Approach of the value of a rent when non-central moments of the capitalization factor are known: an R application with interest rates following normal and beta distributions Ratio Mathematica Volume 41, 2021, pp. 137-145 137 A characterization of strong fuzzy diameter zero in intuitionistic fuzzy metric spaces S. Yahya Mohamed* E. Naargees Begumโ€  Abstract The idea of intuitionistic fuzzy metric space introduced by Park (2004). In this paper, we introduce the notion of strong intuitionistic fuzzy diameter zero for a family of subsets based on the intuitionistic fuzzy diameter for a subset of ๐ด. Then we introduce nested sequence of subsets having strong intuitionistic fuzzy diameter zero using their intuitionistic fuzzy diameter. Keywords: strong fuzzy diameter; intuitionistic fuzzy metric space; strong completeness. 2010 AMS subject classification: 05C72, 54E50, 03F55.โ€ก *PG and Research Department of Mathematics, Affiliated to Bharathidasan University, Government Arts College, Trichy, Tamilnadu, India. yahya_md@yahoo.com. โ€  Department of Mathematics, Dr. R.K. Shanmugam College of Arts and Science, Indili, Tamilnadu, India; mathsnb@gmail.com. โ€ก Received on September 18, 2021. Accepted on December 1, 2021. Published on December 31, 2021. doi: 10.23755/rm.v41i0.661. ISSN: 1592-7415. eISSN: 2282-8214. ยฉ The Authors. This paper is published under the CC-BY licence agreement. S. Yahya Mohamed and E. Naargees Begum 138 1 Introduction The theory of fuzzy sets was introduced by L.A. Zadeh [17] in 1965. Kramosil and Michalek [6] introduced the fuzzy metric spaces (FM-spaces) by generalizing the concept of probabilistic metric spaces to fuzzy situation. George and Veeramani [4] modified the concept of fuzzy metric space introduced by Kramosil and Michalek [6] with a view to obtain a Hausdorff topology on fuzzy metric spaces which have very important applications in quantum particle particularly in connection with both string and E-infinity theory. In 2004, Park [8] defined the concept of intuitionistic fuzzy metric space with the help of continuous t-norms and continuous t-conorms. Several researchers have shown interest in the intuitionistic fuzzy metric space successfully applied in many fields, it can be found in [5, 10, 11, 13, 14, 15, 16]. Theory of fuzzy sets have been widely used and developed in different fields of sciences, including mathematical programing, theory of modeling, theory of optimal control, theory of neural network, engineering and medical sciences, coloured image processing, etc. In this paper, the concept of characterization of strong fuzzy diameter zero in intuitionistic fuzzy metric spaces are introduced and also discuss some properties of strong fuzzy diameter zero in intuitionistic fuzzy metric spaces. 2 Preliminaries Definition 2.1[17] Let ๐‘‹ be a nonempty set. A fuzzy set ๐ด in ๐‘‹ is characterized by its membership function ๐œ‡๐ด โˆถ ๐‘‹ โ†’ [0, 1] and ๐œ‡๐ด(๐‘ฅ) is interpreted as the degree of membership of element ๐‘ฅ in fuzzy set ๐ด for each ๐‘ฅ โˆˆ ๐‘‹. It is clear that ๐ด is completely determined by the set of tuples ๐ด = {(๐‘ฅ, ๐œ‡๐ด(๐‘ฅ))|๐‘ฅ โˆˆ ๐‘‹}. Definition 2.2[4] The 3-tuple (๐ด, ๐‘€,โˆ—) is said to be a fuzzy metric space if ๐ด be a non-empty set and โˆ— be a continuous t-norm. A fuzzy set ๐ด2 ร— (0, โˆž) is called a fuzzy metric on ๐ด if ๐‘Ž, ๐‘, ๐‘ โˆˆ ๐ด and ๐‘ , ๐‘ก > 0, the following condition holds: 1. ๐‘€ (๐‘Ž, ๐‘, ๐‘ก) = 0 2. ๐‘€ (๐‘Ž, ๐‘, ๐‘ก) = 1 if and only if ๐‘Ž = ๐‘ A characterization of strong fuzzy diameter zero in intuitionistic fuzzy metric spaces 139 3. ๐‘€ (๐‘Ž, ๐‘, ๐‘ก) = ๐‘€(๐‘, ๐‘Ž, ๐‘ก ) 4. ๐‘€ (๐‘Ž, ๐‘, ๐‘ก + ๐‘ ) โ‰ฅ ๐‘€(๐‘Ž, ๐‘, ๐‘ก) โˆ— ๐‘€(๐‘Ž, ๐‘, ๐‘ ) 5. ๐‘€ (๐‘Ž, ๐‘, โ€ข): (0, โˆž) โ†’ [0, 1] is left continuous The function ๐‘€(๐‘Ž, ๐‘, ๐‘ก) denote the degree of nearness between ๐‘Ž and ๐‘ with respect to t respectively. Definition 2.3[1, 2] Let a set ๐ธ be fixed. An intuitionistic fuzzy set ๐ด in ๐ธ is an object of the following ๐ด = {(๐‘ฅ, ๐œ‡๐ด(๐‘ฅ), ๐œ๐ด(๐‘ฅ)), ๐‘ฅ โˆˆ ๐ธ } where the functions ๐œ‡๐ด(๐‘ฅ): ๐ธ โ†’ [0, 1] and ๐œ๐ด (๐‘ฅ ): ๐ธ โ†’ [0, 1] determine the degree of membership and the degree of non-membership of the element ๐‘ฅ โˆˆ ๐ธ, respectively, and for every ๐‘ฅ โˆˆ ๐ธ: 0 โ‰ค ๐œ‡๐ด(๐‘ฅ) + ๐œ๐ด(๐‘ฅ) โ‰ค 1, when ๐œ๐ด(๐‘ฅ) = 1 โˆ’ ๐œ‡๐ด(๐‘ฅ) for all ๐‘ฅ โˆˆ ๐ธ is an ordinary fuzzy set. In addition, for each IFS ๐ด in ๐ธ, if ๐œ‹๐ด(๐‘ฅ) = 1 โˆ’ ๐œ‡๐ด(๐‘ฅ) โˆ’ ๐œ๐ด(๐‘ฅ). Then ๐œ‡๐ด(๐‘ฅ) is called the degree of indeterminacy of ๐‘ฅ to ๐ด or called the degree of hesitancy of ๐‘ฅ to ๐ด. It is obvious that 0 โ‰ค ฯ€A(x) โ‰ค 1, for each ๐‘ฅ โˆˆ ๐ธ. Definition 2.4 [7] A 5-tuple (๐ด, ๐‘€, ๐‘,โˆ—,โˆ˜) is said to be an intuitionistic fuzzy metric space if ๐ด is an arbitrary set, โˆ— is a continuous t-norm, โˆ˜ is a continuous t- conorm and, ๐‘€, ๐‘ are fuzzy sets on ๐ด2 ร— [0, โˆž) satisfying the conditions: 1. ๐‘€(๐‘Ž, ๐‘, ๐‘ก) + ๐‘(๐‘Ž, ๐‘, ๐‘ก) โ‰ค 1, for all ๐‘Ž, ๐‘ โˆˆ ๐ด and ๐‘ก หƒ 0 2. ๐‘€(๐‘Ž, ๐‘, 0) = 0, for all ๐‘Ž, ๐‘ โˆˆ ๐ด 3. ๐‘€(๐‘Ž, ๐‘, ๐‘ก) = 1, for all ๐‘Ž, ๐‘ โˆˆ ๐ด and ๐‘ก หƒ 0 if and only if ๐‘Ž = ๐‘ 4. ๐‘€(๐‘Ž, ๐‘, ๐‘ก) = ๐‘€(๐‘, ๐‘Ž, ๐‘ก), for all ๐‘Ž, ๐‘ โˆˆ ๐ด and ๐‘ก > 0 5. ๐‘€(๐‘Ž, ๐‘, ๐‘ก) โˆ— ๐‘€(๐‘, ๐‘, ๐‘ ) โ‰ค ๐‘€(๐‘Ž, ๐‘, ๐‘ก + ๐‘ ), for all ๐‘Ž, ๐‘, ๐‘ โˆˆ ๐ด and ๐‘ , ๐‘ก หƒ 0 6. ๐‘€(๐‘Ž, ๐‘,โ€ข): [0, โˆž) โ†’ [0, โˆž] is left continuous for all ๐‘Ž, ๐‘ โˆˆ ๐ด 7. ๐‘™๐‘–๐‘š ๐‘กโ†’โˆž ๐‘€(๐‘Ž, ๐‘, ๐‘ก) = 1, for all ๐‘Ž, ๐‘ โˆˆ ๐ด and ๐‘ก > 0 8. ๐‘(๐‘Ž, ๐‘, 0) = 1, for all a, ๐‘ โˆˆ ๐ด 9. ๐‘(๐‘Ž, ๐‘, ๐‘ก) = 0, for all ๐‘Ž, ๐‘ โˆˆ ๐ด and ๐‘ก > 0 if and only if ๐‘Ž = ๐‘ 10. ๐‘(๐‘Ž, ๐‘, ๐‘ก) = ๐‘(๐‘, ๐‘Ž, ๐‘ก), for all ๐‘Ž, ๐‘ โˆˆ ๐ด and ๐‘ก > 0 11. ๐‘(๐‘Ž, ๐‘, ๐‘ก) โˆ˜ ๐‘(๐‘, ๐‘, ๐‘ ) โ‰ฅ ๐‘(๐‘Ž, ๐‘, ๐‘ก + ๐‘ ), for all ๐‘Ž, ๐‘, ๐‘ โˆˆ ๐ด and ๐‘ , ๐‘ก > 0 12. ๐‘(๐‘Ž, ๐‘,โ€ข): [0, โˆž) โ†’ [0,1] is right continuous for all ๐‘Ž, ๐‘ โˆˆ ๐ด 13. ๐‘™๐‘–๐‘š ๐‘กโ†’โˆž ๐‘(๐‘Ž, ๐‘, ๐‘ก) = 0, for all ๐‘Ž, ๐‘ โˆˆ ๐ด. The functions ๐‘€(๐‘Ž, ๐‘, ๐‘ก) and ๐‘(๐‘Ž, ๐‘, ๐‘ก) denote the degree of nearness and the degree of non-nearness between ๐‘Ž and ๐‘ w.r.t ๐‘ก respectively. Definition 2.5 [9] The fuzzy diameter of a non-empty set ๐ต of a fuzzy metric space ๐ด, with respect to t, is the function ๐œ‘๐ต : (0, +โˆž) โ†’ [0, 1] given by ฯ†B(t) = ๐‘–๐‘›๐‘“{๐‘€(๐‘Ž, ๐‘, ๐‘ก): ๐‘Ž, ๐‘ โˆˆ ๐ต} for each ๐‘ก โˆˆ ๐‘… +. S. Yahya Mohamed and E. Naargees Begum 140 Definition 2.6 [9] A collection of sets {๐ต๐‘– }๐‘–โˆˆ๐ผ is said to have fuzzy diameter zero if given ๐‘Ÿ โˆˆ (0, 1) and ๐‘ก โˆˆ ๐‘…+ there exists ๐‘– โˆˆ ๐ผ such that M(a, b, t) > 1 โˆ’ r for all ๐‘Ž, ๐‘ โˆˆ ๐ต๐‘–. 3 Strong fuzzy diameter zero in intuitionistic fuzzy metric spaces Definition 3.1 The fuzzy diameter of a non-empty set ๐ต of a intuitionistic fuzzy metric space (๐ด, ๐‘€, ๐‘,โˆ—,โˆ˜), with respect to ๐‘ก, is the function ฯ†B: (0, +โˆž) โ†’ [0, 1] given by ๐œ‘๐ต (๐‘ก) = ๐‘–๐‘›๐‘“{๐‘€(๐‘Ž, ๐‘, ๐‘ก): ๐‘Ž, ๐‘ โˆˆ ๐ต} and ๐œ“๐ต : (0, +โˆž) โ†’ [0, 1] given by ๐œ“๐ต (๐‘ก) = ๐‘ ๐‘ข๐‘{๐‘(๐‘Ž, ๐‘, ๐‘ก): ๐‘Ž, ๐‘ โˆˆ ๐ต} for each ๐‘ก โˆˆ ๐‘…+ Definition 3.2 A collection of sets {๐ต๐‘–}๐‘–โˆˆ๐ผ of a intuitionistic fuzzy metric space (๐ด, ๐‘€, ๐‘,โˆ—,โˆ˜) is said to have fuzzy diameter zero if given ๐‘Ÿ โˆˆ (0, 1) and ๐‘ก โˆˆ ๐‘…+ there exists ๐‘– โˆˆ ๐ผ such that ๐‘€(๐‘Ž, ๐‘, ๐‘ก) > 1 โˆ’ ๐‘Ÿ ๐‘(๐‘Ž, ๐‘, ๐‘ก) < ๐‘Ÿ for all ๐‘Ž, ๐‘ โˆˆ ๐ต๐‘– . Theorem 3.3 Let {๐ต๐‘›}๐‘›โˆˆโ„• be a nested sequence of sets of the intuitionistic fuzzy metric space (๐ด, ๐‘€, ๐‘,โˆ—,โˆ˜). Then the following statements are equivalent: (i) {๐ต๐‘›}๐‘›โˆˆโ„• has fuzzy diameter zero. (ii) ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐œ‘๐ต๐‘› (๐‘ก) = 1, ๐‘™๐‘–๐‘š๐‘›โ†’โˆž ๐œ“๐ต๐‘› (๐‘ก) = 0 for all ๐‘ก โˆˆ ๐‘… +. Proof: (i)โ†’(ii): Let ๐‘ก โˆˆ ๐‘…+. Given ๐‘Ÿ โˆˆ (0, 1) exists ๐‘›๐‘Ÿ,๐‘ก โˆˆ โ„• such that ๐‘€(๐‘Ž, ๐‘, ๐‘ก) > 1 โ€“ ๐‘Ÿ, ๐‘(๐‘Ž, ๐‘, ๐‘ก) < ๐‘Ÿ for each ๐‘Ž, ๐‘ โˆˆ ๐ต๐‘› with ๐‘› โ‰ฅ ๐‘›๐‘Ÿ,๐‘ก . Then, ๐œ‘๐ต๐‘› (๐‘ก) = ๐‘–๐‘›๐‘“{๐‘€(๐‘Ž, ๐‘, ๐‘ก): ๐‘Ž, ๐‘ โˆˆ ๐ต๐‘›} โ‰ฅ 1 โ€“ ๐‘Ÿ and ๐œ“๐ต๐‘› (๐‘ก) = ๐‘ ๐‘ข๐‘{๐‘(๐‘Ž, ๐‘, ๐‘ก): ๐‘Ž, ๐‘ โˆˆ ๐ต๐‘›} โ‰ค 1 โ€“ ๐‘Ÿ for all n โ‰ฅ nr,t. Hence, ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐œ‘๐ต๐‘› (๐‘ก) = 1 and ๐‘™๐‘–๐‘š๐‘›โ†’โˆž ๐œ“๐ต๐‘› (๐‘ก) = 0, since r is arbitrary in (0,1). (ii)โ†’(i): Suppose ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐œ‘๐ต๐‘› (๐‘ก) = 1 and ๐‘™๐‘–๐‘š๐‘›โ†’โˆž ๐œ“๐ต๐‘› (๐‘ก) = 0, for all ๐‘ก โˆˆ ๐‘… +. Let ๐‘ก โˆˆ ๐‘…+and let ๐‘Ÿ โˆˆ (0, 1). We can find ๐‘›๐‘Ÿ,๐‘ก โˆˆ โ„• such that ๐œ‘๐ต๐‘› (๐‘ก) > 1 โˆ’ ๐‘Ÿ and ๐œ“๐ต๐‘› (๐‘ก) < ๐‘Ÿ for all โ‰ฅ ๐‘›๐‘Ÿ,๐‘ก. Thus, ๐‘€(๐‘Ž, ๐‘, ๐‘ก) > 1 โˆ’ ๐‘Ÿ and ๐‘(๐‘Ž, ๐‘, ๐‘ก) < ๐‘Ÿ for each ๐‘Ž, ๐‘ โˆˆ ๐ต๐‘› with ๐‘› โ‰ฅ ๐‘›๐‘Ÿ,๐‘ก i.e., {๐ต๐‘›}๐‘›โˆˆโ„• has fuzzy diameter zero. A characterization of strong fuzzy diameter zero in intuitionistic fuzzy metric spaces 141 Definition 3.4 A family of non-empty sets {๐ต๐‘–}๐‘–โˆˆ๐ผ of a intuitionistic fuzzy metric space (๐ด, ๐‘€, ๐‘,โˆ—,โˆ˜) has strong fuzzy diameter zero if for ๐‘Ÿ โˆˆ (0, 1) there exists ๐‘– โˆˆ ๐ผ such that ๐‘€(๐‘Ž, ๐‘, ๐‘ก) > 1 โ€“ ๐‘Ÿ and ๐‘(๐‘Ž, ๐‘, ๐‘ก) < ๐‘Ÿ for each ๐‘Ž, ๐‘ โˆˆ ๐ต๐‘› and all ๐‘ก โˆˆ ๐‘… +. Theorem 3.5 Let (๐ด, ๐‘€, ๐‘,โˆ—,โˆ˜) be an intuitionistic fuzzy metric space and let {๐ต๐‘›}๐‘›โˆˆโ„• be a nested sequence of sets of ๐ด. Then the following statements are equivalent. (i) {๐ต๐‘›}๐‘›โˆˆโ„• has strong fuzzy diameter zero. (ii) ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐œ‘๐ต๐‘› (๐‘ก๐‘›) = 1, ๐‘™๐‘–๐‘š๐‘›โ†’โˆž ๐œ“๐ต๐‘› (๐‘ก๐‘›) = 0 for every decreasing and increasing sequence of positive real numbers {๐‘ก๐‘›}๐‘›โˆˆโ„• that converges and diverges respectively. Proof: (i) โ†’ (ii): Let {๐‘ก๐‘›}๐‘›โˆˆโ„• be a decreasing increasing sequence of positive real numbers that converges and diverges respectively. Given ๐‘Ÿ โˆˆ (0, 1), we can find ๐‘›๐‘Ÿ โˆˆ โ„• such that ๐‘€(๐‘Ž, ๐‘, ๐‘ก) > 1 โ€“ ๐‘Ÿ and ๐‘(๐‘Ž, ๐‘, ๐‘ก) < ๐‘Ÿ for each a, b โˆˆ Bn with ๐‘› โ‰ฅ ๐‘›๐‘Ÿ and all ๐‘ก โˆˆ ๐‘… +. In particular, ๐‘€(๐‘Ž, ๐‘, ๐‘ก๐‘›) > 1 โ€“ ๐‘Ÿ and ๐‘(๐‘Ž, ๐‘, ๐‘ก๐‘› ) < ๐‘Ÿ for all a, b โˆˆ Bn with ๐‘› โ‰ฅ ๐‘›๐‘Ÿ , i.e., ๐œ‘๐ต๐‘› (๐‘ก๐‘›) โ‰ฅ 1 โˆ’ ๐‘Ÿ, ๐œ“๐ต๐‘› (๐‘ก๐‘›) โ‰ค ๐‘Ÿ for all ๐‘› โ‰ฅ ๐‘›๐‘Ÿ , i.e., ๐‘™๐‘–๐‘š๐‘›โ†’โˆž ๐œ‘๐ต๐‘› (๐‘ก๐‘›) = 1,๐‘™๐‘–๐‘š๐‘›โ†’โˆž ๐œ“๐ต๐‘› (๐‘ก๐‘›) = 0. (ii) โ†’ (i): Suppose that {๐ต๐‘›}๐‘›โˆˆโ„• has not strong fuzzy diameter zero. Let r โˆˆ (0, 1) such that ๐ผ = { ๐‘› โˆˆ โ„•: ๐‘€(๐‘Ž, ๐‘, ๐‘ก) โ‰ค 1 โ€“ ๐‘Ÿ, ๐‘(๐‘Ž, ๐‘, ๐‘ก) โ‰ฅ ๐‘Ÿ for some ๐‘Ž, ๐‘ โˆˆ ๐ต๐‘› and some ๐‘ก โˆˆ ๐‘… +}, is infinite. Take ๐‘›1 = ๐‘š๐‘–๐‘› ๐ผ. Then, there exist ๐‘Ž๐‘›1 , ๐‘๐‘›1 โˆˆ ๐ต๐‘›1 such that ๐‘€(๐‘Ž๐‘›1 , ๐‘๐‘›1 , ๐‘ก๐‘›1 ) โ‰ค 1 โ€“ ๐‘Ÿ, ๐‘(๐‘Ž๐‘›1 , ๐‘๐‘›1 , ๐‘ก๐‘›1 ) โ‰ฅ ๐‘Ÿ with 0 < ๐‘ก๐‘›1 < 1. Take ๐‘›2 > ๐‘›1, with ๐‘›2 โˆˆ โ„•, such that ๐‘€(๐‘Ž๐‘›1 , ๐‘๐‘›1 , ๐‘ก๐‘›1 ) โ‰ค 1 โ€“ ๐‘Ÿ, ๐‘(๐‘Ž๐‘›1 , ๐‘๐‘›1 , ๐‘ก๐‘›1 ) โ‰ฅ ๐‘Ÿ for some ๐‘Ž๐‘›2 , ๐‘๐‘›2 โˆˆ ๐ต๐‘›2 and 0 < ๐‘ก๐‘›2 < ๐‘š๐‘–๐‘›{๐‘ก๐‘›1 , 1 2 }. In this way, we construct, by induction, a sequence {๐‘ก๐‘›๐‘– }๐‘–โˆˆโ„• such that ๐‘€(๐‘Ž๐‘›๐‘– , ๐‘๐‘›๐‘– , ๐‘ก๐‘›๐‘– ) โ‰ค 1 โ€“ ๐‘Ÿ, ๐‘(๐‘Ž๐‘›๐‘– , ๐‘๐‘›๐‘– , ๐‘ก๐‘›๐‘– ) โ‰ฅ ๐‘Ÿ for some ๐‘Ž๐‘›๐‘– , ๐‘๐‘›๐‘– โˆˆ ๐ต๐‘›๐‘– , ๐‘›๐‘– โˆˆ โ„• with ๐‘›๐‘– > ๐‘›๐‘–โˆ’1 and 0 < ๐‘ก๐‘›๐‘– < ๐‘š๐‘–๐‘›{๐‘ก๐‘›๐‘–โˆ’1 , 1 ๐‘– }. Then, ๐œ‘๐ต๐‘›๐‘– (๐‘ก๐‘›๐‘– ) = ๐‘–๐‘›๐‘“{๐‘€(๐‘Ž, ๐‘, ๐‘ก๐‘›๐‘– ): ๐‘Ž, ๐‘ โˆˆ ๐ต๐‘›๐‘– } โ‰ค 1 โ€“ ๐‘Ÿ, ๐œ“๐ต๐‘›๐‘– (๐‘ก๐‘›๐‘– ) = ๐‘ ๐‘ข๐‘{๐‘(๐‘Ž, ๐‘, ๐‘ก๐‘›๐‘– ): ๐‘Ž, ๐‘ โˆˆ ๐ต๐‘›๐‘– } โ‰ฅ ๐‘Ÿ for all ๐‘– โˆˆ โ„• . Hence {๐œ‘๐ต๐‘›๐‘– (๐‘ก๐‘›๐‘– )}๐‘–โˆˆโ„•, {๐œ“๐ต๐‘›๐‘– (๐‘ก๐‘›๐‘– )}๐‘–โˆˆโ„• does not converge and diverge S. Yahya Mohamed and E. Naargees Begum 142 respectively. Now, {๐‘ก๐‘›๐‘– }๐‘–โˆˆโ„• is a subsequence of the decreasing and increasing sequence {tn}nโˆˆโ„• that converges and diverges respectively, given by ๐‘ก๐‘› = { ๐‘ก๐‘›1 ๐‘› โ‰ค ๐‘›1 ๐‘ก๐‘› ๐‘–+1 ๐‘›๐‘– โ‰ค ๐‘› โ‰ค ๐‘›๐‘–+1 and the sequence {๐œ‘๐ต๐‘› (๐‘ก๐‘›)}๐‘›โˆˆโ„•, {๐œ“๐ต๐‘› (๐‘ก๐‘›)}๐‘›โˆˆโ„• does not converge and diverge respectively. Thus, we get the contradiction. Theorem 3.6 Let {๐ต๐‘›}๐‘›โˆˆโ„• be a nested sequence of sets with fuzzy diameter zero in a intuitionistic fuzzy metric space (๐ด, ๐‘€, ๐‘,โˆ—,โˆ˜). {๐ต๐‘›}๐‘›โˆˆโ„• has strong fuzzy diameter zero if and only if {๐ต๐‘›} is a singleton set after a certain stage. Proof: Suppose {๐ต๐‘›}๐‘›โˆˆโ„• is not eventually constant. Put ๐‘๐‘› = ๐‘ ๐‘ข๐‘{๐‘‘(๐‘Ž, ๐‘): ๐‘Ž, ๐‘ โˆˆ ๐ต๐‘› }, ๐‘ž๐‘› = ๐‘–๐‘›๐‘“{๐‘‘(๐‘Ž, ๐‘): ๐‘Ž, ๐‘ โˆˆ ๐ต๐‘› } and take ๐‘ก๐‘› = ๐‘๐‘› and ๐‘ก๐‘› = ๐‘ž๐‘› for all ๐‘› โˆˆ โ„•. Then, {๐‘ก๐‘› }๐‘›โˆˆโ„• is a decreasing and increasing sequence of positive real numbers converges and diverges respectively. Then, ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐œ‘๐ต๐‘› (๐‘ก) = ๐‘™๐‘–๐‘š ๐‘–๐‘›๐‘“{๐‘€๐‘‘(๐‘Ž, ๐‘, ๐‘ก๐‘›): ๐‘Ž, ๐‘ โˆˆ ๐ต๐‘› } ๐‘›โ†’โˆž = ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘ก๐‘› ๐‘ก๐‘›+๐‘‘๐‘–๐‘Ž๐‘š(๐ต๐‘›) = ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘๐‘› ๐‘๐‘›+๐‘๐‘› = 1 2 and ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐œ“๐ต๐‘› (๐‘ก) = ๐‘™๐‘–๐‘š ๐‘ ๐‘ข๐‘{๐‘๐‘‘(๐‘Ž, ๐‘, ๐‘ก๐‘› ): ๐‘Ž, ๐‘ โˆˆ ๐ต๐‘›} ๐‘›โ†’โˆž = ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘ก๐‘› ๐‘ก๐‘›+๐‘‘๐‘–๐‘Ž๐‘š(๐ต๐‘›) = ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐‘ž๐‘› ๐‘ž๐‘›+๐‘ž๐‘› = 1 2 Hence {๐ต๐‘›}๐‘›โˆˆโ„• has not strong fuzzy diameter zero. Theorem 3.7 Let (๐ด, ๐‘€, ๐‘,โˆ—,โˆ˜) be a intuitionistic fuzzy metric space. If {๐ต๐‘›}๐‘›โˆˆโ„• is a nested sequence of sets of A which has strong fuzzy diameter zero then {๐ต๐‘›}๐‘›โˆˆโ„• has strong fuzzy diameter zero. Proof: First, we prove that ๐œ‘๏ฟฝฬ…๏ฟฝ (๐‘ก ) = ๐œ‘๐ต (๐‘ก ), ๐œ“๏ฟฝฬ…๏ฟฝ (๐‘ก ) = ๐œ“๐ต (๐‘ก ) for every subset ๐ต of ๐ด . Indeed, take ๐‘Ž, ๐‘ โˆˆ ๐ต. Then, we can find two sequences {๐‘Ž๐‘›}๐‘›โˆˆโ„• and A characterization of strong fuzzy diameter zero in intuitionistic fuzzy metric spaces 143 {๐‘๐‘›}๐‘›โˆˆโ„• in ๐ต that converge to ๐‘Ž and ๐‘, respectively. Let ๐‘ก โˆˆ ๐‘… + and an arbitrary ฮต โˆˆ (0, 1). We have that ๐‘€(๐‘Ž, ๐‘, ๐‘ก + 2๐œ€) โ‰ฅ ๐‘€(๐‘Ž, ๐‘๐‘›, ๐œ€) โˆ— ๐‘€(๐‘Ž๐‘›, ๐‘๐‘›, ๐‘ก) โˆ— ๐‘€(๐‘๐‘›, ๐‘, ๐œ€) โ‰ฅ ๐‘€(๐‘Ž, ๐‘Ž๐‘›, ๐œ€) โˆ— ๐œ‘๐ต (๐‘ก ) โˆ— ๐‘€(๐‘๐‘›, ๐‘, ๐œ€), ๐‘(๐‘Ž, ๐‘, ๐‘ก + 2๐œ€) โ‰ค ๐‘(๐‘Ž, ๐‘๐‘›, ๐œ€) โˆ˜ ๐‘(๐‘Ž๐‘›, ๐‘๐‘›, ๐‘ก) โˆ˜ ๐‘(๐‘๐‘›, ๐‘, ๐œ€) โ‰ค ๐‘(๐‘Ž, ๐‘Ž๐‘›, ๐œ€) โˆ˜ ๐œ“๐ต (๐‘ก ) โˆ˜ ๐‘(๐‘๐‘›, ๐‘, ๐œ€) and taking limit on the inequality when n tends to โˆž, we obtain ๐‘€(๐‘Ž, ๐‘, ๐‘ก + 2๐œ€) โ‰ฅ 1 โˆ— ๐œ‘๐ต (๐‘ก ) โˆ— 1 = ๐œ‘๐ต (๐‘ก ) , ๐‘(๐‘Ž, ๐‘, ๐‘ก + 2๐œ€) โ‰ค 1 โˆ˜ ๐œ‘๐ต (๐‘ก ) โˆ˜ 1 = ๐œ‘๐ต (๐‘ก ) . Since ฮต is arbitrary, due to the continuity of ๐‘€(๐‘Ž, ๐‘, ๐‘ก), ๐‘(๐‘Ž, ๐‘, ๐‘ก) we obtain ๐‘€(๐‘Ž, ๐‘, ๐‘ก) โ‰ฅ ๐œ‘๐ต (๐‘ก ), ๐‘(๐‘Ž, ๐‘, ๐‘ก) โ‰ค ๐œ“๐ต (๐‘ก ) and then ๐œ‘๏ฟฝฬ…๏ฟฝ (๐‘ก ) โ‰ฅ ๐œ‘๐ต (๐‘ก ), ๐œ“๏ฟฝฬ…๏ฟฝ (๐‘ก ) โ‰ฅ ๐œ“๐ต (๐‘ก ). On the other hand, we have ๐œ‘๏ฟฝฬ…๏ฟฝ (๐‘ก ) โ‰ค ๐œ‘๐ต (๐‘ก ), ๐œ“๏ฟฝฬ…๏ฟฝ (๐‘ก ) โ‰ค ๐œ“๐ต (๐‘ก ) and hence ๐œ‘๏ฟฝฬ…๏ฟฝ (๐‘ก ) = ๐œ‘๐ต (๐‘ก ), ๐œ“๏ฟฝฬ…๏ฟฝ (๐‘ก ) = ๐œ“๐ต (๐‘ก ). Let {๐‘ก๐‘›}๐‘›โˆˆโ„• be a decreasing and increasing sequence of positive real numbers convergent and divergent respectively. By theorem 3.5, we have that ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐œ‘๐ต๐‘› (๐‘ก๐‘›) = 1, ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐œ“๐ต๐‘› (๐‘ก๐‘›) = 0. Then, by our last argument, we have that, ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐œ‘๐ต๐‘› (๐‘ก๐‘›) = ๐‘™๐‘–๐‘š๐‘›โ†’โˆž ๐œ‘๏ฟฝฬ…๏ฟฝ๐‘› (๐‘ก๐‘›) = 1, ๐‘™๐‘–๐‘š ๐‘›โ†’โˆž ๐œ“๐ต๐‘› (๐‘ก๐‘›) = ๐‘™๐‘–๐‘š๐‘›โ†’โˆž ๐œ“๏ฟฝฬ…๏ฟฝ๐‘› (๐‘ก๐‘›) = 0, and consequently, by theorem 3.5, {๐ต๐‘›}๐‘›โˆˆโ„• has strong fuzzy diameter zero. 4 Conclusion Intuitionistic fuzzy set theory plays a vital role in uncertain situations in all aspects. In this paper, the characterizations of strong fuzzy diameter zero in intuitionistic fuzzy metric spaces are discussed and proved that the nested sequences having the strong fuzzy diameter zero in intuitionistic fuzzy metric space. We have also provided that nested sequences of subsets has strong fuzzy diameter zero if and only if singleton set after a certain stage in a intuitionistic fuzzy metric spaces. S. Yahya Mohamed and E. Naargees Begum 144 References [1] K.T.Atanassov. More on intuitionistic fuzzy sets. Fuzzy Sets and Systems, 33(1), 37-45. 1989. [2] K.T.Atanassov. Intuitionistic Fuzzy sets. Fuzzy sets and system, 20, 87- 96. 1986. [3] M.A.Erceg. Metric spaces in fuzzy set theory. Journal of Mathematical Analysis and Applications. 69(1), 205โ€“230. 1979. [4] A.George, P.Veeramani. On some results in fuzzy metric spaces, Fuzzy sets and Systems. 1994. [5] V.Gregori, S.Romaguera, P.Veeramani. A note on intuitionistic fuzzy metric spaces. Chaos, Solitions and Fractals. 28, 902-905. 2006. [6] Valentine Gregori and Juan Jose Minana, Bernardino Roig, Almanzor Sapena. A Characterization of strong completeness in fuzzy metric spaces. Mathematics, 8(861). doi:10.3390/math8060861. 2020. [7] Kramosil, Michalek. Fuzzy metrics and statistical metric spaces. Kybernetika, 11, 326-334. 1975. [8] J. H. Park, Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals, 22 (5), 1039-1046. 2004. [9] R. Roopkumar, R. Vembu. Some remarks on metrics induced by a fuzzy metric. arXiv preprint arXiv:1802.03031. 2018. [10] S.Yahya Mohamed, E.Naargees Begum. A Study on Intuitionistic L- Fuzzy Metric Spaces. Annals of Pure and Applied Mathematics ,15(1), 67-75. 2017. [11] S.Yahya Mohamed, E.Naargees Begum. A Study on Properties of Connectedness in Intuitionistic L-Fuzzy Special Topological Spaces. International Journal of Emerging Technologies and Innovative Research, 5(7), 533-538. 2018. [12] S.Yahya Mohamed, E. Naargees Begum. A Study on Fuzzy Fixed Points and Coupled Fuzzy Fixed Points in Hausdorff L-Fuzzy Metric Spaces. Journal of Computer and Mathematical Sciences, 9(9), 1187-1200. 2018. [13] S.Yahya Mohamed, E.Naargees Begum. A Study on Fixed Points and Coupled Fuzzy Fixed Points in Hausdorff Intuitionistic L-Fuzzy Metric Spaces. International Journal of Advent Technology, 6, 12719-2725. 2018. A characterization of strong fuzzy diameter zero in intuitionistic fuzzy metric spaces 145 [14] S.Yahya Mohamed, A.Mohamed Ali. Fixed point theorems in intuitionistic fuzzy graph metric space. Annals of Pure and Applied Mathematics, 118(6), 67-74. 2017. [15] S.Yahya Mohamed, A.Mohamed Ali. Intuitionistic fuzzy graph metric space. International Journal of Pure and Applied Mathematics, 118(6), 67-74. 2018. [16] S.Yahya Mohamed, E. Naargees Begum. A study on concepts of Balls in a intuitionistic fuzzy D-metric spaces. Advances in Mathematics: Scientific Journal, 9(3), 1019-1025. 2020. [17] L.A. Zadeh, Fuzzy sets. Information and control, 8(3), 338-356. 1965.