,1,𝑠) + 𝑠𝐹0 (𝑝,1,1,𝑠) , we get 𝑏 = π‘₯1 + π‘ π‘Ž. Thus π‘₯1 = 𝑏 βˆ’ π‘ π‘Ž. This basic formula will be used to find the other terms. When we consider the finite sequence as π‘Ž,π‘₯1,π‘₯2,𝑏, so that it satisfies (4.1), we observe that π‘₯1 = π‘₯2 βˆ’ 𝑠 and π‘₯2 = π‘βˆ’π‘₯1 𝑝 . This gives π‘₯2 = 𝑏+π‘ π‘Ž 1+𝑝 and π‘₯1 = π‘βˆ’π‘ π‘Žπ‘ 1+𝑝 . Further, considering the sequence π‘Ž,π‘₯1,π‘₯2,π‘₯3,𝑏, it is now easy to observe that π‘₯1 = π‘₯2 βˆ’ π‘ π‘Ž,π‘₯2 = π‘₯3βˆ’π‘₯1 𝑝 and π‘₯3 = 𝑏 βˆ’ 𝑠π‘₯2. Solving these three equations in three variables π‘₯1,π‘₯2,π‘₯3 we get π‘₯1 = π‘βˆ’π‘Žπ‘ (𝑝+𝑠) 1+𝑝+𝑠 ,π‘₯2 = 𝑏+π‘ π‘Ž 1+𝑝+𝑠 ,π‘₯3 = 𝑏+π‘π‘βˆ’π‘Žπ‘ 2 1+𝑝+𝑠 . If we continue extending the above finite sequence one more time, then we get the sequence π‘Ž,π‘₯1,π‘₯2,π‘₯3,π‘₯4,𝑏. Using the similar approach as above, we 15 Khushbu J. Das and Devbhadra V. Shah obtain π‘₯1 = π‘βˆ’π‘ π‘Ž(𝑝2+𝑝+𝑝𝑠) 1+2𝑝+𝑝𝑠+𝑝2 ,π‘₯2 = 𝑏+π‘ π‘Žπ‘+π‘ π‘Ž 1+2𝑝+𝑝𝑠+𝑝2 ,π‘₯3 = 𝑏+π‘π‘βˆ’π‘ 2π‘π‘Ž 1+2𝑝+𝑝𝑠+𝑝2 and π‘₯4 = 𝑏+𝑝𝑏+𝑠𝑏+𝑠2π‘Ž 1+2𝑝+𝑝𝑠+𝑝2 . We mention these results in the Table 6. Number of inserted terms Formula π‘₯1 π‘₯2 π‘₯3 π‘₯4 1 𝑏 βˆ’ π‘ π‘Ž --- --- --- 2 𝑏 βˆ’ π‘ π‘Žπ‘ 1 + 𝑝 𝑏 + π‘ π‘Ž 1 + 𝑝 --- --- 3 𝑏 βˆ’ π‘ π‘Ž(𝑝 + 𝑠) 1 + 𝑝 + 𝑠 𝑏 + π‘ π‘Ž 1 + 𝑝 + 𝑠 𝑏 + 𝑏𝑝 βˆ’ π‘Žπ‘ 2 1 + 𝑝 + 𝑠 --- 4 𝑏 βˆ’ π‘ π‘Ž(𝑝2 + 𝑝 + 𝑝𝑠) 1 + 2𝑝 + 𝑝𝑠 + 𝑝2 𝑏 + π‘ π‘Žπ‘ + π‘ π‘Ž 1 + 2𝑝 + 𝑝𝑠 + 𝑝2 𝑏 + 𝑝𝑏 βˆ’ 𝑠2π‘π‘Ž 1 + 2𝑝 + 𝑝𝑠 + 𝑝2 𝑏 + 𝑝𝑏 + 𝑠𝑏 + 𝑠2π‘Ž 1 + 2𝑝 + 𝑝𝑠 + 𝑝2 Table 6 From this Table, we observe that there is a similar pattern for the first inserted term in case of any number of inserted terms. We thus generalize it for the case of π‘˜ number of inserted terms and we can now write the general formula for π‘₯1 as π‘₯1 = π‘βˆ’π‘ π‘Ž{𝐹 π‘˜+1 (𝑝,1,1,𝑠) βˆ’πΉ π‘˜βˆ’1 (𝑝,1,1,𝑠) } 𝐹 π‘˜+1 (𝑝,1,1,𝑠) . (4.2) Next, when the terms π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜ are inserted between given two positive integers π‘Ž and 𝑏, we obtain the general formula for 𝑛th inserted term (1 ≀ 𝑛 ≀ π‘˜) using the recurrence relation (4.1). Theorem 4.1. When the terms π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜ are inserted between given integers π‘Ž and 𝑏, so that all π‘₯𝑖’s satisfy the recurrence relation of 𝐹𝑛 (𝑝,1,1,𝑠) , the general formula for any arbitrary term π‘₯𝑛 (1 ≀ 𝑛 ≀ π‘˜) is given by π‘₯𝑛 = 𝐹𝑛 (𝑝,1,1,𝑠) 𝑏+π‘ π‘ŽπΉπ‘› (𝑝,1,1,𝑠) πΉπ‘˜βˆ’1 (𝑝,1,1,𝑠) βˆ’π‘ π‘ŽπΉπ‘›βˆ’2 (𝑝,1,1,𝑠) πΉπ‘˜+1 (𝑝,1,1,𝑠) 𝐹 π‘˜+1 (𝑝,1,1,𝑠) . Proof. We use the principle of mathematical induction to prove the result. Since by (4.2), we have π‘₯1 = π‘βˆ’π‘ π‘Ž{𝐹 π‘˜+1 (𝑝,1,1,𝑠) βˆ’πΉ π‘˜βˆ’1 (𝑝,1,1,𝑠) } 𝐹 π‘˜+1 (𝑝,1,1,𝑠) , which proves the result for 𝑛 = 1. We next assume that it is true for all positive integers not exceeding 𝑛. Then the following holds: 16 Insertion of terms satisfying the recurrence relations of Horadam sequence and Bifurcating Fibonacci sequences π‘₯π‘›βˆ’1 = πΉπ‘›βˆ’1 (𝑝,1,1,𝑠) 𝑏+π‘ π‘ŽπΉπ‘›βˆ’1 (𝑝,1,1,𝑠) πΉπ‘˜βˆ’1 (𝑝,1,1,𝑠) βˆ’π‘ π‘ŽπΉπ‘›βˆ’3 (𝑝,1,1,𝑠) πΉπ‘˜+1 (𝑝,1,1,𝑠) 𝐹 π‘˜+1 (𝑝,1,1,𝑠) and π‘₯π‘›βˆ’2 = πΉπ‘›βˆ’2 (𝑝,1,1,𝑠) 𝑏+π‘ π‘ŽπΉπ‘›βˆ’2 (𝑝,1,1,𝑠) πΉπ‘˜βˆ’1 (𝑝,1,1,𝑠) βˆ’π‘ π‘ŽπΉπ‘›βˆ’4 (𝑝,1,1,𝑠) πΉπ‘˜+1 (𝑝,1,1,𝑠) 𝐹 π‘˜+1 (𝑝,1,1,𝑠) . Now, π‘πœ’(𝑛)π‘₯π‘›βˆ’1 + 𝑠 1βˆ’πœ’(𝑛)π‘₯π‘›βˆ’2 = { (π‘πœ’(𝑛)πΉπ‘›βˆ’1 (𝑝,1,1,𝑠) +𝑠1βˆ’πœ’(𝑛)πΉπ‘›βˆ’2 (𝑝,1,1,𝑠) )𝑏+π‘ π‘Ž(π‘πœ’(𝑛)πΉπ‘›βˆ’1 (𝑝,1,1,𝑠) +𝑠1βˆ’πœ’(𝑛)πΉπ‘›βˆ’2 (𝑝,1,1,𝑠) )πΉπ‘˜βˆ’1 (𝑝,1,1,𝑠) βˆ’π‘ π‘Ž(π‘πœ’(𝑛)πΉπ‘›βˆ’3 (𝑝,1,1,𝑠) +𝑠1βˆ’πœ’(𝑛)πΉπ‘›βˆ’4 (𝑝,1,1,𝑠) )πΉπ‘˜+1 (𝑝,1,1,𝑠) } 𝐹 π‘˜+1 (𝑝,1,1,𝑠) = {𝐹𝑛 (𝑝,1,1,𝑠) 𝑏+π‘ π‘ŽπΉπ‘› (𝑝,1,1,𝑠) πΉπ‘˜βˆ’1 (𝑝,1,1,𝑠) βˆ’π‘ π‘Ž( π‘πœ’(π‘›βˆ’2)πΉπ‘›βˆ’3 (𝑝,1,1,𝑠) +𝑠1βˆ’πœ’(π‘›βˆ’2)πΉπ‘›βˆ’4 (𝑝,1,1,𝑠) )πΉπ‘˜+1 (𝑝,1,1,𝑠) } 𝐹 π‘˜+1 (𝑝,1,1,𝑠) = 𝐹𝑛 (𝑝,1,1,𝑠) 𝑏+π‘ π‘ŽπΉπ‘› (𝑝,1,1,𝑠) πΉπ‘˜βˆ’1 (𝑝,1,1,𝑠) βˆ’π‘ π‘ŽπΉπ‘›βˆ’2 (𝑝,1,1,𝑠) πΉπ‘˜+1 (𝑝,1,1,𝑠) 𝐹 π‘˜+1 (𝑝,1,1,𝑠) = π‘₯𝑛, which proves the result for every positive integer 𝑛. 5 Insertion of terms satisfying the recurrence relation of bifurcating sequence 𝑭𝒏 (𝟏,𝒒,𝒓,𝟏) If we consider 𝑝 = 𝑠 = 1 in (1.1), then we get the sequence {𝐹𝑛 (1,π‘ž,π‘Ÿ,1) } whose terms are defined by the recurrence relation 𝐹𝑛 (1,π‘ž,π‘Ÿ,1) = π‘žπœ’(𝑛)πΉπ‘›βˆ’1 (1,π‘ž,π‘Ÿ,1) + π‘Ÿ1βˆ’πœ’(𝑛)πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) , where 𝐹0 (1,π‘ž,π‘Ÿ,1) = 0,𝐹1 (1,π‘ž,π‘Ÿ,1) = 1.This can be written in the form 𝐹𝑛 (1,π‘ž,π‘Ÿ,1) = { πΉπ‘›βˆ’1 (1,π‘ž,π‘Ÿ,1) + π‘ŸπΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) ;when 𝑛 is odd π‘žπΉπ‘›βˆ’1 (1,π‘ž,π‘Ÿ,1) + πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) ;when 𝑛 is even (𝑛 β‰₯ 2) (5.1) with the initial conditions 𝐹0 (1,π‘ž,π‘Ÿ,1) = 0,𝐹1 (1,π‘ž,π‘Ÿ,1) = 1. First few terms of this sequence are shown in Table 7. Diwan, Shah [4] studied this sequence and obtained the Binet-type explicit formula for the terms of this sequence as 𝐹𝑛 (1,π‘ž,π‘Ÿ,1) = π‘ž1βˆ’πœ’(𝑛) { (π›Όβˆ’1)πœ’(𝑛)𝛼 [ 𝑛 2 ] βˆ’(π›½βˆ’1)πœ’(𝑛)𝛽 [ 𝑛 2 ] π›Όβˆ’π›½ }, where 𝛼 = (π‘Ÿ+π‘ž+1)+√(π‘Ÿ+π‘ž+1)2βˆ’4π‘ž 2 ,𝛽 = (π‘Ÿ+π‘ž+1)βˆ’βˆš(π‘Ÿ+π‘ž+1)2βˆ’4π‘ž 2 with 𝛼 βˆ’ 𝛽 = √(π‘Ÿ + π‘ž + 1)2 βˆ’ 4π‘ž,𝛼 + 𝛽 = π‘Ÿ + π‘ž + 1,𝛼𝛽 = π‘Ÿ. 17 Khushbu J. Das and Devbhadra V. Shah n 𝑭𝒏 (𝟏,𝒒,𝒓,𝟏) 0 0 1 1 2 π‘ž 3 π‘Ÿ + π‘ž 4 π‘ž + π‘Ÿπ‘ž + π‘ž2 5 π‘ž + 2π‘žπ‘Ÿ + π‘Ÿ2 + π‘ž2 6 π‘ž + π‘Ÿπ‘ž + 2π‘Ÿπ‘ž2 + 2π‘ž2 + π‘Ÿ2π‘ž + π‘ž3 Table 7 In this section, we find the formula for the inserted terms between the numbers π‘Ž and 𝑏 so that terms of the sequence π‘Ž,π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜,𝑏 satisfies the recurrence relation (5.1). When we consider the sequence π‘Ž,π‘₯1,𝑏, using 𝐹2 (1,π‘ž,π‘Ÿ,1) = π‘žπΉ1 (1,π‘ž,π‘Ÿ,1) + 𝐹0 (1,π‘ž,π‘Ÿ,1) , we get 𝑏 = π‘žπ‘₯1 + π‘Ž. Thus π‘₯1 = π‘βˆ’π‘Ž π‘ž . When we consider the sequence as π‘Ž,π‘₯1,π‘₯2,𝑏, so that it satisfies (5.1), we observe that π‘₯1 = π‘₯2βˆ’π‘Ž π‘ž and π‘₯2 = 𝑏 βˆ’ π‘Ÿπ‘₯1. This gives π‘₯2 = π‘žπ‘+π‘Ÿπ‘Ž π‘Ÿ+π‘ž and π‘₯1 = π‘βˆ’π‘Ž π‘Ÿ+π‘ž . Further, considering the sequence π‘Ž,π‘₯1,π‘₯2,π‘₯3,𝑏, it is now easy to observe that π‘₯1 = π‘₯2βˆ’π‘Ž π‘ž , π‘₯2 = π‘₯3 βˆ’ π‘Ÿπ‘₯1, π‘₯2 = π‘₯3 βˆ’ π‘Ÿπ‘₯1 and π‘₯3 = π‘βˆ’π‘₯2 π‘ž . Solving these three equations in three variables π‘₯1,π‘₯2,π‘₯3 we get π‘₯1 = π‘βˆ’π‘Ž(π‘ž+1) π‘ž2+π‘ž+π‘Ÿπ‘ž , π‘₯2 = π‘π‘ž+π‘Ÿπ‘žπ‘Ž π‘ž2+π‘ž+π‘Ÿπ‘ž ,π‘₯3 = π‘π‘ž+π‘π‘Ÿβˆ’π‘Ÿπ‘Ž π‘ž2+π‘ž+π‘Ÿπ‘ž . If we continue extending the above finite sequence one more time, then we get the sequence π‘Ž,π‘₯1,π‘₯2,π‘₯3,π‘₯4,𝑏. Using the similar approach as above, we obtain π‘₯1 = π‘βˆ’π‘Ž(1+π‘Ÿ+π‘ž) π‘ž2+π‘Ÿ2+2π‘Ÿπ‘ž+π‘ž ,π‘₯2 = π‘π‘ž+π‘Žπ‘Ÿ2+π‘Žπ‘Ÿπ‘ž π‘ž2+π‘Ÿ2+2π‘Ÿπ‘ž+π‘ž ,π‘₯3 = π‘π‘ž+π‘Ÿπ‘βˆ’π‘Žπ‘Ÿ π‘ž2+π‘Ÿ2+2π‘Ÿπ‘ž+π‘ž ,π‘₯4 = π‘π‘ž2+π‘Ÿπ‘π‘ž+π‘žπ‘+π‘Žπ‘Ÿ2 π‘ž2+π‘Ÿ2+2π‘Ÿπ‘ž+π‘ž . We mention these results in the Table 8. From this table, we observe that there is a similar pattern for the first inserted term in case of any number of inserted terms. We thus generalize it for the case of any number of inserted terms and when the terms π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜ are inserted between given two positive integers π‘Ž and 𝑏, we can now write the general formula for π‘₯1 as π‘₯1 = π‘βˆ’π‘Ž{[( 1βˆ’π‘Ÿ π‘ž )𝐹 π‘˜βˆ’1 (1,π‘ž,π‘Ÿ,1) +𝐹 π‘˜ (1,π‘ž,π‘Ÿ,1) ] πœ’(π‘˜) [ 1 π‘ž 𝐹 π‘˜ (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(π‘˜) } 𝐹 π‘˜+1 (1,π‘ž,π‘Ÿ,1) . (5.2) 18 Insertion of terms satisfying the recurrence relations of Horadam sequence and Bifurcating Fibonacci sequences Number of inserted term Formula π‘₯1 π‘₯2 π‘₯3 π‘₯4 1 𝑏 βˆ’ π‘Ž π‘ž --- --- --- 2 𝑏 βˆ’ π‘Ž π‘Ÿ + π‘ž π‘žπ‘ + π‘Ÿπ‘Ž π‘Ÿ + π‘ž --- --- 3 𝑏 βˆ’ π‘Ž(π‘ž + 1) π‘ž2 + π‘ž + π‘Ÿπ‘ž π‘π‘ž + π‘Ÿπ‘žπ‘Ž π‘ž2 + π‘ž + π‘Ÿπ‘ž π‘π‘ž + π‘π‘Ÿ βˆ’ π‘Ÿπ‘Ž π‘ž2 + π‘ž + π‘Ÿπ‘ž --- 4 𝑏 βˆ’ π‘Ž(1 + π‘Ÿ + π‘ž) π‘ž2 + π‘Ÿ2 + 2π‘Ÿπ‘ž + π‘ž π‘π‘ž + π‘Žπ‘Ÿ2 + π‘Žπ‘Ÿπ‘ž π‘ž2 + π‘Ÿ2 + 2π‘Ÿπ‘ž + π‘ž π‘π‘ž + π‘Ÿπ‘ βˆ’ π‘Žπ‘Ÿ π‘ž2 + π‘Ÿ2 + 2π‘Ÿπ‘ž + π‘ž π‘π‘ž2 + π‘Ÿπ‘π‘ž + π‘žπ‘ + π‘Žπ‘Ÿ2 π‘ž2 + π‘Ÿ2 + 2π‘Ÿπ‘ž + π‘ž Table 8 Next, when the terms π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜ are inserted between given two positive integers π‘Ž and 𝑏, we obtain the general formula for 𝑛th inserted term (1 ≀ 𝑛 ≀ π‘˜) using the recurrence relation (5.1). Theorem 5.1 When the terms π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜ are inserted between given integers π‘Ž and 𝑏, so that all π‘₯𝑖’s satisfy the recurrence relation of 𝐹𝑛 (1,π‘ž,π‘Ÿ,1) , the general formula for any arbitrary term π‘₯𝑛 (1 ≀ 𝑛 ≀ π‘˜) is given by π‘₯𝑛 = { 𝐹𝑛 (1,π‘ž,π‘Ÿ,1) π‘βˆ’πΉπ‘› (1,π‘ž,π‘Ÿ,1) π‘Ž{[( 1βˆ’π‘Ÿ π‘ž )𝐹 π‘˜βˆ’1 (1,π‘ž,π‘Ÿ,1) +𝐹 π‘˜ (1,π‘ž,π‘Ÿ,1) ] πœ’(π‘˜) [ 1 π‘ž 𝐹 π‘˜ (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(π‘˜) } +π‘Ž{[( 1βˆ’π‘Ÿ π‘ž )πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) +πΉπ‘›βˆ’1 (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(𝑛) [ 1 π‘ž πΉπ‘›βˆ’1 (1,π‘ž,π‘Ÿ,1) ] πœ’(𝑛) }𝐹 π‘˜+1 (1,π‘ž,π‘Ÿ,1) } 𝐹 π‘˜+1 (1,π‘ž,π‘Ÿ,1) . Proof. We use the principle of mathematical induction to prove the result. By (5.2), we have π‘₯1 = π‘βˆ’π‘Ž{[( 1βˆ’π‘Ÿ π‘ž )𝐹 π‘˜βˆ’1 (1,π‘ž,π‘Ÿ,1) +𝐹 π‘˜ (1,π‘ž,π‘Ÿ,1) ] πœ’(π‘˜) [ 1 π‘ž 𝐹 π‘˜ (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(π‘˜) } 𝐹 π‘˜+1 (1,π‘ž,π‘Ÿ,1) , which proves the result for 𝑛 = 1. We next assume that it is true for all positive integers not exceeding 𝑛. Then the following holds: π‘₯π‘›βˆ’1 = { πΉπ‘›βˆ’1 (1,π‘ž,π‘Ÿ,1) π‘βˆ’πΉπ‘›βˆ’1 (1,π‘ž,π‘Ÿ,1) π‘Ž{[( 1βˆ’π‘Ÿ π‘ž )𝐹 π‘˜βˆ’1 (1,π‘ž,π‘Ÿ,1) +𝐹 π‘˜ (1,π‘ž,π‘Ÿ,1) ] πœ’(π‘˜) [ 1 π‘ž 𝐹 π‘˜ (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(π‘˜) } +π‘Ž{[( 1βˆ’π‘Ÿ π‘ž )πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) +πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(π‘›βˆ’1) [ 1 π‘ž πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) ] πœ’(π‘›βˆ’1) }𝐹 π‘˜+1 (1,π‘ž,π‘Ÿ,1) } 𝐹 π‘˜+1 (1,π‘ž,π‘Ÿ,1) π‘₯π‘›βˆ’2 = { πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) π‘βˆ’πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) π‘Ž{[( 1βˆ’π‘Ÿ π‘ž )𝐹 π‘˜βˆ’1 (1,π‘ž,π‘Ÿ,1) +𝐹 π‘˜ (1,π‘ž,π‘Ÿ,1) ] πœ’(π‘˜) [ 1 π‘ž 𝐹 π‘˜ (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(π‘˜) } +π‘Ž{[( 1βˆ’π‘Ÿ π‘ž )πΉπ‘›βˆ’4 (1,π‘ž,π‘Ÿ,1) +πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(π‘›βˆ’2) [ 1 π‘ž πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) ] πœ’(π‘›βˆ’2) }𝐹 π‘˜+1 (1,π‘ž,π‘Ÿ,1) } 𝐹 π‘˜+1 (1,π‘ž,π‘Ÿ,1) 19 Khushbu J. Das and Devbhadra V. Shah Now, π‘ž1βˆ’πœ’(𝑛)π‘₯π‘›βˆ’1 + π‘Ÿ πœ’(𝑛)π‘₯π‘›βˆ’2 = { (π‘ž 1βˆ’πœ’(𝑛)πΉπ‘›βˆ’1 (1,π‘ž,π‘Ÿ,1) +π‘Ÿπœ’(𝑛)πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) )π‘βˆ’π‘Ž(π‘ž1βˆ’πœ’(𝑛)πΉπ‘›βˆ’1 (1,π‘ž,π‘Ÿ,1) +π‘Ÿπœ’(𝑛)πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) ) {[( 1βˆ’π‘Ÿ π‘ž )𝐹 π‘˜βˆ’1 (1,π‘ž,π‘Ÿ,1) +𝐹 π‘˜ (1,π‘ž,π‘Ÿ,1) ] πœ’(π‘˜) [ 1 π‘ž 𝐹 π‘˜ (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(π‘˜) } +π‘Ž { π‘ž1βˆ’πœ’(𝑛)[( 1βˆ’π‘Ÿ π‘ž )πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) +πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(π‘›βˆ’1) [ 1 π‘ž πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) ] πœ’(π‘›βˆ’1) +π‘Ÿπœ’(𝑛)[( 1βˆ’π‘Ÿ π‘ž )πΉπ‘›βˆ’4 (1,π‘ž,π‘Ÿ,1) +πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(π‘›βˆ’2) [ 1 π‘ž πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) ] πœ’(π‘›βˆ’2) } 𝐹 π‘˜+1 (1,π‘ž,π‘Ÿ,1) } 𝐹 π‘˜+1 (1,π‘ž,π‘Ÿ,1) = { 𝐹𝑛 (1,π‘ž,π‘Ÿ,1) π‘βˆ’π‘ŽπΉπ‘› (1,π‘ž,π‘Ÿ,1) {[( 1βˆ’π‘Ÿ π‘ž )πΉπ‘˜βˆ’1 (1,π‘ž,π‘Ÿ,1) +πΉπ‘˜ (1,π‘ž,π‘Ÿ,1) ] πœ’(π‘˜) [ 1 π‘ž πΉπ‘˜ (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(π‘˜) } +π‘Ž { π‘ž1βˆ’πœ’(𝑛)[( 1βˆ’π‘Ÿ π‘ž )πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) +πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) ] πœ’(𝑛) [ 1 π‘ž πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(𝑛) +π‘Ÿπœ’(𝑛)[( 1βˆ’π‘Ÿ π‘ž )πΉπ‘›βˆ’4 (1,π‘ž,π‘Ÿ,1) +πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(𝑛) [ 1 π‘ž πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) ] πœ’(𝑛) } 𝐹 π‘˜+1 (1,π‘ž,π‘Ÿ,1) } 𝐹 π‘˜+1 (1,π‘ž,π‘Ÿ,1) We calculate the value of third term of numerator separately. Now, when 𝑛 is odd, we get π‘ž1βˆ’πœ’(𝑛) [( 1βˆ’π‘Ÿ π‘ž )πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) + πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) ] πœ’(𝑛) [ 1 π‘ž πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(𝑛) +π‘Ÿπœ’(𝑛) [( 1βˆ’π‘Ÿ π‘ž )πΉπ‘›βˆ’4 (1,π‘ž,π‘Ÿ,1) + πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(𝑛) [ 1 π‘ž πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) ] πœ’(𝑛) = π‘ž[ 1 π‘ž πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) ] + ( 1βˆ’π‘Ÿ π‘ž )πΉπ‘›βˆ’4 (1,π‘ž,π‘Ÿ,1) + πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) = 1 π‘ž [π‘žπΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) βˆ’ π‘ŸπΉπ‘›βˆ’4 (1,π‘ž,π‘Ÿ,1) + (π‘žπΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) + πΉπ‘›βˆ’4 (1,π‘ž,π‘Ÿ,1) )] = 1 π‘ž [π‘žπΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) βˆ’ π‘ŸπΉπ‘›βˆ’4 (1,π‘ž,π‘Ÿ,1) + πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) ] = 1 π‘ž [(1 + π‘ž)πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) βˆ’ π‘ŸπΉπ‘›βˆ’4 (1,π‘ž,π‘Ÿ,1) ] = 1 π‘ž [(1 βˆ’ π‘Ÿ)πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) + π‘žπΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) + π‘Ÿπ‘žπΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) ] = ( 1βˆ’π‘Ÿ π‘ž )πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) + πΉπ‘›βˆ’1 (1,π‘ž,π‘Ÿ,1) = [( 1βˆ’π‘Ÿ π‘ž )πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) + πΉπ‘›βˆ’1 (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(𝑛) . Also, when 𝑛 is even, we get π‘ž1βˆ’πœ’(𝑛) [( 1 βˆ’ π‘Ÿ π‘ž )πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) + πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) ] πœ’(𝑛) [ 1 π‘ž πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(𝑛) +π‘Ÿπœ’(𝑛) [( 1 βˆ’ π‘Ÿ π‘ž )πΉπ‘›βˆ’4 (1,π‘ž,π‘Ÿ,1) + πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(𝑛) [ 1 π‘ž πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) ] πœ’(𝑛) = [( 1 βˆ’ π‘Ÿ π‘ž )πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) + πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) ] + π‘Ÿ[ 1 π‘ž πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) ] = 1 π‘ž [π‘žπΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) + πΉπ‘›βˆ’3 (1,π‘ž,π‘Ÿ,1) ] = 1 π‘ž [πΉπ‘›βˆ’1 (1,π‘ž,π‘Ÿ,1) ] = [ 1 π‘ž πΉπ‘›βˆ’1 (1,π‘ž,π‘Ÿ,1) ] πœ’(𝑛) 20 Insertion of terms satisfying the recurrence relations of Horadam sequence and Bifurcating Fibonacci sequences Therefore, we have π‘₯𝑛 = π‘ž 1βˆ’πœ’(𝑛)π‘₯π‘›βˆ’1 + π‘Ÿ πœ’(𝑛)π‘₯π‘›βˆ’2 = { 𝐹𝑛 (1,π‘ž,π‘Ÿ,1) π‘βˆ’πΉπ‘› (1,π‘ž,π‘Ÿ,1) π‘Ž{[( 1βˆ’π‘Ÿ π‘ž )𝐹 π‘˜βˆ’1 (1,π‘ž,π‘Ÿ,1) +𝐹 π‘˜ (1,π‘ž,π‘Ÿ,1) ] πœ’(π‘˜) [ 1 π‘ž 𝐹 π‘˜ (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(π‘˜) } +π‘Ž{[( 1βˆ’π‘Ÿ π‘ž )πΉπ‘›βˆ’2 (1,π‘ž,π‘Ÿ,1) +πΉπ‘›βˆ’1 (1,π‘ž,π‘Ÿ,1) ] 1βˆ’πœ’(𝑛) [ 1 π‘ž πΉπ‘›βˆ’1 (1,π‘ž,π‘Ÿ,1) ] πœ’(𝑛) }𝐹 π‘˜+1 (1,π‘ž,π‘Ÿ,1) } 𝐹 π‘˜+1 (1,π‘ž,π‘Ÿ,1) , which proves the result for every positive integer 𝑛. 6 Insertion of terms satisfying the recurrence relation of bifurcating sequence 𝑭𝒏 (𝟏,𝟏,𝒓,𝒔) If we consider 𝑝 = π‘ž = 1 in (1.1), then we get the sequence {𝐹𝑛 (1,1,π‘Ÿ,𝑠) } whose terms are defined by the recurrence relation 𝐹𝑛 (1,1,π‘Ÿ,𝑠) = πΉπ‘›βˆ’1 (1,1,π‘Ÿ,𝑠) + π‘Ÿπœ’(𝑛)𝑠1βˆ’πœ’(𝑛)πΉπ‘›βˆ’2 (1,1,π‘Ÿ,𝑠) , where 𝐹0 (1,1,π‘Ÿ,𝑠) = 0,𝐹1 (1,1,π‘Ÿ,𝑠) = 1.This can be written in the form 𝐹𝑛 (1,1,π‘Ÿ,𝑠) = { πΉπ‘›βˆ’1 (1,1,π‘Ÿ,𝑠) + π‘ŸπΉπ‘›βˆ’2 (1,1,π‘Ÿ,𝑠) ;when n is odd πΉπ‘›βˆ’1 (1,1,π‘Ÿ,𝑠) + π‘ πΉπ‘›βˆ’2 (1,1,π‘Ÿ,𝑠) ;when n is even (𝑛 β‰₯ 2) (6.1) with the initial conditions 𝐹0 (1,1,π‘Ÿ,𝑠) = 0,𝐹1 (1,1,π‘Ÿ,𝑠) = 1. First few terms of this sequence are shown in Table 9. n 𝐹𝑛 (1,1,π‘Ÿ,𝑠) 0 0 1 1 2 1 3 1 + π‘Ÿ 4 1 + π‘Ÿ + 𝑠 5 1 + 2π‘Ÿ + 𝑠 + π‘Ÿ2 6 1 + π‘Ÿπ‘  + 2π‘Ÿ + 2𝑠 + π‘Ÿ2 + 𝑠2 Table 9 Diwan, Shah [3] derived the Binet-type explicit formula for the terms of this sequence as 21 Khushbu J. Das and Devbhadra V. Shah 𝐹𝑛 (1,1,π‘Ÿ,𝑠) = (π›Όβˆ’π‘ )πœ’(𝑛)𝛼 [ 𝑛 2 ] βˆ’(π›½βˆ’π‘ )πœ’(𝑛)𝛽 [ 𝑛 2 ] π›Όβˆ’π›½ , where 𝛼 = (π‘Ÿ+𝑠+1)+√(π‘Ÿ+𝑠+1)2βˆ’4π‘Ÿπ‘  2 ,𝛽 = (π‘Ÿ+𝑠+1)βˆ’βˆš(π‘Ÿ+𝑠+1)2βˆ’4π‘Ÿπ‘  2 with 𝛼 βˆ’ 𝛽 = √(π‘Ÿ + 𝑠 + 1)2 βˆ’ 4π‘Ÿπ‘ , 𝛼 + 𝛽 = π‘Ÿ + 𝑠 + 1 and 𝛼𝛽 = π‘Ÿπ‘ . In this section, we find the formula for the inserted terms between the numbers π‘Ž and 𝑏 so that terms of the sequence π‘Ž,π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜,𝑏 satisfies the recurrence relation (6.1). When we consider the sequence π‘Ž,π‘₯1,𝑏, where π‘₯1 is the only inserted term between π‘Ž and 𝑏. Then using 𝐹2 (1,1,π‘Ÿ,𝑠) = 𝐹1 (1,1,π‘Ÿ,𝑠) + 𝑠𝐹0 (1,1,π‘Ÿ,𝑠) , we get 𝑏 = π‘₯1 + π‘ π‘Ž. Thus π‘₯1 = 𝑏 βˆ’ π‘ π‘Ž. When we consider the finite sequence as π‘Ž,π‘₯1,π‘₯2,𝑏, so that it satisfies (6.1), we observe that π‘₯1 = π‘₯2 βˆ’ π‘ π‘Ž and π‘₯2 = 𝑏 βˆ’ π‘Ÿπ‘₯1. This gives π‘₯2 = 𝑏+π‘Ÿπ‘ π‘Ž 1+π‘Ÿ .This also gives π‘₯1 = π‘βˆ’π‘ π‘Ž 1+π‘Ÿ . Further, considering the sequenceπ‘Ž,π‘₯1,π‘₯2,π‘₯3,𝑏, it is now easy to observe that π‘₯1 = π‘₯2 βˆ’ π‘ π‘Ž, π‘₯2 = π‘₯3 βˆ’ π‘Ÿπ‘₯1, π‘₯3 = 𝑏 βˆ’ 𝑠π‘₯2. Solving these three equations in three variables π‘₯1,π‘₯2,π‘₯3 we get π‘₯1 = π‘βˆ’π‘Žπ‘ (1+𝑠) 1+π‘Ÿ+𝑠 , π‘₯2 = π‘βˆ’π‘Ÿπ‘ π‘Ž 1+π‘Ÿ+𝑠 , π‘₯3 = 𝑏+π‘π‘Ÿ+π‘Žπ‘Ÿπ‘ 2 1+π‘Ÿ+𝑠 . If we continue extending the above finite sequence one more time, then we get the sequence π‘Ž,π‘₯1,π‘₯2,π‘₯3,π‘₯4,𝑏. Using the similar approach as above, we obtain π‘₯1 = π‘βˆ’π‘ π‘Ž(1+π‘Ÿ+𝑠) 1+2π‘Ÿ+𝑠+π‘Ÿ2 ,π‘₯2 = 𝑏+π‘ π‘Ÿπ‘Ž+π‘ π‘Žπ‘Ÿ2 1+2π‘Ÿ+𝑠+π‘Ÿ2 ,π‘₯3 = 𝑏+π‘π‘Ÿβˆ’π‘ 2π‘Ÿπ‘Ž 1+2π‘Ÿ+𝑠+π‘Ÿ2 and π‘₯4 = 𝑏+π‘π‘Ÿ+𝑏𝑠+π‘Ÿ2𝑠2π‘Ž 1+2π‘Ÿ+𝑠+π‘Ÿ2 . We mention these results in the Table 10. Number of inserted term Formula π‘₯1 π‘₯2 π‘₯3 π‘₯4 1 𝑏 βˆ’ π‘ π‘Ž --- --- --- 2 𝑏 βˆ’ π‘ π‘Ž 1 + π‘Ÿ 𝑏 + π‘Ÿπ‘ π‘Ž 1 + π‘Ÿ --- --- 3 𝑏 βˆ’ π‘ π‘Ž(1 + 𝑠) 1 + π‘Ÿ + 𝑠 𝑏 βˆ’ π‘Ÿπ‘ π‘Ž 1 + π‘Ÿ + 𝑠 𝑏 + π‘π‘Ÿ + π‘Žπ‘Ÿπ‘ 2 1 + π‘Ÿ + 𝑠 --- 4 𝑏 βˆ’ π‘ π‘Ž(1 + π‘Ÿ + 𝑠) 1 + 2π‘Ÿ + 𝑠 + π‘Ÿ2 𝑏 + π‘ π‘Ÿπ‘Ž + π‘ π‘Žπ‘Ÿ2 1 + 2π‘Ÿ + 𝑠 + π‘Ÿ2 𝑏 + π‘π‘Ÿ βˆ’ 𝑠2π‘Ÿπ‘Ž 1 + 2π‘Ÿ + 𝑠 + π‘Ÿ2 𝑏 + π‘π‘Ÿ + 𝑏𝑠 + π‘Ÿ2𝑠2π‘Ž 1 + 2π‘Ÿ + 𝑠 + π‘Ÿ2 Table 10 From this table, we observe that there is a similar pattern for the first inserted term in case of any number of inserted terms. We thus generalize it for 22 Insertion of terms satisfying the recurrence relations of Horadam sequence and Bifurcating Fibonacci sequences the case of any number of inserted terms and when the terms π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜ are inserted between given two positive integers π‘Ž and 𝑏, we can now write the general formula for π‘₯1 as π‘₯1 = π‘βˆ’π‘ π‘Ž{(πΉπ‘˜ (1,1,π‘Ÿ,𝑠) ) 1βˆ’πœ’(π‘˜) (βˆ‘ 𝑠 [ π‘˜βˆ’1 2 ]βˆ’π‘š[ π‘˜βˆ’1 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) +𝑠 [ π‘˜βˆ’1 2 ] ) πœ’(π‘˜) } 𝐹 π‘˜+1 (1,1,π‘Ÿ,𝑠) , (6.2) Next, when the terms π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜ are inserted between given two positive integers π‘Ž and 𝑏, we obtain the general formula for 𝑛th inserted term (1 ≀ 𝑛 ≀ π‘˜) using the recurrence relation (6.1). Theorem 6.1 When the terms π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜ are inserted between given integers π‘Ž and 𝑏, so that all π‘₯𝑖’s satisfy the recurrence relation of 𝐹𝑛 (1,1,π‘Ÿ,𝑠) , the general formula for any arbitrary term π‘₯𝑛 (1 ≀ 𝑛 ≀ π‘˜) is given by π‘₯𝑛 = { 𝐹𝑛 (1,1,π‘Ÿ,𝑠) π‘βˆ’πΉπ‘› (1,1,π‘Ÿ,𝑠) π‘ π‘Ž{(πΉπ‘˜ (1,1,π‘Ÿ,𝑠) ) 1βˆ’πœ’(π‘˜) (βˆ‘ 𝑠 [ π‘˜βˆ’1 2 ]βˆ’π‘š[ π‘˜βˆ’1 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) +𝑠 [ π‘˜βˆ’1 2 ] ) πœ’(π‘˜) } +π‘ π‘ŽπΉπ‘˜+1 (1,1,π‘Ÿ,𝑠) (πΉπ‘›βˆ’1 (1,1,π‘Ÿ,𝑠) ) πœ’(𝑛) (βˆ‘ 𝑠 [ π‘›βˆ’2 2 ]βˆ’π‘š[ π‘›βˆ’2 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) +𝑠 [ π‘›βˆ’2 2 ] ) 1βˆ’πœ’(𝑛) } 𝐹 π‘˜+1 (1,1,π‘Ÿ,𝑠) . Proof. We use the principle of mathematical induction to prove the result. Since by (6.2), we have π‘₯1 = π‘βˆ’π‘ π‘Ž{(πΉπ‘˜ (1,1,π‘Ÿ,𝑠) ) 1βˆ’πœ’(π‘˜) (βˆ‘ 𝑠 [ π‘˜βˆ’1 2 ]βˆ’π‘š[ π‘˜βˆ’1 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) +𝑠 [ π‘˜βˆ’1 2 ] ) πœ’(π‘˜) } 𝐹 π‘˜+1 (1,1,π‘Ÿ,𝑠) , which proves the result for 𝑛 = 1. We next assume that it is true for all positive integers not exceeding 𝑛. Then the following holds: π‘₯π‘›βˆ’1 = { πΉπ‘›βˆ’1 (1,1,π‘Ÿ,𝑠) π‘βˆ’πΉπ‘›βˆ’1 (1,1,π‘Ÿ,𝑠) π‘ π‘Ž{(πΉπ‘˜ (1,1,π‘Ÿ,𝑠) ) 1βˆ’πœ’(π‘˜) (βˆ‘ 𝑠 [ π‘˜βˆ’1 2 ]βˆ’π‘š[ π‘˜βˆ’1 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) +𝑠 [ π‘˜βˆ’1 2 ] ) πœ’(π‘˜) } +π‘ π‘ŽπΉπ‘˜+1 (1,1,π‘Ÿ,𝑠) (πΉπ‘›βˆ’2 (1,1,π‘Ÿ,𝑠) ) πœ’(π‘›βˆ’1) (βˆ‘ 𝑠 [ π‘›βˆ’3 2 ]βˆ’π‘š[ π‘›βˆ’3 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) +𝑠 [ π‘›βˆ’3 2 ] ) 1βˆ’πœ’(π‘›βˆ’1) } 𝐹 π‘˜+1 (1,1,π‘Ÿ,𝑠) , 23 Khushbu J. Das and Devbhadra V. Shah π‘₯π‘›βˆ’2 = { πΉπ‘›βˆ’2 (1,1,π‘Ÿ,𝑠) π‘βˆ’πΉπ‘›βˆ’2 (1,1,π‘Ÿ,𝑠) π‘ π‘Ž{(πΉπ‘˜ (1,1,π‘Ÿ,𝑠) ) 1βˆ’πœ’(π‘˜) (βˆ‘ 𝑠 [ π‘˜βˆ’1 2 ]βˆ’π‘š[ π‘˜βˆ’1 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) +𝑠 [ π‘˜βˆ’1 2 ] ) πœ’(π‘˜) } +π‘ π‘ŽπΉπ‘˜+1 (1,1,π‘Ÿ,𝑠) (πΉπ‘›βˆ’3 (1,1,π‘Ÿ,𝑠) ) πœ’(π‘›βˆ’2) (βˆ‘ 𝑠 [ π‘›βˆ’3 2 ]βˆ’π‘š[ π‘›βˆ’3 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) +𝑠 [ π‘›βˆ’3 2 ] ) 1βˆ’πœ’(π‘›βˆ’2) } 𝐹 π‘˜+1 𝑅(1,1,π‘Ÿ,𝑠) . Now, π‘₯π‘›βˆ’1 + π‘Ÿ πœ’(𝑛)𝑠1βˆ’πœ’(𝑛)π‘₯π‘›βˆ’2 = { (πΉπ‘›βˆ’1 (1,1,π‘Ÿ,𝑠) +π‘Ÿπœ’(𝑛)𝑠1βˆ’πœ’(𝑛)πΉπ‘›βˆ’2 (1,1,π‘Ÿ,𝑠) )π‘βˆ’(πΉπ‘›βˆ’1 (1,1,π‘Ÿ,𝑠) +π‘Ÿπœ’(𝑛)𝑠1βˆ’πœ’(𝑛)πΉπ‘›βˆ’2 (1,1,π‘Ÿ,𝑠) )π‘ π‘Ž Γ—{(πΉπ‘˜ (1,1,π‘Ÿ,𝑠) ) 1βˆ’πœ’(π‘˜) (βˆ‘ 𝑠 [ π‘˜βˆ’1 2 ]βˆ’π‘š[ π‘˜βˆ’1 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) +𝑠 [ π‘˜βˆ’1 2 ] ) πœ’(π‘˜) } +π‘ π‘ŽπΉπ‘˜+1 𝑅(1,1,π‘Ÿ,𝑠) { (πΉπ‘›βˆ’2 (1,1,π‘Ÿ,𝑠) ) πœ’(π‘›βˆ’1) (βˆ‘ 𝑠 [ π‘›βˆ’3 2 ]βˆ’π‘š[ π‘›βˆ’3 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) +𝑠 [ π‘›βˆ’3 2 ] ) 1βˆ’πœ’(π‘›βˆ’1) +π‘Ÿπœ’(𝑛)𝑠1βˆ’πœ’(𝑛)(πΉπ‘›βˆ’3 (1,1,π‘Ÿ,𝑠) ) πœ’(π‘›βˆ’2) Γ—(βˆ‘ 𝑠 [ π‘›βˆ’4 2 ]βˆ’π‘š[ π‘›βˆ’4 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) +𝑠 [ π‘›βˆ’4 2 ] ) 1βˆ’πœ’(π‘›βˆ’2) } } 𝐹 π‘˜+1 (1,1,π‘Ÿ,𝑠) = { 𝐹𝑛 (1,1,π‘Ÿ,𝑠) π‘βˆ’πΉπ‘› (1,1,π‘Ÿ,𝑠) π‘ π‘ŽΓ—{(πΉπ‘˜ (1,1,π‘Ÿ,𝑠) ) 1βˆ’πœ’(π‘˜) (βˆ‘ 𝑠 [ π‘˜βˆ’1 2 ]βˆ’π‘š[ π‘˜βˆ’1 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) +𝑠 [ π‘˜βˆ’1 2 ] ) πœ’(π‘˜) } +π‘ π‘ŽπΉπ‘˜+1 (1,1,π‘Ÿ,𝑠) { (πΉπ‘›βˆ’2 (1,1,π‘Ÿ,𝑠) ) 1βˆ’πœ’(𝑛) (βˆ‘ 𝑠 [ π‘›βˆ’3 2 ]βˆ’π‘š[ π‘›βˆ’3 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) +𝑠 [ π‘›βˆ’3 2 ] ) πœ’(𝑛) +π‘Ÿπœ’(𝑛)𝑠1βˆ’πœ’(𝑛)(πΉπ‘›βˆ’3 (1,1,π‘Ÿ,𝑠) ) πœ’(𝑛) (βˆ‘ 𝑠 [ π‘›βˆ’4 2 ]βˆ’π‘š[ π‘›βˆ’4 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) +𝑠 [ π‘›βˆ’4 2 ] ) 1βˆ’πœ’(𝑛) } } 𝐹 π‘˜+1 (1,1,π‘Ÿ,𝑠) We calculate the value of third term of numerator separately. Now, when 𝑛 is odd, we get (πΉπ‘›βˆ’2 (1,1,π‘Ÿ,𝑠) ) 1βˆ’πœ’(𝑛) (βˆ‘ 𝑠 [ π‘›βˆ’3 2 ]βˆ’π‘š[ π‘›βˆ’3 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’3 2 ] ) πœ’(𝑛) +π‘Ÿπœ’(𝑛)𝑠1βˆ’πœ’(𝑛)(πΉπ‘›βˆ’3 (1,1,π‘Ÿ,𝑠) ) πœ’(𝑛) (βˆ‘ 𝑠 [ π‘›βˆ’4 2 ]βˆ’π‘š[ π‘›βˆ’4 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’4 2 ] ) 1βˆ’πœ’(𝑛) = πΉπ‘›βˆ’2 (1,1,π‘Ÿ,𝑠) + 𝑠(βˆ‘ 𝑠 [ π‘›βˆ’4 2 ]βˆ’π‘š[ π‘›βˆ’4 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’4 2 ] ) = πΉπ‘›βˆ’2 (1,1,π‘Ÿ,𝑠) + 𝑠( 𝑠 [ π‘›βˆ’4 2 ] 𝐹0 (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’6 2 ] 𝐹1 (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’8 2 ] 𝐹2 (1,1,π‘Ÿ,𝑠) +β‹―+ πΉπ‘›βˆ’4 (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’4 2 ] ) 24 Insertion of terms satisfying the recurrence relations of Horadam sequence and Bifurcating Fibonacci sequences = πΉπ‘›βˆ’2 (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’2 2 ] 𝐹0 (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’4 2 ] 𝐹1 (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’6 2 ] 𝐹2 (1,1,π‘Ÿ,𝑠) +β‹―+ π‘ πΉπ‘›βˆ’4 (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’2 2 ] = βˆ‘ 𝑠 [ π‘›βˆ’2 2 ]βˆ’π‘š[ π‘›βˆ’2 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’2 2 ] = (βˆ‘ 𝑠 [ π‘›βˆ’2 2 ]βˆ’π‘š[ π‘›βˆ’2 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’2 2 ] ) 1βˆ’πœ’(𝑛) . Also, when 𝑛 is even, we get (πΉπ‘›βˆ’2 (1,1,π‘Ÿ,𝑠) ) 1βˆ’πœ’(𝑛) (βˆ‘ 𝑠 [ π‘›βˆ’3 2 ]βˆ’π‘š[ π‘›βˆ’3 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’3 2 ] ) πœ’(𝑛) +π‘Ÿπœ’(𝑛)𝑠1βˆ’πœ’(𝑛)(πΉπ‘›βˆ’3 (1,1,π‘Ÿ,𝑠) ) πœ’(𝑛) (βˆ‘ 𝑠 [ π‘›βˆ’4 2 ]βˆ’π‘š[ π‘›βˆ’4 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’4 2 ] ) 1βˆ’πœ’(𝑛) = βˆ‘ 𝑠 [ π‘›βˆ’3 2 ]βˆ’π‘š[ π‘›βˆ’3 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’3 2 ] + π‘ŸπΉπ‘›βˆ’3 (1,1,π‘Ÿ,𝑠) . To prove the main result, we need to prove that this value should be πΉπ‘›βˆ’1 (1,1,π‘Ÿ,𝑠) . Clearly this result holds for 𝑛 = 3, since 𝐹2 (1,1,π‘Ÿ,𝑠) = 1. Assume that this result holds for all positive integers not exceeding 𝑛. Now, πΉπ‘›βˆ’2 (1,1,π‘Ÿ,𝑠) = βˆ‘ 𝑠 [ π‘›βˆ’4 2 ]βˆ’π‘š[ π‘›βˆ’4 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’4 2 ] + π‘ŸπΉπ‘›βˆ’4 (1,1,π‘Ÿ,𝑠) and πΉπ‘›βˆ’3 (1,1,π‘Ÿ,𝑠) = βˆ‘ 𝑠 [ π‘›βˆ’5 2 ]βˆ’π‘š[ π‘›βˆ’5 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’5 2 ] + π‘ŸπΉπ‘›βˆ’5 (1,1,π‘Ÿ,𝑠) . Now, πΉπ‘›βˆ’2 (1,1,π‘Ÿ,𝑠) + π‘ πΉπ‘›βˆ’3 (1,1,π‘Ÿ,𝑠) = βˆ‘ 𝑠 [ π‘›βˆ’4 2 ]βˆ’π‘š[ π‘›βˆ’4 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’4 2 ] + π‘ŸπΉπ‘›βˆ’4 (1,1,π‘Ÿ,𝑠) +𝑠(βˆ‘ 𝑠 [ π‘›βˆ’5 2 ]βˆ’π‘š[ π‘›βˆ’5 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’5 2 ] + π‘ŸπΉπ‘›βˆ’5 (1,1,π‘Ÿ,𝑠) ) = βˆ‘ 𝑠 [ π‘›βˆ’4 2 ]βˆ’π‘š[ π‘›βˆ’4 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’4 2 ] + π‘ŸπΉπ‘›βˆ’4 (1,1,π‘Ÿ,𝑠) +βˆ‘ 𝑠 [ π‘›βˆ’3 2 ]βˆ’π‘š[ π‘›βˆ’5 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’3 2 ] + π‘Ÿπ‘ πΉπ‘›βˆ’5 (1,1,π‘Ÿ,𝑠) = (βˆ‘ 𝑠 [ π‘›βˆ’4 2 ]βˆ’π‘š[ π‘›βˆ’4 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’4 2 ] + βˆ‘ 𝑠 [ π‘›βˆ’3 2 ]βˆ’π‘š[ π‘›βˆ’5 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’3 2 ] ) +π‘Ÿ(πΉπ‘›βˆ’4 (1,1,π‘Ÿ,𝑠) + π‘ πΉπ‘›βˆ’5 (1,1,π‘Ÿ,𝑠) ) = βˆ‘ 𝑠 [ π‘›βˆ’3 2 ]βˆ’π‘š[ π‘›βˆ’3 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) + 𝑠 [ π‘›βˆ’3 2 ] + π‘ŸπΉπ‘›βˆ’3 (1,1,π‘Ÿ,𝑠) = πΉπ‘›βˆ’1 (1,1,π‘Ÿ,𝑠) = (πΉπ‘›βˆ’1 (1,1,π‘Ÿ,𝑠) ) πœ’(𝑛) . . Therefore, we have 25 Khushbu J. Das and Devbhadra V. Shah π‘₯𝑛 = π‘₯π‘›βˆ’1 + π‘Ÿ πœ’(𝑛)𝑠1βˆ’πœ’(𝑛)π‘₯π‘›βˆ’2 = { 𝐹𝑛 (1,1,π‘Ÿ,𝑠) π‘βˆ’πΉπ‘› (1,1,π‘Ÿ,𝑠) π‘ π‘Ž{(πΉπ‘˜ (1,1,π‘Ÿ,𝑠) ) 1βˆ’πœ’(π‘˜) (βˆ‘ 𝑠 [ π‘˜βˆ’1 2 ]βˆ’π‘š[ π‘˜βˆ’1 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) +𝑠 [ π‘˜βˆ’1 2 ] ) πœ’(π‘˜) } +π‘ π‘ŽπΉπ‘˜+1 (1,1,π‘Ÿ,𝑠) (πΉπ‘›βˆ’1 (1,1,π‘Ÿ,𝑠) ) πœ’(𝑛) (βˆ‘ 𝑠 [ π‘›βˆ’2 2 ]βˆ’π‘š[ π‘›βˆ’2 2 ] π‘š=0 𝐹2π‘š (1,1,π‘Ÿ,𝑠) +𝑠 [ π‘›βˆ’2 2 ] ) 1βˆ’πœ’(𝑛) } 𝐹 π‘˜+1 (1,1,π‘Ÿ,𝑠) , which proves the result for every positive integer 𝑛. 7 Conclusion In this paper we derived the general formula which gives the value of any inserted term π‘₯𝑛 (1 ≀ 𝑛 ≀ π‘˜) between the given fixed positive integers π‘Ž,𝑏 so that terms of the sequence π‘Ž,π‘₯1,π‘₯2,π‘₯3,…,π‘₯π‘˜,𝑏 satisfies the recurrence relation of 𝐹𝑛(𝑝,π‘ž) and various bifurcating subsequence of {𝐹𝑛 (𝑝,π‘ž,π‘Ÿ,𝑠) } by considering some fixed values of 𝑝,π‘ž,π‘Ÿ,𝑠. References [1] Agnes M., Buenaventura N., Labao J. J., Soria C. K., Limbaco K. A., and L. Natividad, Inclusion of inserted terms (Fibonacci mean) in a Fibonacci sequence, Math Investigatory Project, Central Luzon State University, 2010. [2] Bilgici G., New generalizations of Fibonacci and Lucas Sequences, Applied Mathematical Sciences, Vol. 8, No. 29, 2014, 1429 – 1437. [3] Diwan D. M, Shah D. V., Extended Binet’s formula for the class of generalized Fibonacci sequences, Proceeding 19th Annual Cum 4th International Conference of Gwalior academy of Mathematical Sciences (GAMS), SVNIT, surat, Oct 3-6, 2014, 109 – 113. [4] Diwan D. M, Shah D. V., Extended Binet’s formula for the class of generalized Fibonacci sequences, VNSGU Journal of Science and Technology, Vol. 4, No. 1, 2015, 205 – 210. [5] Diwan D. M, Shah D. V., Explicit and recursive formulae for the class of generalized Fibonacci sequence, International Journal of Advanced Research in Engineering, Science and Management, Vol. 1, Issue 10, July 2015, 1 – 6. [6] Edson M., Yayenie O., A new generalization of Fibonacci sequence and Extended binet’s formula, Integers, Vol. 9, 2009, 639 – 654. [7] Horadam A. F., Basic properties of certain generalized sequence of numbers, Fibonacci Quarterly, 3, 1965, 161-176. 26 Insertion of terms satisfying the recurrence relations of Horadam sequence and Bifurcating Fibonacci sequences [8] Howell P., Nth term of the Fibonacci sequence, from Math Proofs: Interesting mathematical results and elegant solutions to various problems, http://mathproofs.blogspot.com/2005/04/nth-term-offibonacci-sequence. [9] Verma, Bala A., On Properties of generalized Bi-variate Bi-Periodic Fibonacci polynomials, International journal of Advanced science and Technology,29(3), 2020, 8065–8072. [10] Yayenie O., A note on generalized Fibonacci sequence, Applied Mathematics and computation, 217, 2011, 5603–5611. 27