Ratio Mathematica Volume 41, 2021, pp. 71-78 71 Blocks within the period of Lucas sequence Rima P. Patel* Devbhadra V. Shahโ€  Abstract In this paper, we consider the periodic nature of the sequence of Lucas numbers ๐ฟ๐‘› defined by the recurrence relation ๐ฟ๐‘› = ๐ฟ๐‘›โˆ’1 + ๐ฟ๐‘›โˆ’2; for all ๐‘› โ‰ฅ 2; with initial condition ๐ฟ0 = 2 and ๐ฟ1 = 1. For any modulo ๐‘š > 1, we introduce the โ€˜blocksโ€™ within this sequence by observing the distribution of residues within a single period of Lucas sequence. We show that length of any one period of the Lucas sequence contains either 1,2 or 4 blocks. Keywords: Fibonacci sequence, Lucas sequence, Periodicity of Lucas sequence 2010 AMS subject classificationโ€ก: 11B37, 11B39, 11B50 * Rima P. Patel (Mahavir Swami College of Polytechnic, Bhagwan Mahavir University, Surat, India); rimapatel25@gmail.com โ€ Devbhadra V. Shah (Department of Mathematics, Veer Narmad South Gujarat University, Surat, India); drdvshah@yahoo.com โ€ก Received on September 21, 2021. Accepted on December 5, 2021. Published on December 31, 2021. doi: 10.23755/rm.v41i0.664. ISSN: 1592-7415. eISSN: 2282-8214. ยฉThe Authors. This paper is published under the CC-BY licence agreement. R. Patel and D. Shah 72 1. Introduction The Fibonacci sequence and the Lucas sequence are well-known sequences among all the integer sequences. The Fibonacci sequence {๐น๐‘›} satisfies the recurrence relation ๐น๐‘› = ๐น๐‘›โˆ’1 + ๐น๐‘›โˆ’2, with the initial conditions ๐น0 = 1 and ๐น1 = 1. Lucas sequence {๐ฟ๐‘›} is considered as the โ€˜twin sequenceโ€™ of Fibonacci sequence which satisfies the similar recursive relation ๐ฟ๐‘› = ๐ฟ๐‘›โˆ’1 + ๐ฟ๐‘›โˆ’2, with the initial conditions ๐ฟ0 = 2 and ๐ฟ1 = 1. On the other hand, some researchers have conducted important research on the period of these two recursive sequences [1, 3, 4, 5, 6]. Wall [1] defines the length of period of the Fibonacci sequence by reducing it through the modulo any positive integer ๐‘š > 1. Kramer and Hoggatt Jr. [3] also defined the length of the period of the Lucas sequence obtained by reducing the sequence through modulo any positive integer ๐‘š > 1. In this paper, we take deep insight in to the periodic nature of Lucas sequence and introduce the concept of โ€˜blocksโ€™ by observing the distribution of residues within a single period of Lucas sequence when considered modulo any positive integer ๐‘š > 1. We denote the sequence of least non-negative residues of the terms of {๐ฟ๐‘›} taken modulo ๐‘š (๐‘š โ‰ฅ 2) by ๐ฟ(๐‘š๐‘œ๐‘‘ ๐‘š). If we examine the sequence of final digits of {๐ฟ๐‘›}, then we notice an interesting pattern that the sequence ๐ฟ(๐‘š๐‘œ๐‘‘ 10) = {2,1,3,4,7,1,8,9,7,6,3,9,2,1,3,โ€ฆ} repeats after the 12 terms again and again all the way. For any modulo ๐‘š, it is easy to observe that the sequence {๐ฟ๐‘›} is always periodic and it repeats from starting values 0 and 1. By ๐‘˜๐ฟ = ๐‘˜๐ฟ(๐‘š), we mean the lengths of the period of {๐ฟ๐‘›} modulo any positive integer ๐‘š. These leads us to the following easy consequences. Lemma ๐Ÿ.๐Ÿ. (a) ๐ฟ๐‘˜๐ฟ(๐‘š)โˆ’1 โ‰ก โˆ’1(๐‘š๐‘œ๐‘‘๐‘š) (b) ๐ฟ๐‘˜๐ฟ(๐‘š) โ‰ก 2(๐‘š๐‘œ๐‘‘๐‘š) (c) ๐ฟ๐‘˜๐ฟ(๐‘š)+1 โ‰ก 1(๐‘š๐‘œ๐‘‘๐‘š) (d) ๐ฟ๐‘˜๐ฟ(๐‘š)+2 โ‰ก 3(๐‘š๐‘œ๐‘‘๐‘š) (e) ๐ฟ๐‘˜๐ฟ(๐‘š)+๐‘›๐‘Ÿ โ‰ก ๐ฟ๐‘›(๐‘š๐‘œ๐‘‘ ๐‘š), for all ๐‘Ÿ โˆˆ โ„ค. The following is an important result which speaks about the divisibility property of ๐‘˜๐ฟ(๐‘š). Fact ๐Ÿ.๐Ÿ. For any ๐‘š > 1, since ๐ฟ(๐‘š๐‘œ๐‘‘ ๐‘š) is always periodic, we conclude that if ๐ฟ๐‘› โ‰ก 2 (๐‘š๐‘œ๐‘‘ ๐‘š) and ๐ฟ๐‘› + 1 โ‰ก 1(๐‘š๐‘œ๐‘‘ ๐‘š), then ๐‘˜๐ฟ(๐‘š) | ๐‘›. Blocks of Lucas sequence 73 2. Blocks within ๐‘ณ(๐’Ž๐’๐’… ๐’Ž) In this article, we restrict our attention to the behavior of the blocks within the residues for a given modulus and consequently some interesting relationships will be derived. Definition 2.1. By ๐›ผ(๐‘š) we mean the smallest positive value of the index ๐‘› of Lucas numbers such that ๐ฟ๐‘› โ‰ก 2๐ฟ๐‘›+1(๐‘š๐‘œ๐‘‘ ๐‘š), when ๐‘› > 1. We call ๐›ผ(๐‘š) the restricted period of ๐ฟ(๐‘š๐‘œ๐‘‘ ๐‘š). Equivalently, ๐›ผ(๐‘š) is the position of the first repeated term in the sequence ๐ฟ(๐‘š๐‘œ๐‘‘ ๐‘š). Thus, ๐ฟ๐›ผ(๐‘š) โ‰ก 2๐ฟ๐›ผ(๐‘š)+1 when considered (๐‘š๐‘œ๐‘‘ ๐‘š). As an illustration, if we consider ๐ฟ(๐‘š๐‘œ๐‘‘ 3) = {2,1,0,1,1,2,0,2,2,1,0,1,1โ€ฆ}, then it is appearent that ๐ฟ4 โ‰ก 1(๐‘š๐‘œ๐‘‘ 3) and ๐ฟ5 โ‰ก 2(๐‘š๐‘œ๐‘‘ 3). Thus ๐ฟ4 โ‰ก 2๐ฟ5(๐‘š๐‘œ๐‘‘ 3), which gives ๐›ผ(3) = 4. We call the finite sequence ๐ฟ0, ๐ฟ1,โ€ฆ , ๐ฟ๐›ผ(๐‘š)โˆ’1 to be the first block occurring in ๐ฟ(๐‘š๐‘œ๐‘‘ ๐‘š). It may happen that ๐›ผ(๐‘š) = ๐‘˜๐ฟ(๐‘š). In such case, we call ๐ฟ(๐‘š๐‘œ๐‘‘ ๐‘š) to be without restricted period. For ๐ฟ(๐‘š๐‘œ๐‘‘ 4) = {2,1,3,0,3,3,2,1,3โ€ฆ}, clearly ๐›ผ(4) = ๐‘˜๐ฟ(4) = 6, and thus ๐ฟ(๐‘š๐‘œ๐‘‘ 4) has no restricted period. Definition 2.2. By ๐‘ (๐‘š) we mean the second positive residue โ€ฒ๐‘กโ€ฒ, which appears after the first block in ๐ฟ(๐‘š๐‘œ๐‘‘ ๐‘š). This clearly means that 2๐‘ (๐‘š) โ‰ก ๐ฟ๐›ผ(๐‘š) (๐‘š๐‘œ๐‘‘ ๐‘š); ๐‘ (๐‘š) = ๐ฟ๐›ผ(๐‘š)+1. Using the definition of ๐ฟ๐‘›, we now conclude that ๐ฟ๐›ผ(๐‘š)+2 = 3๐‘ (๐‘š), ๐ฟ๐›ผ(๐‘š)+3 = 4๐‘ (๐‘š), ๐ฟ๐›ผ(๐‘š)+4 = 7๐‘ (๐‘š),โ€ฆ . Also the first block ends with ๐‘š โˆ’ ๐‘ (๐‘š). Thus, (๐ฟ๐›ผ(๐‘š), ๐ฟ๐›ผ(๐‘š)+1, ๐ฟ๐›ผ(๐‘š)+2, ๐ฟ๐›ผ(๐‘š)+3,โ€ฆ) = ๐‘ (๐‘š)(2, 1, 3, 4, 7,โ€ฆ)(๐‘š๐‘œ๐‘‘ ๐‘š). This implies that the successive terms in ๐ฟ(๐‘š๐‘œ๐‘‘ ๐‘š) after the first block are the multiples of ๐‘ (๐‘š). We therefore call ๐‘ (๐‘š) to be a multiplier. Again, in the sequence ๐ฟ(๐‘š๐‘œ๐‘‘ ๐‘š), the blocks are of the form 2,1,โ€ฆ,๐‘š โˆ’ ๐‘ (๐‘š),2๐‘ (๐‘š),๐‘ (๐‘š),โ€ฆ , ๐‘š โˆ’ ๐‘ฅ,๐‘ฅ,๐‘ฅ,โ€ฆ; where 2,1,โ€ฆ,๐‘š โˆ’ ๐‘ (๐‘š) is the first block, 2๐‘ (๐‘š),๐‘ (๐‘š),โ€ฆ,๐‘š โˆ’ ๐‘ฅ is the second block, and so on. The occurrence of 3 โˆ’ 2๐‘š,๐‘š โˆ’ 1 in ๐ฟ(๐‘š๐‘œ๐‘‘ ๐‘š) will indicate that the end of the period has been reached and there after repetition begins, since the next two terms will be 2,1. Here we note that each block contains the same (that is ๐›ผ(๐‘š)) number of terms and the subscripts are in arithmetic progression. Thus, ๐ฟ๐›ผ(๐‘š)๐‘ข โ‰ก R. Patel and D. Shah 74 2๐ฟ๐›ผ(๐‘š)๐‘ข+1(๐‘š๐‘œ๐‘‘ ๐‘š), for each positive integer ๐‘ข. Since ๐ฟ๐‘˜๐ฟ(๐‘š) โ‰ก 2๐ฟ๐‘˜๐ฟ(๐‘š)+1(๐‘š๐‘œ๐‘‘ ๐‘š), we conclude that ๐›ผ(๐‘š)๐‘ข = ๐‘˜๐ฟ(๐‘š), where ๐‘ข is a positive integer, which implies that ๐›ผ(๐‘š) | ๐‘˜๐ฟ(๐‘š). Later in the paper we show that the value of ๐‘ข is either 1 or 2 or 4. Definition 2.3. By ๐›ฝ(๐‘š) we mean the order of ๐‘ (๐‘š), when considered modulo ๐‘š. That is, ๐‘ (๐‘š)๐›ฝ(๐‘š) โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘š) and if ๐‘› < ๐›ฝ(๐‘š) then ๐‘ (๐‘š)๐‘› โ‰ข 1 (๐‘š๐‘œ๐‘‘ ๐‘š). To illustrate above definitions, we consider the following three examples: (1) For ๐ฟ(๐‘š๐‘œ๐‘‘ 4) = {2,1,3,0,3,3,2,1, . . . }, clearly ๐‘˜๐ฟ(4) = 6. Also, the restricted period ๐›ผ(4) is 6 and multiplier ๐‘ (4) is 1. Thus, the order of ๐‘ (4) = 1 is 1 and hence ๐›ฝ(4) = 1. (2) If we consider ๐ฟ(๐‘š๐‘œ๐‘‘ 6) = {2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2, 5,1,0,1,1,2,3,5,2,1,3,4,1,โ€ฆ} , then clearly ๐‘˜๐ฟ(6) is 24, ๐›ผ(6) is 12 and ๐‘ (๐‘š) is 5. Since 52 โ‰ก 1 (๐‘š๐‘œ๐‘‘ 6), we get ๐›ฝ(11) = 2. (3) If we consider ๐ฟ(๐‘š๐‘œ๐‘‘ 13) = 2,1,3,4,7,11,18,3,8,11,6,4,10,1, 11,12,10,9,6,2,8,10, 5,2,7,9,3,12,2,1,3,4,โ€ฆ , then ๐‘˜๐ฟ(13) = 28, ๐›ผ(13) = 7 and ๐‘ (๐‘š) = 8. Since 84 โ‰ก 1 (๐‘š๐‘œ๐‘‘ 13), we have ๐›ฝ(13) = 4. The following theorem ties together the three functions ๐‘˜๐ฟ(๐‘š), ๐›ผ(๐‘š) and ๐›ฝ(๐‘š). Theorem 2.4. ๐‘˜๐ฟ(๐‘š) = ๐›ผ(๐‘š)ร— ๐›ฝ(๐‘š). Proof: We first divide the single period of ๐ฟ(๐‘š๐‘œ๐‘‘ ๐‘š) into smaller finite subsequences, say ๐‘…0,๐‘…1,๐‘…2,โ€ฆ,๐‘…๐‘›,โ€ฆ as shown below: 2,1,โ€ฆ 3๐‘ 1 โˆ’๐‘š,๐‘š โˆ’ ๐‘ 1โž , ๐‘…0 2๐‘ 1,๐‘ 1, . . . ,3๐‘ 2 โˆ’ ๐‘š,๐‘š โˆ’ ๐‘ 2โž ๐‘…1 ,2๐‘ 2,๐‘ 2, . . . ,3๐‘ 3 โˆ’ ๐‘š,๐‘š โˆ’๐‘ 3โž ๐‘…2 โ€ฆ ..2๐‘ ๐‘›,๐‘ ๐‘›, . . . ,3โˆ’ ๐‘š,๐‘š โˆ’1โž ๐‘…๐‘› ,2,1,โ€ฆ3๐‘ 1 โˆ’ ๐‘š,๐‘š โˆ’ ๐‘ 1โž , ๐‘…๐‘›+1 โ€ฆ , (2.1) where ๐‘ 1 = ๐‘ (๐‘š). Obviously each finite subsequence โ€˜๐‘…๐‘–โ€™ has ๐›ผ(๐‘š) terms and it contains exactly one block. Hence every subsequence ๐‘…๐‘–(๐‘– โ‰ฅ 1) is a multiple of โ€˜๐‘…0โ€™. Therefore, we have the following congruences modulo ๐‘š: ๐‘…1 = ๐‘ 1๐‘…0 ; ๐‘…2 = ๐‘ 2๐‘…0 ; ๐‘…3 = ๐‘ 3๐‘…0 ; โ‹ฏ ; ๐‘…๐‘›โˆ’1 = ๐‘ ๐‘›โˆ’1๐‘…0 ; ๐‘…๐‘› = ๐‘ ๐‘›๐‘…0. Since the first term of ๐‘…1 is ๐‘š โˆ’ ๐‘ 2 and that of ๐‘…0 is ๐‘š โˆ’ ๐‘ 1 and we also have ๐‘…1 = ๐‘ 1๐‘…0, we get ๐‘š โˆ’ ๐‘ 2 = ๐‘ 1(๐‘š โˆ’ ๐‘ 1). If we consider the modulo ๐‘š, we get ๐‘ 2 = ๐‘ 1 ร— ๐‘ 1. According to similar arguments, when considering the modulo Blocks of Lucas sequence 75 ๐‘š, we have ๐‘ 3 = ๐‘ 2 ร— ๐‘ 1,๐‘ 4 = ๐‘ 3 ร— ๐‘ 1,๐‘ 5 = ๐‘ 4 ร—๐‘ 1,โ‹ฏ ,๐‘ ๐‘› = ๐‘ ๐‘›โˆ’1 ร— ๐‘ 1. Therefore, we have ๐‘ ๐‘› = ๐‘ ๐‘›โˆ’1 ร— ๐‘ 1 = (๐‘ ๐‘›โˆ’2 ร—๐‘ 1) ร— ๐‘ 1 = (๐‘ ๐‘›โˆ’3 ร—๐‘ 1) ร— ๐‘ 1 ร— ๐‘ 1 โ‹ฎ = (๐‘ ๐‘›โˆ’(๐‘›โˆ’1) ร—๐‘ 1) ร— ๐‘ 1 ร—๐‘ 1 ร— โ€ฆร—๐‘ 1โž (๐‘›โˆ’2) ๐‘ก๐‘–๐‘š๐‘’๐‘  Thus, ๐‘ ๐‘› = ๐‘ 1 ๐‘›. Now since the order of ๐‘ 1 is ๐›ฝ(๐‘š), we can write single period of ๐ฟ(๐‘š๐‘œ๐‘‘ ๐‘š) as follows: 2,1,3,4,7,โ€ฆ,3๐‘ 1 โˆ’ ๐‘š,๐‘š โˆ’ ๐‘ 1,๐‘ 1,โ€ฆ,3๐‘ 1 2 โˆ’ ๐‘š,๐‘š โˆ’ ๐‘ 1 2, ๐‘ 1 2,โ€ฆ,3๐‘ 1 3 โˆ’ ๐‘š, ๐‘š โˆ’ ๐‘ 1 3,โ€ฆ ,3 โˆ’ ๐‘š,๐‘š โˆ’ 1, ๐‘ 1 ๐›ฝ(๐‘š)โˆ’1 ,โ€ฆ,2,1. Therefore, ๐›ฝ(๐‘š) can be interpreted differently as the number of blocks in a single period of ๐ฟ(๐‘š๐‘œ๐‘‘ ๐‘š). It now follows easily that ๐‘˜๐ฟ(๐‘š) = ๐›ผ(๐‘š)ร—๐›ฝ(๐‘š). Following are some interesting consequences which follows from these results. Corollary 2.5. ๐ฟ๐‘›ร—๐›ผ(๐‘š)+๐‘Ÿ โ‰ก (๐‘ (๐‘š)) ๐‘› ร— ๐ฟ๐‘Ÿ (๐‘š๐‘œ๐‘‘ ๐‘š). Proof: From the previous theorem, we have ๐‘…๐‘› โ‰ก ๐‘ ๐‘›๐‘…0(๐‘š๐‘œ๐‘‘ ๐‘š) and ๐‘ ๐‘› โ‰ก ๐‘ 1 ๐‘›(๐‘š๐‘œ๐‘‘ ๐‘š) . Thus, we have ๐‘…๐‘› โ‰ก ๐‘ 1 ๐‘›๐‘…0 (๐‘š๐‘œ๐‘‘ ๐‘š). (2.2) This shows that the ๐‘Ÿ๐‘กโ„Ž term of ๐‘…๐‘› is equal to ๐‘ 1 ๐‘› times the ๐‘Ÿ๐‘กโ„Ž term of ๐‘…0, when considering the modulo ๐‘š. Also, from the definition of ๐‘ (๐‘š), an immediate conclusion that would be drawn is ๐‘ 1 = 2๐ฟ๐›ผ(๐‘š) when considering modulo ๐‘š. Therefore, from lemma 1.1 and above arguments, we can say that ๐ฟ๐‘›ร—๐›ผ(๐‘š)+๐‘Ÿ โ‰ก (๐ฟ๐›ผ(๐‘š)) ๐‘› ร— ๐ฟ๐‘Ÿ (๐‘š๐‘œ๐‘‘ ๐‘š). This finally gives ๐ฟ๐‘›ร—๐›ผ(๐‘š)+๐‘Ÿ โ‰ก (๐‘ (๐‘š)) ๐‘› ร— ๐ฟ๐‘Ÿ (๐‘š๐‘œ๐‘‘ ๐‘š). Corollary 2.6. ๐‘”๐‘๐‘‘(๐‘š,๐‘ ๐‘–) = 1; for all ๐‘– โ‰ฅ 1. Proof: From the definition, when considered modulo ๐‘š we have ๐‘ ๐‘› = ๐‘ 1 ๐‘›. Therefore, we write ๐‘ ๐‘– ๐›ฝ(๐‘š) โ‰ก (๐‘ 1 ๐‘–) ๐›ฝ(๐‘š) โ‰ก (๐‘ 1 ๐›ฝ(๐‘š) ) ๐‘– (๐‘š๐‘œ๐‘‘ ๐‘š). Thus, since R. Patel and D. Shah 76 ๐‘ 1 ๐›ฝ(๐‘š) โ‰ก 1(๐‘š๐‘œ๐‘‘ ๐‘š), we have (๐‘ 1 ๐›ฝ(๐‘š) ) ๐‘– โ‰ก 1(๐‘š๐‘œ๐‘‘ ๐‘š). This gives ๐‘ ๐‘– ๐›ฝ(๐‘š) โ‰ก 1(๐‘š๐‘œ๐‘‘ ๐‘š). Now suppose ๐‘”๐‘๐‘‘(๐‘š,๐‘ ๐‘–) = ๐‘‘. Then, ๐‘‘ | ๐‘š and ๐‘‘ | ๐‘ ๐‘–, which gives ๐‘‘ | ๐‘ ๐‘– ๐›ฝ(๐‘š) . Also, ๐‘š | (๐‘ ๐‘– ๐›ฝ(๐‘š) โˆ’ 1). Using both together, we have ๐‘‘ | (๐‘ ๐‘– ๐›ฝ(๐‘š) โˆ’ (๐‘ ๐‘– ๐›ฝ(๐‘š) โˆ’ 1)). This gives, ๐‘‘ = 1. Thus, ๐‘”๐‘๐‘‘(๐‘š,๐‘ ๐‘–) = 1. Corollary 2.7. ๐‘ ๐‘› ๐‘Ÿ โ‰ก ๐‘ ๐‘›ร—๐‘Ÿ(๐‘š๐‘œ๐‘‘ ๐‘š). Proof: From the definition of ๐‘ (๐‘š), we have ๐‘ ๐‘› โ‰ก ๐‘ 1 ๐‘›(๐‘š๐‘œ๐‘‘ ๐‘š). Then we can write ๐‘ ๐‘› ๐‘Ÿ โ‰ก (๐‘ 1 ๐‘›)๐‘Ÿ โ‰ก ๐‘ 1 ๐‘›ร—๐‘Ÿ โ‰ก ๐‘ ๐‘›ร—๐‘Ÿ(๐‘š๐‘œ๐‘‘ ๐‘š). It now follows that ๐‘ ๐‘› ๐‘Ÿ โ‰ก ๐‘ ๐‘›ร—๐‘Ÿ(๐‘š๐‘œ๐‘‘ ๐‘š). The following theorem doesnโ€™t seem to give us an immediate idea about ๐ฟ(๐‘š๐‘œ๐‘‘ ๐‘š), but some good results follow. The evidence comes from Robinson [2] but admits that Morgan Wood knew the result in the early 1930โ€™s. Theorem 2.8. ๐‘˜๐ฟ(๐‘š) = gcd(2,๐›ฝ(๐‘š))ร— ๐‘™๐‘๐‘š[2,๐›ผ(๐‘š)], for ๐‘š > 2. Proof: Koshy [5] proved that ๐ฟ๐‘› 2 โˆ’ ๐ฟ๐‘›โˆ’1๐ฟ๐‘›+1 = 5(โˆ’1) ๐‘›. Taking ๐‘› = ๐›ผ(๐‘š), we get ๐ฟ๐›ผ(๐‘š) 2 โˆ’ ๐ฟ๐›ผ(๐‘š)โˆ’1๐ฟ๐›ผ(๐‘š)+1 = 5(โˆ’1) ๐›ผ(๐‘š). (2.3) Now, ๐ฟ๐›ผ(๐‘š) โ‰ก 2๐‘ (๐‘š)(๐‘š๐‘œ๐‘‘ ๐‘š), ๐ฟ๐›ผ(๐‘š)โˆ’1 โ‰ก โˆ’๐‘ (๐‘š)(๐‘š๐‘œ๐‘‘ ๐‘š) and ๐ฟ๐›ผ(๐‘š)+1 โ‰ก ๐‘ (๐‘š)(๐‘š๐‘œ๐‘‘ ๐‘š). Therefore, by (2.2) we have (2๐‘ (๐‘š))2 โˆ’(โˆ’๐‘ (๐‘š))(๐‘ (๐‘š)) โ‰ก 5(โˆ’1)๐›ผ(๐‘š)(๐‘š๐‘œ๐‘‘ ๐‘š). This gives 5(๐‘ (๐‘š))2 โ‰ก 5(โˆ’1)๐›ผ(๐‘š)(๐‘š๐‘œ๐‘‘ ๐‘š). (2.4) Thus (๐‘ (๐‘š)) 2 and (โˆ’1)๐›ผ(๐‘š) has same order modulo ๐‘š. But the order of โˆ’1 is 2 and the order of ๐‘ (๐‘š) is ๐›ฝ(๐‘š) modulo ๐‘š. Thus, ๐›ฝ(๐‘š) gcd(2,๐›ฝ(๐‘š)) = 2 gcd(2,๐›ผ(๐‘š)) . Thus, ๐‘˜๐ฟ(๐‘š) = ๐›ผ(๐‘š)๐›ฝ(๐‘š) = ๐›ผ(๐‘š) 2gcd(2,๐›ฝ(๐‘š)) gcd(2,๐›ผ(๐‘š)) = gcd(2,๐›ฝ(๐‘š))ร— ๐‘™๐‘๐‘š[2,๐›ผ(๐‘š)], as required. Blocks of Lucas sequence 77 Finally, we calculate the possible values of ๐›ฝ(๐‘š). Theorem 2.9. ๐›ฝ(๐‘š) = 1 or 2 or 4; for any ๐‘š โ‰ฅ 2. Proof: By above theorem we have ๐œ‡(๐‘š) = gcd(2,๐›ฝ(๐‘š))ร— ๐‘™๐‘๐‘š[2,๐›ผ(๐‘š)],= (1 ๐‘œ๐‘Ÿ 2) ร—(๐›ผ(๐‘š) ๐‘œ๐‘Ÿ 2๐›ผ(๐‘š)). Therefore, ๐œ‡(๐‘š) = ๐›ผ(๐‘š) or 2๐›ผ(๐‘š) or 4๐›ผ(๐‘š). Thus, we have ๐›ฝ(๐‘š) = 1 or 2 or 4; for any ๐‘š โ‰ฅ 2. We conclude the paper by noting the following obvious result which is a direct consequence of theorem 2.4 and theorem 2.9. Corollary 2.10. ๐‘˜(๐‘š) = ๐›ผ(๐‘š) or 2๐›ผ(๐‘š) or 4๐›ผ(๐‘š). 3. Conclusion In this article we had introduced the โ€˜blocksโ€™ within the period of the Lucas sequence and shown that length of any one period of the Lucas sequence contains either 1,2 or 4 blocks. References [1] D. D. Wall. Fibonacci series modulo ๐‘š. The American Mathematical Monthly, 67, 525 โ€“ 532, 1960. [2] D. W. Robinson. The Fibonacci matrix modulo ๐‘š. The Fibonacci Quarterly, 1, 29 โ€“ 36, 1963. [3] J. Kramer, V. E. Jr. Hoggatt. Special cases of Fibonacci Periodicity. The Fibonacci Quarterly, 1:5, 519 โ€“ 522, 1972. [4] K. Thomas. Fibonacci and Lucas Numbers with Applications. John Wiley and Sons,Inc., New York, 2001. R. Patel and D. Shah 78 [5] R. Marc. Properties of the Fibonacci sequence under various moduli. Masterโ€™s Thesis, Wake Forest University, 1996. [6] R. P. Patel, D. V. Shah. Periodicity of generalized Lucas numbers and the length of its period under modulo 2๐‘’. The Mathematics Today, 33, 67 โ€“ 74, 2017.