Approach of the value of a rent when non-central moments of the capitalization factor are known: an R application with interest rates following normal and beta distributions Ratio Mathematica Volume 41, 2021, pp. 181-196 181 The sequence of trifurcating Fibonacci numbers Parimalkumar A. Patel * Devbhadra V. Shah โ€  Abstract One of the remarkable generalizations of Fibonacci sequence is a ๐‘˜-Fibonacci sequence and subsequently generalized into the โ€˜Bifurcating Fibonacci sequenceโ€™. In this paper, further generalization as the sequence of โ€˜trifurcating Fibonacci numbersโ€™ is studied and Binet-like formula for these numbers is obtained. The analogous of Cassiniโ€™s identity, Catalanโ€™s identity, dโ€™Ocagneโ€™s identity and some fundamental identities for the terms of this sequence has also been investigated. Keywords: Fibonacci sequence, bifurcating Fibonacci sequence, generalization of Fibonacci sequence, Binet formula, identities related with the Fibonacci sequence. 2010 AMS subject classificationโ€ก: 11B39, 11B83, 11B99. * Veer Narmad South Gujarat University, Surat, India; parimalpatel4149@gmail.com. โ€  Veer Narmad South Gujarat University, Surat, India; drdvshah@yahoo.com. โ€ก 1Received on September 30, 2021. Accepted on December 10, 2021. Published on December 31, 2021.doi: 10.23755/rm.v41i0.668. ISSN: 1592-7415. eISSN: 2282-8214. ยฉThe Authors. This paper is published under the CC-BY license agreement. Parimalkumar A. Patel, Devbhadra V. Shah 182 1. Introduction The Fibonacci sequence {๐น๐‘›}๐‘›โ‰ฅ0 is a sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, โ€ฆ , where each term is the sum of two preceding terms. The corresponding recurrence relation is ๐น๐‘› = ๐น๐‘›โˆ’1 + ๐น๐‘›โˆ’2 ; ๐‘› โ‰ฅ 2. Various generalizations of this sequence have appeared in recent years [5, 7, 8]. Related to this work (i) some work alters the first two terms of the sequence from 0,1 to any arbitrary integers ๐‘Ž, ๐‘ while maintaining the recurrence relation (ii) some more work preserves the first two terms of the sequence but alters the recurrence relation (iii) even the combined approach of altering the initial terms as well as recurrence relation was considered by several authors. For further details about this sequence, one can refer Koshy [6], Patel, Shah [7], Singh, Sikhwal, Bhatnagar [8] and related papers available in the literature. One interesting generalization depending on exactly one real parameter ๐‘˜ is the sequence of ๐‘˜-Fibonacci numbers {๐น๐‘˜,๐‘›} which is defined using a linear recurrence relation ๐น๐‘˜,๐‘› = ๐‘˜๐น๐‘˜,๐‘›โˆ’1 + ๐น๐‘˜,๐‘›โˆ’2 ; ๐‘› โ‰ฅ 2 where ๐น๐‘˜,0 = 0 and ๐น๐‘˜,1 = 1. For ๐‘˜ = 1, we get the standard Fibonacci sequence and for ๐‘˜ = 2, we get the sequence of Pell numbers. This sequence was studied by Arvadia and Shah [1]. Edson and Yayenie [4] generalized this sequence to a sequence which depends on two real parameters ๐‘Ž, ๐‘. They defined the bifurcating sequence {๐น๐‘› (๐‘Ž,๐‘) } ๐‘›โ‰ฅ0 by the recurrence relation ๐น๐‘› (๐‘Ž,๐‘) = { ๐‘Ž๐น๐‘›โˆ’1 (๐‘Ž,๐‘) + ๐น๐‘›โˆ’2 (๐‘Ž,๐‘) ; if ๐‘› is even ๐‘๐น๐‘›โˆ’1 (๐‘Ž,๐‘) + ๐น๐‘›โˆ’2 (๐‘Ž,๐‘) ; if ๐‘› is odd ; ๐‘› โ‰ฅ 2 where ๐น0 (๐‘Ž,๐‘) = 0, ๐น1 (๐‘Ž,๐‘) = 1. Diwan and Shah [2, 3], Yayenie [10], Verma and Bala [9] studied this sequence extensively and obtained significant results. It is easy to observe that (i) by considering ๐‘Ž = ๐‘ = 1, we get standard Fibonacci sequence (ii) by considering ๐‘Ž = ๐‘ = 2, we get the sequence of Pell numbers and (iii) by considering ๐‘Ž = ๐‘ = ๐‘˜, we get the sequence of ๐‘˜-Fibonacci numbers. In this paper, we further generalize this sequence to a sequence of trifurcating Fibonacci numbers, which depends on the three real parameters ๐‘Ž, ๐‘, ๐‘. Definition: For any three nonzero positive integers ๐‘Ž, ๐‘ and ๐‘, the trifurcating Fibonacci sequence {๐น๐‘› (๐‘Ž,๐‘,๐‘) } ๐‘›โ‰ฅ0 is defined recursively by ๐น0 (๐‘Ž,๐‘,๐‘) = 0, ๐น1 (๐‘Ž,๐‘,๐‘) = 1 and the recurrence relation The sequence of trifurcating Fibonacci numbers 183 ๐น๐‘› (๐‘Ž,๐‘,๐‘) = { ๐‘Ž๐น๐‘›โˆ’1 (๐‘Ž,๐‘,๐‘) + ๐น๐‘›โˆ’2 (๐‘Ž,๐‘,๐‘) ; if ๐‘› โ‰ก 0(๐‘š๐‘œ๐‘‘ 3) ๐‘๐น๐‘›โˆ’1 (๐‘Ž,๐‘,๐‘) + ๐น๐‘›โˆ’2 (๐‘Ž,๐‘,๐‘) ; if ๐‘› โ‰ก 1(๐‘š๐‘œ๐‘‘ 3) ๐‘๐น๐‘›โˆ’1 (๐‘Ž,๐‘,๐‘) + ๐น๐‘›โˆ’2 (๐‘Ž,๐‘,๐‘) ; if ๐‘› โ‰ก 2(๐‘š๐‘œ๐‘‘ 3) . To avoid cumbersome notation, we denote ๐น๐‘› (๐‘Ž,๐‘,๐‘) by ๐‘ƒ๐‘›. Few terms of this trifurcating generalized Fibonacci sequence are shown in the Table 1. In this paper we obtain various interesting results for this sequence. ๐’ ๐‘ท๐’ 0 0 1 1 2 ๐‘ 3 ๐‘Ž๐‘ + 1 4 ๐‘Ž๐‘๐‘ + ๐‘ + ๐‘ 5 ๐‘Ž๐‘๐‘2 + ๐‘๐‘ + ๐‘2 + ๐‘Ž๐‘ + 1 6 ๐‘Ž2๐‘๐‘2 + 2๐‘Ž๐‘๐‘ + ๐‘Ž๐‘2 + ๐‘Ž2๐‘ + ๐‘Ž + ๐‘ + ๐‘ 7 ๐‘Ž2๐‘2๐‘2 + 2๐‘Ž๐‘2๐‘ + 2๐‘Ž๐‘๐‘2 + ๐‘Ž2๐‘๐‘ + ๐‘Ž๐‘ + 2๐‘๐‘ + ๐‘2 + ๐‘2 + ๐‘Ž๐‘ + 1 Table 1 2. Fundamental identities for the trifurcating sequence {๐‘ท๐’}๐’โ‰ฅ๐ŸŽ In this section, we derive some interesting identities for the terms of the sequence {๐‘ƒ๐‘›}๐‘›โ‰ฅ0. We first show that any two consecutive terms of {๐‘ƒ๐‘›}๐‘›โ‰ฅ0 are always relatively prime. Theorem 2.1. gcd(๐‘ƒ๐‘›, ๐‘ƒ๐‘›โˆ’1) = 1; for all ๐‘› = 1, 2, โ€ฆ . Proof. We prove the result by considering three cases when ๐‘› = 3๐‘˜, 3๐‘˜ + 1 or 3๐‘˜ + 2. We present the proof only for the case ๐‘› = 3๐‘˜ and other cases follows accordingly. Now Euclidean algorithm leads to the following system of equations: ๐‘ƒ3๐‘˜ = ๐‘Ž๐‘ƒ3๐‘˜โˆ’1 + ๐‘ƒ3๐‘˜โˆ’2 ๐‘ƒ3๐‘˜โˆ’1 = ๐‘๐‘ƒ3๐‘˜โˆ’2 + ๐‘ƒ3๐‘˜โˆ’3 ๐‘ƒ3๐‘˜โˆ’2 = ๐‘๐‘ƒ3๐‘˜โˆ’3 + ๐‘ƒ3๐‘˜โˆ’4 โ‹ฎ Parimalkumar A. Patel, Devbhadra V. Shah 184 ๐‘ƒ4 = ๐‘๐‘ƒ3 + ๐‘ƒ2 ๐‘ƒ3 = ๐‘Ž๐‘ƒ2 + ๐‘ƒ1 ๐‘ƒ2 = ๐‘๐‘ƒ1 + 0 It now easily follows from Euclidean algorithm that gcd(๐‘ƒ๐‘›, ๐‘ƒ๐‘›โˆ’1) = ๐‘ƒ1 = 1. We now prove certain summation formulae for the terms of {๐‘ƒ๐‘›}๐‘›โ‰ฅ0. Lemma 2.2. a) ๐‘ƒ3๐‘›+2 = (๐‘๐‘ + 1)(๐‘ƒ3 + ๐‘ƒ6 + โ‹ฏ + ๐‘ƒ3๐‘›) + (๐‘ƒ2 + ๐‘ƒ5 + โ‹ฏ + ๐‘ƒ3๐‘›โˆ’2) + ๐‘ b) ๐‘ƒ3๐‘›+1 = (๐‘Ž๐‘ + 1)(๐‘ƒ2 + ๐‘ƒ5 + ๐‘ƒ8 + โ‹ฏ + ๐‘ƒ3๐‘›โˆ’1) +(๐‘ โˆ’ 1)(๐‘ƒ1 + ๐‘ƒ4+. . . +๐‘ƒ3๐‘›โˆ’2) + 1 c) ๐‘ƒ3๐‘› = (๐‘Ž๐‘ + 1)(๐‘ƒ1 + ๐‘ƒ4+. . . +๐‘ƒ3๐‘›โˆ’2) + (๐‘Ž โˆ’ 1)(๐‘ƒ0 + ๐‘ƒ3 + โ‹ฏ + ๐‘ƒ3๐‘›โˆ’3). Proof. Since, ๐‘ƒ3๐‘›+2 = ๐‘๐‘ƒ3๐‘›+1 + ๐‘ƒ3๐‘› we get ๐‘ƒ2 = ๐‘๐‘ƒ1 + ๐‘ƒ0 ๐‘ƒ5 = ๐‘๐‘ƒ4 + ๐‘ƒ3 ๐‘ƒ8 = ๐‘๐‘ƒ7 + ๐‘ƒ6 โ‹ฎ ๐‘ƒ3๐‘›โˆ’1 = ๐‘๐‘ƒ3๐‘›โˆ’2 + ๐‘ƒ3๐‘›โˆ’3 ๐‘ƒ3๐‘›+2 = ๐‘๐‘ƒ3๐‘›+1 + ๐‘ƒ3๐‘›. Adding all these equations we get ๐‘ƒ2 + ๐‘ƒ5 + ๐‘ƒ8+. . . +๐‘ƒ3๐‘›+2 = ๐‘(๐‘ƒ1 + ๐‘ƒ4+. . . +๐‘ƒ3๐‘›+1) + (๐‘ƒ0 + ๐‘ƒ3 + โ‹ฏ + ๐‘ƒ3๐‘›) (2.1) Again, ๐‘ƒ3๐‘› = ๐‘Ž๐‘ƒ3๐‘›โˆ’1 + ๐‘ƒ3๐‘›โˆ’2 gives ๐‘ƒ3 = ๐‘Ž๐‘ƒ2 + ๐‘ƒ1 ๐‘ƒ6 = ๐‘Ž๐‘ƒ5 + ๐‘ƒ4 ๐‘ƒ9 = ๐‘Ž๐‘ƒ8 + ๐‘ƒ7 โ‹ฎ ๐‘ƒ3๐‘›โˆ’3 = ๐‘Ž๐‘ƒ3๐‘›โˆ’4 + ๐‘ƒ3๐‘›โˆ’5 ๐‘ƒ3๐‘› = ๐‘Ž๐‘ƒ3๐‘›โˆ’1 + ๐‘ƒ3๐‘›โˆ’2 Adding these equations, we get ๐‘ƒ3 + ๐‘ƒ6 + ๐‘ƒ9 + โ‹ฏ + ๐‘ƒ3๐‘› = ๐‘Ž(๐‘ƒ2 + ๐‘ƒ5 + ๐‘ƒ8 + โ‹ฏ + ๐‘ƒ3๐‘›โˆ’1) +(๐‘ƒ1 + ๐‘ƒ4+. . . +๐‘ƒ3๐‘›โˆ’2) (2.2) Also, since ๐‘ƒ3๐‘›+1 = ๐‘๐‘ƒ3๐‘› + ๐‘ƒ3๐‘›โˆ’1, we have ๐‘ƒ4 = ๐‘๐‘ƒ3 + ๐‘ƒ2 ๐‘ƒ7 = ๐‘๐‘ƒ6 + ๐‘ƒ5 ๐‘ƒ10 = ๐‘๐‘ƒ9 + ๐‘ƒ8 โ‹ฎ The sequence of trifurcating Fibonacci numbers 185 ๐‘ƒ3๐‘›โˆ’2 = ๐‘๐‘ƒ3๐‘›โˆ’3 + ๐‘ƒ3๐‘›โˆ’4 ๐‘ƒ3๐‘›+1 = ๐‘๐‘ƒ3๐‘› + ๐‘ƒ3๐‘›โˆ’1 Adding all these equations we get ๐‘ƒ4 + ๐‘ƒ7 + โ‹ฏ + ๐‘ƒ3๐‘›โˆ’2 + ๐‘ƒ3๐‘›+1 = ๐‘(๐‘ƒ3 + ๐‘ƒ6 + โ‹ฏ + ๐‘ƒ3๐‘›) + (๐‘ƒ2 + ๐‘ƒ5+. . . +๐‘ƒ3๐‘›โˆ’1) (2.3) Using (2.3) in (2.1) we get ๐‘ƒ2 + ๐‘ƒ5 + ๐‘ƒ8 + โ‹ฏ + ๐‘ƒ3๐‘›+2 = ๐‘(1 + ๐‘(๐‘ƒ3 + ๐‘ƒ6 + โ‹ฏ + ๐‘ƒ3๐‘›) + (๐‘ƒ2 + ๐‘ƒ5 + โ‹ฏ + ๐‘ƒ3๐‘›โˆ’1)) +(๐‘ƒ0 + ๐‘ƒ3 + โ‹ฏ + ๐‘ƒ3๐‘›) = ๐‘ + (๐‘๐‘ + 1)(๐‘ƒ0 + ๐‘ƒ3 + ๐‘ƒ6 + โ‹ฏ + ๐‘ƒ3๐‘›) + ๐‘(๐‘ƒ2 + ๐‘ƒ5+. . . +๐‘ƒ3๐‘›โˆ’1) This finally gives ๐‘ƒ3๐‘›+2 = (๐‘๐‘ + 1)(๐‘ƒ0 + ๐‘ƒ3 + ๐‘ƒ6 + โ‹ฏ + ๐‘ƒ3๐‘›) +(๐‘ โˆ’ 1)(๐‘ƒ2 + ๐‘ƒ5+. . . +๐‘ƒ3๐‘›โˆ’1) + ๐‘ (2.4) Other results can be proved accordingly by considering the pair of equations (2.1), (2.2) and further (2.1), (2.3) together. Lemma 2.3. a) โˆ‘ ๐‘ƒ3๐‘– ๐‘› ๐‘–=0 = ๐‘Ž๐‘ƒ3๐‘›(๐‘โˆ’1)(๐‘โˆ’1)โˆ’(๐‘ƒ3๐‘›+1โˆ’1)(๐‘Ž๐‘+1)(๐‘โˆ’1)+(๐‘ƒ3๐‘›+2โˆ’๐‘)(๐‘Ž๐‘+1)(๐‘Ž๐‘+1) (๐‘Ž๐‘+1)(๐‘Ž๐‘+1)(๐‘๐‘+1)+(๐‘Žโˆ’1)(๐‘โˆ’1)(๐‘โˆ’1) . b) โˆ‘ ๐‘ƒ3๐‘–+1 = ๐‘› ๐‘–=0 (๐‘ƒ3๐‘›+1โˆ’1)(๐‘Žโˆ’1)(๐‘โˆ’1)โˆ’(๐‘ƒ3๐‘›+2โˆ’๐‘)(๐‘Ž๐‘+1)(๐‘Žโˆ’1)+๐‘Ž๐‘ƒ3๐‘›(๐‘Ž๐‘+1)(๐‘๐‘+1) (๐‘Ž๐‘+1)(๐‘Ž๐‘+1)(๐‘๐‘+1)+(๐‘Žโˆ’1)(๐‘โˆ’1)(๐‘โˆ’1) . c) โˆ‘ ๐‘ƒ3๐‘–+2 = (๐‘ƒ3๐‘›+2โˆ’๐‘)(๐‘Žโˆ’1)(๐‘โˆ’1)โˆ’๐‘Ž๐‘ƒ3๐‘›(๐‘๐‘+1)(๐‘โˆ’1)+(๐‘ƒ3๐‘›+1โˆ’1)(๐‘Ž๐‘+1)(๐‘๐‘+1) (๐‘Ž๐‘+1)(๐‘Ž๐‘+1)(๐‘๐‘+1)+(๐‘Žโˆ’1)(๐‘โˆ’1)(๐‘โˆ’1) ๐‘› ๐‘–=0 . Proof. We only prove result (a) here and other two results can be proved in a similar way. Using (b) and (c) of lemma 2.2, we get ๐‘Ž๐‘ƒ3๐‘› = (๐‘Ž๐‘ + 1) (๐‘ โˆ’ 1) {(๐‘ƒ3๐‘›+1 โˆ’ 1) โˆ’ (๐‘Ž๐‘ + 1)(๐‘ƒ2 + ๐‘ƒ5 + ๐‘ƒ8 + โ‹ฏ + ๐‘ƒ3๐‘›โˆ’1)} +(๐‘Ž โˆ’ 1)(๐‘ƒ0 + ๐‘ƒ3 + โ‹ฏ + ๐‘ƒ3๐‘›) Then ๐‘Ž๐‘ƒ3๐‘› โˆ’ (๐‘Ž๐‘+1) (๐‘โˆ’1) (๐‘ƒ3๐‘›+1 โˆ’ 1) โˆ’ (๐‘Ž โˆ’ 1)(๐‘ƒ0 + ๐‘ƒ3 + โ‹ฏ + ๐‘ƒ3๐‘›) = โˆ’ (๐‘Ž๐‘+1)(๐‘Ž๐‘+1) (๐‘โˆ’1) (๐‘ƒ2 + ๐‘ƒ5 + ๐‘ƒ8 + โ‹ฏ + ๐‘ƒ3๐‘›โˆ’1) Using (2.4) we get ๐‘Ž๐‘ƒ3๐‘› โˆ’ (๐‘Ž๐‘+1) (๐‘โˆ’1) (๐‘ƒ3๐‘›+1 โˆ’ 1) โˆ’ (๐‘Ž โˆ’ 1)(๐‘ƒ0 + ๐‘ƒ3 + โ‹ฏ + ๐‘ƒ3๐‘›) = โˆ’ (๐‘Ž๐‘+1)(๐‘Ž๐‘+1) (๐‘โˆ’1)(๐‘โˆ’1) ((๐‘ƒ3๐‘›+2 โˆ’ ๐‘) โˆ’ (๐‘๐‘ + 1)(๐‘ƒ0 + ๐‘ƒ3 + ๐‘ƒ6 + โ‹ฏ + ๐‘ƒ3๐‘›)) Then, ((๐‘Ž๐‘ + 1)(๐‘Ž๐‘ + 1)(๐‘๐‘ + 1) + (๐‘Ž โˆ’ 1)(๐‘ โˆ’ 1)(๐‘ โˆ’ 1))(๐‘ƒ0 + ๐‘ƒ3 + โ‹ฏ + ๐‘ƒ3๐‘›) = ๐‘Ž(๐‘ โˆ’ 1)(๐‘ โˆ’ 1)๐‘ƒ3๐‘› โˆ’ (๐‘Ž๐‘ + 1)(๐‘ โˆ’ 1)(๐‘ƒ3๐‘›+1 โˆ’ 1) Parimalkumar A. Patel, Devbhadra V. Shah 186 +(๐‘Ž๐‘ + 1)(๐‘Ž๐‘ + 1)(๐‘ƒ3๐‘›+2 โˆ’ ๐‘). Hence, ๐‘ƒ0 + ๐‘ƒ3 + โ‹ฏ + ๐‘ƒ3๐‘› = ๐‘Ž๐‘ƒ3๐‘›(๐‘โˆ’1)(๐‘โˆ’1)โˆ’(๐‘ƒ3๐‘›+1โˆ’1)(๐‘Ž๐‘+1)(๐‘โˆ’1)+(๐‘ƒ3๐‘›+2โˆ’๐‘)(๐‘Ž๐‘+1)(๐‘Ž๐‘+1) (๐‘Ž๐‘+1)(๐‘Ž๐‘+1)(๐‘๐‘+1)+(๐‘Žโˆ’1)(๐‘โˆ’1)(๐‘โˆ’1) . We now obtain the sum of first ๐‘˜ trifurcating Fibonacci numbers. Theorem 2.4. โˆ‘ ๐‘ƒ๐‘› ๐‘˜ ๐‘›=1 = {(๐‘โˆ’1)(๐‘โˆ’1)โˆ’โŒŠ1โˆ’ ๐œ’(๐‘˜) 3 โŒ‹(๐‘๐‘+1)(๐‘โˆ’1)}โŒŠ 4โˆ’๐œ’(๐‘˜) 3 โŒ‹๐‘Ž๐‘ƒ 3โŒŠ ๐‘˜ 3 โŒ‹โˆ’3 +{โŒŠ 1+๐œ’(๐‘˜) 3 โŒ‹(๐‘โˆ’1)(๐‘โˆ’1)+(๐‘Ž๐‘+1)(๐‘๐‘+1)โˆ’โŒŠ 2+๐œ’(๐‘˜) 3 โŒ‹(๐‘๐‘+1)(๐‘โˆ’1)}๐‘Ž๐‘ƒ 3โŒŠ ๐‘˜ 3 โŒ‹ +{โŒŠ1โˆ’ ๐œ’(๐‘˜) 3 โŒ‹[(๐‘Žโˆ’1)(๐‘โˆ’1)+(๐‘Ž๐‘+1)(๐‘๐‘+1)]โˆ’(๐‘Ž๐‘+1)(๐‘โˆ’1)}โŒŠ 4โˆ’๐œ’(๐‘˜) 3 โŒ‹(๐‘ƒ 3โŒŠ ๐‘˜ 3 โŒ‹โˆ’2 โˆ’1) +โŒŠ 2+๐œ’(๐‘˜) 3 โŒ‹{(๐‘Žโˆ’1)(๐‘โˆ’1)+(๐‘Ž๐‘+1)(๐‘๐‘+1)โˆ’โŒŠ 1+๐œ’(๐‘˜) 3 โŒ‹(๐‘Ž๐‘+1)(๐‘โˆ’1)} +โŒŠ 4โˆ’๐œ’(๐‘˜) 3 โŒ‹{โŒŠ1โˆ’ ๐œ’(๐‘˜) 3 โŒ‹(๐‘Žโˆ’1)(๐‘โˆ’1)+(๐‘Ž๐‘+1)(๐‘Ž๐‘+1)}(๐‘ƒ 3โŒŠ ๐‘˜ 3 โŒ‹โˆ’1 โˆ’๐‘) +{โŒŠ 2+๐œ’(๐‘˜) 3 โŒ‹(๐‘Žโˆ’1)(๐‘โˆ’1)+โŒŠ 1+๐œ’(๐‘˜) 3 โŒ‹(๐‘Ž๐‘+1)(๐‘Ž๐‘+1)โˆ’(๐‘Ž๐‘+1)(๐‘Žโˆ’1)}(๐‘ƒ 3โŒŠ ๐‘˜ 3 โŒ‹+2 โˆ’๐‘) (๐‘Ž๐‘+1)(๐‘Ž๐‘+1)(๐‘๐‘+1)+(๐‘Žโˆ’1)(๐‘โˆ’1)(๐‘โˆ’1) . Proof. We first obtain the value of โˆ‘ ๐‘ƒ๐‘› ๐‘˜ ๐‘›=1 in three cases when ๐‘˜ is of the form 3๐‘š โˆ’ 2, 3๐‘š โˆ’ 1 and 3๐‘š and then combine the results to obtain a single result. For ๐‘˜ = 3๐‘š โˆ’ 2, using the above lemma we get โˆ‘ ๐‘ƒ๐‘› ๐‘˜ ๐‘›=1 = (๐‘ƒ3 + โ‹ฏ + ๐‘ƒ3๐‘šโˆ’3) + (๐‘ƒ1 + ๐‘ƒ4 + โ‹ฏ + ๐‘ƒ3๐‘šโˆ’2) +(๐‘ƒ2 + ๐‘ƒ5+. . . +๐‘ƒ3๐‘šโˆ’4) = { ๐‘Ž๐‘ƒ3๐‘šโˆ’3(๐‘โˆ’1)(๐‘โˆ’1)โˆ’(๐‘ƒ3๐‘šโˆ’2โˆ’1)(๐‘Ž๐‘+1)(๐‘โˆ’1)+(๐‘ƒ3๐‘šโˆ’1โˆ’๐‘)(๐‘Ž๐‘+1)(๐‘Ž๐‘+1)+ (๐‘ƒ3๐‘šโˆ’2โˆ’1)(๐‘Žโˆ’1)(๐‘โˆ’1)โˆ’(๐‘ƒ3๐‘š+2โˆ’๐‘)(๐‘Ž๐‘+1)(๐‘Žโˆ’1)+๐‘Ž๐‘ƒ3๐‘š(๐‘Ž๐‘+1)(๐‘๐‘+1)+ (๐‘ƒ3๐‘šโˆ’1โˆ’๐‘)(๐‘Žโˆ’1)(๐‘โˆ’1)โˆ’๐‘Ž๐‘ƒ3๐‘šโˆ’3(๐‘๐‘+1)(๐‘โˆ’1)+(๐‘ƒ3๐‘šโˆ’2โˆ’1)(๐‘Ž๐‘+1)(๐‘๐‘+1) } (๐‘Ž๐‘+1)(๐‘Ž๐‘+1)(๐‘๐‘+1)+(๐‘Žโˆ’1)(๐‘โˆ’1)(๐‘โˆ’1) On simplification, we get, โˆ‘ ๐‘ƒ๐‘› ๐‘˜ ๐‘›=1 = { ๐‘Ž๐‘ƒ3๐‘šโˆ’3{(๐‘โˆ’1)(๐‘โˆ’1)โˆ’(๐‘๐‘+1)(๐‘โˆ’1)}+(๐‘ƒ3๐‘šโˆ’2โˆ’1){(๐‘Žโˆ’1)(๐‘โˆ’1)+ (๐‘Ž๐‘+1)(๐‘๐‘+1)โˆ’(๐‘Ž๐‘+1)(๐‘โˆ’1)}+(๐‘ƒ3๐‘šโˆ’1โˆ’๐‘){(๐‘Žโˆ’1)(๐‘โˆ’1)+(๐‘Ž๐‘+1)(๐‘Ž๐‘+1)} โˆ’(๐‘ƒ3๐‘š+2โˆ’๐‘)(๐‘Ž๐‘+1)(๐‘Žโˆ’1)+๐‘Ž๐‘ƒ3๐‘š(๐‘Ž๐‘+1)(๐‘๐‘+1) } (๐‘Ž๐‘+1)(๐‘Ž๐‘+1)(๐‘๐‘+1)+(๐‘Žโˆ’1)(๐‘โˆ’1)(๐‘โˆ’1) Next, for the case ๐‘˜ = 3๐‘š โˆ’ 1, we get โˆ‘ ๐‘ƒ๐‘› ๐‘˜ ๐‘›=1 = (๐‘ƒ3 + โ‹ฏ + ๐‘ƒ3๐‘šโˆ’3) + (๐‘ƒ1 + ๐‘ƒ4 + โ‹ฏ + ๐‘ƒ3๐‘šโˆ’2) +(๐‘ƒ2 + ๐‘ƒ5+. . . +๐‘ƒ3๐‘šโˆ’1) The sequence of trifurcating Fibonacci numbers 187 = { ๐‘Ž๐‘ƒ3๐‘šโˆ’3(๐‘โˆ’1)(๐‘โˆ’1)โˆ’(๐‘ƒ3๐‘šโˆ’2โˆ’1)(๐‘Ž๐‘+1)(๐‘โˆ’1)+(๐‘ƒ3๐‘šโˆ’1โˆ’๐‘)(๐‘Ž๐‘+1)(๐‘Ž๐‘+1)+ (๐‘ƒ3๐‘š+1โˆ’1)(๐‘Žโˆ’1)(๐‘โˆ’1)โˆ’(๐‘ƒ3๐‘š+2โˆ’๐‘)(๐‘Ž๐‘+1)(๐‘Žโˆ’1)+๐‘Ž๐‘ƒ3๐‘š(๐‘Ž๐‘+1)(๐‘๐‘+1)+ (๐‘ƒ3๐‘š+2โˆ’๐‘)(๐‘Žโˆ’1)(๐‘โˆ’1)โˆ’๐‘Ž๐‘ƒ3๐‘š(๐‘๐‘+1)(๐‘โˆ’1)+(๐‘ƒ3๐‘š+1โˆ’1)(๐‘Ž๐‘+1)(๐‘๐‘+1) } (๐‘Ž๐‘+1)(๐‘Ž๐‘+1)(๐‘๐‘+1)+(๐‘Žโˆ’1)(๐‘โˆ’1)(๐‘โˆ’1) Simplifying this we get โˆ‘ ๐‘ƒ๐‘› ๐‘˜ ๐‘›=1 = ๐‘Ž๐‘ƒ3๐‘šโˆ’3(๐‘โˆ’1)(๐‘โˆ’1)+(๐‘ƒ3๐‘šโˆ’1โˆ’๐‘)(๐‘Ž๐‘+1)(๐‘Ž๐‘+1)โˆ’(๐‘ƒ3๐‘šโˆ’2โˆ’1)(๐‘Ž๐‘+1)(๐‘โˆ’1)+ {(๐‘Ž๐‘+1)(๐‘๐‘+1)+(๐‘Žโˆ’1)(๐‘โˆ’1)}(๐‘ƒ3๐‘š+1โˆ’1)+(๐‘ƒ3๐‘š+2โˆ’๐‘){(๐‘Žโˆ’1)(๐‘โˆ’1) โˆ’(๐‘Ž๐‘+1)(๐‘Žโˆ’1)}+๐‘Ž๐‘ƒ3๐‘š{(๐‘Ž๐‘+1)(๐‘๐‘+1)โˆ’(๐‘๐‘+1)(๐‘โˆ’1)} (๐‘Ž๐‘+1)(๐‘Ž๐‘+1)(๐‘๐‘+1)+(๐‘Žโˆ’1)(๐‘โˆ’1)(๐‘โˆ’1) Finally, for ๐‘˜ = 3๐‘š, we get โˆ‘ ๐‘ƒ๐‘› ๐‘˜ ๐‘›=1 = (๐‘ƒ3 + โ‹ฏ + ๐‘ƒ3๐‘š) + (๐‘ƒ1 + ๐‘ƒ4 + โ‹ฏ + ๐‘ƒ3๐‘šโˆ’2) +(๐‘ƒ2 + ๐‘ƒ5+. . . +๐‘ƒ3๐‘šโˆ’1) = { ๐‘Ž๐‘ƒ3๐‘š(๐‘โˆ’1)(๐‘โˆ’1)โˆ’(๐‘ƒ3๐‘š+1โˆ’1)(๐‘Ž๐‘+1)(๐‘โˆ’1)+(๐‘ƒ3๐‘š+2โˆ’๐‘)(๐‘Ž๐‘+1)(๐‘Ž๐‘+1)+ (๐‘ƒ3๐‘š+1โˆ’1)(๐‘Žโˆ’1)(๐‘โˆ’1)โˆ’(๐‘ƒ๐‘š๐‘›+2โˆ’๐‘)(๐‘Ž๐‘+1)(๐‘Žโˆ’1)+๐‘Ž๐‘ƒ3๐‘š(๐‘Ž๐‘+1)(๐‘๐‘+1)+ (๐‘ƒ3๐‘š+2โˆ’๐‘)(๐‘Žโˆ’1)(๐‘โˆ’1)โˆ’๐‘Ž๐‘ƒ3๐‘š(๐‘๐‘+1)(๐‘โˆ’1)+(๐‘ƒ3๐‘š+1โˆ’1)(๐‘Ž๐‘+1)(๐‘๐‘+1) } (๐‘Ž๐‘+1)(๐‘Ž๐‘+1)(๐‘๐‘+1)+(๐‘Žโˆ’1)(๐‘โˆ’1)(๐‘โˆ’1) This on simplification gives โˆ‘ ๐‘ƒ๐‘› ๐‘˜ ๐‘›=1 = ๐‘Ž๐‘ƒ3๐‘š{(๐‘โˆ’1)(๐‘โˆ’1)+(๐‘Ž๐‘+1)(๐‘๐‘+1)โˆ’(๐‘๐‘+1)(๐‘โˆ’1)}+(๐‘ƒ3๐‘š+1โˆ’1){(๐‘Žโˆ’1)(๐‘โˆ’1)+(๐‘Ž๐‘+1) (๐‘๐‘+1)โˆ’(๐‘Ž๐‘+1)(๐‘โˆ’1)}+(๐‘ƒ3๐‘š+2โˆ’๐‘){(๐‘Žโˆ’1)(๐‘โˆ’1)+(๐‘Ž๐‘+1)(๐‘Ž๐‘+1)โˆ’(๐‘Ž๐‘+1)(๐‘Žโˆ’1)} (๐‘Ž๐‘+1)(๐‘Ž๐‘+1)(๐‘๐‘+1)+(๐‘Žโˆ’1)(๐‘โˆ’1)(๐‘โˆ’1) Combining all these three results, we finally get the required result. The following are the interesting identities related with the summation of trifurcating Fibonacci numbers as well as its squares. Theorem 2.5. โˆ‘ ๐‘Ž โŒŠ1โˆ’ ๐œ’(๐‘˜+1) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜+2) 3 โŒ‹๐‘› ๐‘˜=0 ๐‘ƒ๐‘˜ = ๐‘ƒ๐‘› + ๐‘ƒ๐‘›+1 โˆ’ 1. Proof. Using the definition of trifurcating Fibonacci numbers, we have ๐‘ƒ3๐‘› = ๐‘Ž๐‘ƒ3๐‘›โˆ’1 + ๐‘ƒ3๐‘›โˆ’2 ; ๐‘ƒ3๐‘›+1 = ๐‘๐‘ƒ3๐‘› + ๐‘ƒ3๐‘›โˆ’1; ๐‘ƒ3๐‘›+2 = ๐‘๐‘ƒ3๐‘›+1 + ๐‘ƒ3๐‘› This can be written as ๐‘Ž๐‘ƒ3๐‘›โˆ’1 = ๐‘ƒ3๐‘› โˆ’ ๐‘ƒ3๐‘›โˆ’2 ; ๐‘๐‘ƒ3๐‘› = ๐‘ƒ3๐‘›+1 โˆ’ ๐‘ƒ3๐‘›โˆ’1 ; ๐‘๐‘ƒ3๐‘›+1 = ๐‘ƒ3๐‘›+2 โˆ’ ๐‘ƒ3๐‘› Thus, we have the following system of equations: ๐‘๐‘ƒ1 = ๐‘ƒ2 โˆ’ ๐‘ƒ0 ๐‘Ž๐‘ƒ2 = ๐‘ƒ3 โˆ’ ๐‘ƒ1 ๐‘๐‘ƒ3 = ๐‘ƒ4 โˆ’ ๐‘ƒ2 โ‹ฎ ๐‘Ž๐‘ƒ๐‘› = ๐‘ƒ๐‘›+1 โˆ’ ๐‘ƒ๐‘›โˆ’1; if ๐‘› โ‰ก 0(๐‘š๐‘œ๐‘‘ 3) ๐‘๐‘ƒ๐‘› = ๐‘ƒ๐‘›+1 โˆ’ ๐‘ƒ๐‘›โˆ’1; if ๐‘› โ‰ก 1(๐‘š๐‘œ๐‘‘ 3) ๐‘ƒ๐‘› = ๐‘ƒ๐‘›+1 โˆ’ ๐‘ƒ๐‘›โˆ’1; if ๐‘› โ‰ก 2(๐‘š๐‘œ๐‘‘ 3) Adding all the above equations and using the fact that ๐‘ƒ0 = 0 and ๐‘ƒ1 = 1, we get โˆ‘ ๐‘Ž โŒŠ1โˆ’ ๐œ’(๐‘˜+1) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜+2) 3 โŒ‹๐‘› ๐‘˜=0 ๐‘ƒ๐‘˜ = ๐‘ƒ๐‘› + ๐‘ƒ๐‘›+1 โˆ’ 1. Parimalkumar A. Patel, Devbhadra V. Shah 188 Theorem 2.6. โˆ‘ ๐‘Ž โŒŠ1โˆ’ ๐œ’(๐‘˜+1) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜+2) 3 โŒ‹๐‘› ๐‘˜=0 ๐‘ƒ๐‘˜ 2 = ๐‘ƒ๐‘›๐‘ƒ๐‘›+1. Proof. We prove this result only for the case ๐‘› โ‰ก 0(๐‘š๐‘œ๐‘‘ 3) and remaining cases can be proved accordingly. We let ๐‘› = 3๐‘š and apply induction on ๐‘š. For ๐‘š = 1, we have โˆ‘ ๐‘Ž โŒŠ1โˆ’ ๐œ’(๐‘˜+1) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜+2) 3 โŒ‹3 ๐‘˜=0 ๐‘ƒ๐‘˜ 2 = ๐‘๐‘ƒ0 2 + ๐‘๐‘ƒ1 2 + ๐‘Ž๐‘ƒ2 2 + ๐‘๐‘ƒ3 2 Since ๐‘ƒ0 = 0, ๐‘ƒ1 = 1, ๐‘ƒ2 = ๐‘ and ๐‘ƒ3 = (1 + ๐‘Ž๐‘), we get โˆ‘ ๐‘Ž โŒŠ1โˆ’ ๐œ’(๐‘˜+1) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜+2) 3 โŒ‹3 ๐‘˜=0 = ๐‘(1 + ๐‘Ž๐‘) + ๐‘(1 + ๐‘Ž๐‘) 2 = ๐‘ƒ3๐‘ƒ4 We next assume that the result holds for some positive integer ๐‘š = ๐‘™ > 1. That is let โˆ‘ ๐‘Ž โŒŠ1โˆ’ ๐œ’(๐‘˜+1) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜+2) 3 โŒ‹3๐‘™ ๐‘˜=0 ๐‘ƒ๐‘˜ 2 = ๐‘ƒ3๐‘™๐‘ƒ3๐‘™+1 holds. Now, โˆ‘ ๐‘Ž โŒŠ1โˆ’ ๐œ’(๐‘˜+1) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜+2) 3 โŒ‹3(๐‘™+1) ๐‘˜=0 ๐‘ƒ๐‘˜ 2 = โˆ‘ ๐‘Ž โŒŠ1โˆ’ ๐œ’(๐‘˜+1) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜+2) 3 โŒ‹3๐‘™ ๐‘˜=0 ๐‘ƒ๐‘˜ 2 + ๐‘๐‘ƒ3๐‘™+1 2 + ๐‘Ž๐‘ƒ3๐‘™+2 2 + ๐‘๐‘ƒ3๐‘™+3 2 . = ๐‘ƒ3๐‘™๐‘ƒ3๐‘™+1 + ๐‘๐‘ƒ3๐‘™+1 2 + ๐‘Ž๐‘ƒ3๐‘™+2 2 + ๐‘๐‘ƒ3๐‘™+3 2 = ๐‘ƒ3๐‘™+1๐‘ƒ3๐‘™+2 + ๐‘Ž๐‘ƒ3๐‘™+2 2 + ๐‘๐‘ƒ3๐‘™+3 2 = ๐‘ƒ3๐‘™+2๐‘ƒ3๐‘™+3 + ๐‘๐‘ƒ3๐‘™+3 2 = ๐‘ƒ3(๐‘™+1)๐‘ƒ3(๐‘™+1)+1 Thus, by induction, the result to be proved holds for every positive integer ๐‘›. 3. Binet-like formula for the trifurcating Fibonacci sequence: Generating function is used to solve the linear homogeneous recurrence relations. In this section, the generating function for the trifurcating Fibonacci sequence is derived and it is used to obtain Binet-like formula for these numbers. We first prove a result which will be needed to obtain the generating function of ๐‘ƒ๐‘›. Lemma 3.1. ๐‘ƒ๐‘›+3 โˆ’ (๐‘Ž๐‘๐‘ + ๐‘Ž + ๐‘ + ๐‘)๐‘ƒ๐‘› + ๐‘ƒ๐‘›โˆ’3 = 0. Proof. We prove the result by considering the three cases when ๐‘› = 3๐‘˜, 3๐‘˜ + 1 or 3๐‘˜ + 2. We present the proof only for the case ๐‘› = 3๐‘˜ and other cases follows accordingly. Using the definition of ๐‘ƒ๐‘›, we get ๐‘ƒ3๐‘˜+3 = ๐‘Ž๐‘ƒ3๐‘˜+2 + ๐‘ƒ3๐‘˜+1 = ๐‘Ž(๐‘๐‘ƒ3๐‘˜+1 + ๐‘ƒ3๐‘˜) + ๐‘๐‘ƒ3๐‘˜ + ๐‘ƒ3๐‘˜โˆ’1 The sequence of trifurcating Fibonacci numbers 189 = ๐‘Ž๐‘๐‘ƒ3๐‘˜+1 + (๐‘Ž + ๐‘)๐‘ƒ3๐‘˜ + ๐‘๐‘ƒ3๐‘˜โˆ’2 + ๐‘ƒ3๐‘˜โˆ’3. Now, by definition we have ๐‘ƒ3๐‘˜+1 = ๐‘๐‘ƒ3๐‘˜ + ๐‘ƒ3๐‘˜โˆ’1. Multiplying this by ๐‘Ž๐‘ we get ๐‘Ž๐‘๐‘ƒ3๐‘˜+1 = ๐‘Ž๐‘๐‘๐‘ƒ3๐‘˜ + ๐‘Ž๐‘๐‘ƒ3๐‘˜โˆ’1 = ๐‘Ž๐‘๐‘๐‘ƒ3๐‘˜ + ๐‘(๐‘ƒ3๐‘˜ โˆ’ ๐‘ƒ3๐‘˜โˆ’2) Substituting this value in above equation we get ๐‘ƒ3๐‘˜+3 = (๐‘Ž๐‘๐‘ + ๐‘Ž + ๐‘ + ๐‘)๐‘ƒ3๐‘˜ โˆ’ ๐‘ƒ3๐‘˜โˆ’3 Hence, ๐‘ƒ3๐‘˜+3 โˆ’ (๐‘Ž๐‘๐‘ + ๐‘Ž + ๐‘ + ๐‘)๐‘ƒ3๐‘˜ + ๐‘ƒ3๐‘˜โˆ’3 = 0. Lemma 3.2. The generating function of the subsequence {๐‘ƒ๐‘š}๐‘šโ‰ฅ0 of {๐‘ƒ๐‘›}๐‘›=0 โˆž is (i) ๐‘“(๐‘ฅ) = ๐‘๐‘ฅ2+๐‘ฅ5 (1โˆ’(๐‘Ž๐‘๐‘+๐‘Ž+๐‘+๐‘)๐‘ฅ3โˆ’๐‘ฅ6) ; when ๐‘š โ‰ก 2(๐‘š๐‘œ๐‘‘ 3) (ii) ๐‘”(๐‘ฅ) = ๐‘ฅโˆ’๐‘Ž๐‘ฅ4 (1โˆ’(๐‘Ž๐‘๐‘+๐‘Ž+๐‘+๐‘)๐‘ฅ3โˆ’๐‘ฅ6) ; when ๐‘š โ‰ก 1(๐‘š๐‘œ๐‘‘ 3) (iii) โ„Ž(๐‘ฅ) = (๐‘Ž๐‘+1)๐‘ฅ3 (1โˆ’(๐‘Ž๐‘๐‘+๐‘Ž+๐‘+๐‘)๐‘ฅ3โˆ’๐‘ฅ6) ; when ๐‘š โ‰ก 0(๐‘š๐‘œ๐‘‘ 3). Proof. We present the proof only for the case ๐‘š โ‰ก 2(๐‘š๐‘œ๐‘‘ 3). The other cases can be proved accordingly. We first let ๐‘“(๐‘ฅ) = โˆ‘ ๐‘ƒ3๐‘›โˆ’1๐‘ฅ 3๐‘›โˆ’1โˆž ๐‘›=1 = ๐‘ƒ2๐‘ฅ 2 + ๐‘ƒ5๐‘ฅ 5 + ๐‘ƒ8๐‘ฅ 8 + โ‹ฏ. Then (๐‘Ž๐‘๐‘ + ๐‘Ž + ๐‘ + ๐‘)๐‘ฅ3 ๐‘“(๐‘ฅ) = (๐‘Ž๐‘๐‘ + ๐‘Ž + ๐‘ + ๐‘)๐‘ƒ2๐‘ฅ 5 + (๐‘Ž๐‘๐‘ + ๐‘Ž + ๐‘ + ๐‘)๐‘ƒ5๐‘ฅ 8 +(๐‘Ž๐‘๐‘ + ๐‘Ž + ๐‘ + ๐‘)๐‘ƒ8๐‘ฅ 11 โ€ฆ Using lemma 3.1, we get (1 โˆ’ (๐‘Ž๐‘๐‘ + ๐‘Ž + ๐‘ + ๐‘)๐‘ฅ3 โˆ’ ๐‘ฅ6)๐‘“(๐‘ฅ) = ๐‘๐‘ฅ2 + ๐‘ฅ5 โˆ’ โˆ‘ (๐‘3๐‘˜+2 โˆ’ (๐‘Ž๐‘๐‘ + ๐‘Ž + ๐‘ + ๐‘)๐‘3๐‘˜โˆ’1 โˆ’ ๐‘3๐‘˜โˆ’4) โˆž ๐‘š=2 = ๐‘๐‘ฅ 2 + ๐‘ฅ5. Thus, ๐‘“(๐‘ฅ) = ๐‘๐‘ฅ2+๐‘ฅ5 (1โˆ’(๐‘Ž๐‘๐‘+๐‘Ž+๐‘+๐‘)๐‘ฅ3โˆ’๐‘ฅ6) , as required. The following result gives the generating function for ๐‘ƒ๐‘›. Theorem 3.3. The generating function for the trifurcating Fibonacci sequence {๐‘ƒ๐‘›} is ๐น(๐‘ฅ) = ๐‘ฅ(1+๐‘๐‘ฅ+๐‘ฅ2+๐‘Ž๐‘๐‘ฅ2โˆ’๐‘Ž๐‘ฅ3+๐‘ฅ4) 1โˆ’(๐‘Ž๐‘๐‘+๐‘Ž+๐‘+๐‘)๐‘ฅ3โˆ’๐‘ฅ6 . Proof. We begin with the formal power series representation of the generating function for {๐‘ƒ๐‘›}. Let ๐น(๐‘ฅ) = ๐‘ƒ0 + ๐‘ƒ1๐‘ฅ + ๐‘ƒ2๐‘ฅ 2 + โ‹ฏ + ๐‘ƒ๐‘˜๐‘ฅ ๐‘˜ + โ‹ฏ = โˆ‘ ๐‘ƒ๐‘š๐‘ฅ ๐‘šโˆž ๐‘š=0 Then, ๐‘๐‘ฅ๐น(๐‘ฅ) = ๐‘๐‘ƒ0๐‘ฅ + ๐‘๐‘ƒ1๐‘ฅ 2 + ๐‘๐‘ƒ2๐‘ฅ 3 + โ‹ฏ + ๐‘๐‘ƒ๐‘˜๐‘ฅ ๐‘˜+1 + โ‹ฏ = โˆ‘ ๐‘๐‘ƒ๐‘š๐‘ฅ ๐‘š+1โˆž ๐‘š=0 = โˆ‘ ๐‘๐‘ƒ๐‘šโˆ’1๐‘ฅ ๐‘šโˆž ๐‘š=1 . Also, ๐‘ฅ2๐น(๐‘ฅ) = ๐‘ƒ0๐‘ฅ 2 + ๐‘ƒ1๐‘ฅ 3 + ๐‘ƒ2๐‘ฅ 2 + โ‹ฏ + ๐‘ƒ๐‘˜๐‘ฅ ๐‘˜ + โ‹ฏ = โˆ‘ ๐‘ƒ๐‘š๐‘ฅ ๐‘šโˆž ๐‘š=0 Since ๐‘ƒ3๐‘˜+2 = ๐‘๐‘ƒ3๐‘˜+1 + ๐‘ƒ3๐‘˜, we get (1 โˆ’ ๐‘๐‘ฅ โˆ’ ๐‘ฅ2)๐น(๐‘ฅ) = ๐‘ฅ + โˆ‘ (๐‘ƒ3๐‘› โˆ’ ๐‘๐‘ƒ3๐‘›โˆ’1 โˆ’ ๐‘ƒ3๐‘›โˆ’2)๐‘ฅ 3๐‘›โˆž ๐‘›=1 Parimalkumar A. Patel, Devbhadra V. Shah 190 + โˆ‘ (๐‘ƒ3๐‘›+1 โˆ’ ๐‘๐‘ƒ3๐‘› โˆ’ ๐‘ƒ3๐‘›โˆ’1)๐‘ฅ 3๐‘›+1โˆž ๐‘›=1 Since ๐‘ƒ3๐‘˜ = ๐‘Ž๐‘ƒ3๐‘˜โˆ’1 + ๐‘ƒ3๐‘˜โˆ’2 and ๐‘ƒ3๐‘˜+1 = ๐‘๐‘ƒ3๐‘˜ + ๐‘ƒ3๐‘˜โˆ’1 we get (1 โˆ’ ๐‘๐‘ฅ โˆ’ ๐‘ฅ2)๐น(๐‘ฅ) = ๐‘ฅ + (๐‘Ž โˆ’ ๐‘) โˆ‘ ๐‘ƒ3๐‘›โˆ’1๐‘ฅ 3๐‘›โˆž ๐‘›=1 + (๐‘ โˆ’ ๐‘) โˆ‘ ๐‘ƒ3๐‘›๐‘ฅ 3๐‘›+1โˆž ๐‘›=1 . For convenience, we let ๐‘“(๐‘ฅ) = โˆ‘ ๐‘ƒ3๐‘›โˆ’1๐‘ฅ 3๐‘›โˆž ๐‘›=1 and ๐‘”(๐‘ฅ) = โˆ‘ ๐‘ƒ3๐‘›๐‘ฅ 3๐‘›โˆž ๐‘›=1 Using lemma 3.2 (a) and 3.2 (b) we get (1 โˆ’ ๐‘๐‘ฅ โˆ’ ๐‘ฅ2)๐น(๐‘ฅ) = ๐‘ฅ + (๐‘Ž โˆ’ ๐‘) (๐‘Ž๐‘+1)๐‘ฅ3 (1โˆ’(๐‘Ž๐‘๐‘+๐‘Ž+๐‘+๐‘)๐‘ฅ3โˆ’๐‘ฅ6) +(๐‘ โˆ’ ๐‘) ๐‘๐‘ฅ2+๐‘ฅ5 (1โˆ’(๐‘Ž๐‘๐‘+๐‘Ž+๐‘+๐‘)๐‘ฅ3โˆ’๐‘ฅ6) On simplification, we get the required result. We now obtain the Binet-like formula for the sequence of trifurcating Fibonacci numbers. Theorem 3.4. The terms of the trifurcating Fibonacci sequence {๐‘ƒ๐‘›} are given by ๐‘ƒ๐‘› = ๐›พ(๐‘›)๐›ผ โŒŠ ๐‘› 3 โŒ‹ โˆ’๐›ฟ(๐‘›)๐›ฝ โŒŠ ๐‘› 3 โŒ‹ ๐›ผโˆ’๐›ฝ where ๐›พ(๐‘›) = (โŒŠ ๐œ’(๐‘›)+2 3 โŒ‹ ๐‘ โŒŠ ๐œ’(๐‘›)+1 3 โŒ‹ ๐›ผ + (โˆ’1)๐œ’(๐‘›)๐‘Ž โŒŠ 4โˆ’๐œ’(๐‘›) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘›) 3 โŒ‹ + โŒŠ1 โˆ’ ๐œ’(๐‘›) 3 โŒ‹) and ๐›ฟ(๐‘›) = (โŒŠ ๐œ’(๐‘›)+2 3 โŒ‹ ๐‘ โŒŠ ๐œ’(๐‘›)+1 3 โŒ‹ ๐›ฝ + (โˆ’1)๐œ’(๐‘›)๐‘Ž โŒŠ 4โˆ’๐œ’(๐‘›) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘›) 3 โŒ‹ + โŒŠ1 โˆ’ ๐œ’(๐‘›) 3 โŒ‹) with ๐›ผ = ๐‘ข+โˆš๐‘ข2+4 2 , ๐›ฝ = ๐‘ขโˆ’โˆš๐‘ข2+4 2 , ๐‘ข = ๐‘Ž + ๐‘ + ๐‘ + ๐‘Ž๐‘๐‘ and ๐œ’(๐‘›) = { 0 ๐‘–๐‘“ ๐‘› โ‰ก 0(๐‘š๐‘œ๐‘‘ 3) 1 ๐‘–๐‘“ ๐‘› โ‰ก 1(๐‘š๐‘œ๐‘‘ 3) 2 ๐‘–๐‘“ ๐‘› โ‰ก 2(๐‘š๐‘œ๐‘‘ 3) . Proof. From the generating function of {๐‘ƒ๐‘›}, we have ๐น(๐‘ฅ) = โˆ’ ๐‘ฅ(1+๐‘๐‘ฅ+(1+๐‘Ž๐‘)๐‘ฅ2โˆ’๐‘Ž๐‘ฅ3+๐‘ฅ4) (๐‘ฅ3+๐›ผ)(๐‘ฅ3+๐›ฝ) This can be rewritten as ๐น(๐‘ฅ) = โˆ’ 1 ๐›ผโˆ’๐›ฝ [ (1+๐‘Ž๐‘)๐›ผโˆ’(๐‘Ž๐›ผ+1)๐‘ฅ+(๐›ผโˆ’๐‘)๐‘ฅ2 (๐‘ฅ3+๐›ผ) โˆ’ (1+๐‘Ž๐‘)๐›ฝโˆ’(๐‘Ž๐›ฝ+1)๐‘ฅ+(๐›ฝโˆ’๐‘)๐‘ฅ2 (๐‘ฅ3+๐›ฝ) ] Using McLaurin series expansion, we get ๐น(๐‘ฅ) = โˆ’ 1 ๐›ผโˆ’๐›ฝ [ โˆ‘ (โˆ’1)๐‘›(1+๐‘Ž๐‘)๐›ผ ๐›ผ๐‘›+1 โˆž ๐‘›=0 ๐‘ฅ 3๐‘› โˆ’ โˆ‘ (โˆ’1)๐‘›(๐‘Ž๐›ผ+1) ๐›ผ๐‘›+1 โˆž ๐‘›=0 ๐‘ฅ 3๐‘›+1 + โˆ‘ (โˆ’1)๐‘›(๐›ผโˆ’๐‘) ๐›ผ๐‘›+1 โˆž ๐‘›=0 ๐‘ฅ 3๐‘›+2 โˆ’ โˆ‘ (โˆ’1)๐‘›(1+๐‘Ž๐‘)๐›ฝ ๐›ฝ๐‘›+1 โˆž ๐‘›=0 ๐‘ฅ 3๐‘› + โˆ‘ (โˆ’1)๐‘›(๐‘Ž๐›ฝ+1) ๐›ฝ๐‘›+1 โˆž ๐‘›=0 ๐‘ฅ 3๐‘›+1 โˆ’ โˆ‘ (โˆ’1)๐‘›(๐›ฝโˆ’๐‘) ๐›ฝ๐‘›+1 โˆž ๐‘›=0 ๐‘ฅ 3๐‘›+2 ] The sequence of trifurcating Fibonacci numbers 191 = โˆ’ 1 ๐›ผโˆ’๐›ฝ [ โˆ‘ (โˆ’1) ๐‘›(1 + ๐‘Ž๐‘) ( ๐›ฝ๐‘›โˆ’๐›ผ๐‘› (๐›ผ๐›ฝ)๐‘› )โˆž๐‘›=0 ๐‘ฅ 3๐‘› โˆ’ โˆ‘ (โˆ’1)๐‘› ( (๐‘Ž๐›ผ+1)๐›ฝ๐‘›+1โˆ’(๐‘Ž๐›ฝ+1)๐›ผ๐‘›+1 (๐›ผ๐›ฝ)๐‘›+1 )โˆž๐‘›=0 ๐‘ฅ 3๐‘›+1 + โˆ‘ (โˆ’1)๐‘› ( (๐›ผโˆ’๐‘)๐›ฝ๐‘›+1โˆ’(๐›ฝโˆ’๐‘)๐›ผ๐‘›+1 (๐›ผ๐›ฝ)๐‘›+1 )โˆž๐‘›=0 ๐‘ฅ 3๐‘›+2 ] Now, if ๐›ผ, ๐›ฝ are the roots of 1 โˆ’ (๐‘Ž + ๐‘ + ๐‘ + ๐‘Ž๐‘๐‘)๐‘ฅ โˆ’ ๐‘ฅ2 = 0 then ๐›ผ = ๐‘ข+โˆš๐‘ข2+4 2 , ๐›ฝ = ๐‘ขโˆ’โˆš๐‘ข2+4 2 . If we let ๐‘ข = ๐‘Ž + ๐‘ + ๐‘ + ๐‘Ž๐‘๐‘, then it is easy to observe that ๐›ผ๐›ฝ = โˆ’1, ๐›ผ + ๐›ฝ = ๐‘ข and ๐›ผ โˆ’ ๐›ฝ = โˆš๐‘ข2 + 4 . Then ๐น(๐‘ฅ) = [ โˆ‘ (1 + ๐‘Ž๐‘) ( ๐›ผ๐‘›โˆ’๐›ฝ๐‘› ๐›ผโˆ’๐›ฝ )โˆž๐‘›=0 ๐‘ฅ 3๐‘› โˆ’ โˆ‘ ( (๐‘Ž๐›ฝ+1)๐›ผ๐‘›+1โˆ’(๐‘Ž๐›ผ+1)๐›ฝ๐‘›+1 ๐›ผโˆ’๐›ฝ )โˆž๐‘›=0 ๐‘ฅ 3๐‘›+1 + โˆ‘ ( (๐›ฝโˆ’๐‘)๐›ผ๐‘›+1โˆ’(๐›ผโˆ’๐‘)๐›ฝ๐‘›+1 ๐›ผโˆ’๐›ฝ )โˆž๐‘›=0 ๐‘ฅ 3๐‘›+2 ] Thus, ๐น(๐‘ฅ) = โˆ‘ 1 ๐›ผโˆ’๐›ฝ ( ( โŒŠ1 โˆ’ ๐œ’(๐‘›) 3 โŒ‹ + (โˆ’1)๐œ’(๐‘›)๐‘Ž โŒŠ 4โˆ’๐œ’(๐‘›) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘›) 3 โŒ‹ + โŒŠ ๐œ’(๐‘›)+2 3 โŒ‹ ๐‘ โŒŠ ๐œ’(๐‘›)+1 3 โŒ‹ ๐›ผ ) ๐›ผโŒŠ ๐‘› 3 โŒ‹ โˆ’ ( โŒŠ1 โˆ’ ๐œ’(๐‘›) 3 โŒ‹ + (โˆ’1)๐œ’(๐‘›)๐‘Ž โŒŠ 4โˆ’๐œ’(๐‘›) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘›) 3 โŒ‹ + โŒŠ ๐œ’(๐‘›)+2 3 โŒ‹ ๐‘ โŒŠ ๐œ’(๐‘›)+1 3 โŒ‹ ๐›ฝ ) ๐›ฝโŒŠ ๐‘› 3 โŒ‹ ) โˆž ๐‘›=0 ๐‘ฅ ๐‘› For convenience if we write ๐œ’(๐‘›) = { 0 ๐‘–๐‘“ ๐‘› โ‰ก 0(๐‘š๐‘œ๐‘‘ 3) 1 ๐‘–๐‘“ ๐‘› โ‰ก 1(๐‘š๐‘œ๐‘‘ 3) 2 ๐‘–๐‘“ ๐‘› โ‰ก 2(๐‘š๐‘œ๐‘‘ 3) and ๐›พ(๐‘›) = (โŒŠ ๐œ’(๐‘›)+2 3 โŒ‹ ๐‘ โŒŠ ๐œ’(๐‘›)+1 3 โŒ‹ ๐›ผ + (โˆ’1)๐œ’(๐‘›)๐‘Ž โŒŠ 4โˆ’๐œ’(๐‘›) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘›) 3 โŒ‹ + โŒŠ1 โˆ’ ๐œ’(๐‘›) 3 โŒ‹), ๐›ฟ(๐‘›) = (โŒŠ ๐œ’(๐‘›)+2 3 โŒ‹ ๐‘ โŒŠ ๐œ’(๐‘›)+1 3 โŒ‹ ๐›ฝ + (โˆ’1)๐œ’(๐‘›)๐‘Ž โŒŠ 4โˆ’๐œ’(๐‘›) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘›) 3 โŒ‹ + โŒŠ1 โˆ’ ๐œ’(๐‘›) 3 โŒ‹) then ๐น(๐‘ฅ) can be written as ๐น(๐‘ฅ) = โˆ‘ ๐›พ(๐‘›)๐›ผ โŒŠ ๐‘› 3 โŒ‹ โˆ’๐›ฟ(๐‘›)๐›ฝ โŒŠ ๐‘› 3 โŒ‹ ๐›ผโˆ’๐›ฝ โˆž ๐‘›=0 ๐‘ฅ ๐‘› This gives ๐‘ƒ๐‘› = ๐›พ(๐‘›)๐›ผ โŒŠ ๐‘› 3 โŒ‹ โˆ’๐›ฟ(๐‘›)๐›ฝ โŒŠ ๐‘› 3 โŒ‹ ๐›ผโˆ’๐›ฝ , as desired. The following results are the easy consequence from this theorem. Corollary 3.5. (i) ๐‘ƒ3๐‘› = (1 + ๐‘Ž๐‘) ( ๐›ผ๐‘›โˆ’๐›ฝ๐‘› ๐›ผโˆ’๐›ฝ ) Parimalkumar A. Patel, Devbhadra V. Shah 192 (ii) ๐‘ƒ3๐‘›+1 = ( (๐‘Ž๐›ฝ+1)๐›ผ๐‘›+1โˆ’(๐‘Ž๐›ผ+1)๐›ฝ๐‘›+1 ๐›ผโˆ’๐›ฝ ) (iii) ๐‘ƒ3๐‘›+2 = ( (๐›ฝโˆ’๐‘)๐›ผ๐‘›+1โˆ’(๐›ผโˆ’๐‘)๐›ฝ๐‘›+1 ๐›ผโˆ’๐›ฝ ). 4. Some more identities relating trifurcating Fibonacci numbers: In this section, we use the above Binet-like formula to derive some interesting properties for the terms of trifurcating Fibonacci sequence. If we let ๐‘ค = ๐›พ(๐‘›)๐›ฟ(๐‘›), then we observe that ๐‘ค = โŒŠ1 โˆ’ ๐œ’(๐‘›) 3 โŒ‹ 2 + 2(โˆ’1)๐œ’(๐‘›) โŒŠ1 โˆ’ ๐œ’(๐‘›) 3 โŒ‹ ๐‘Ž โŒŠ 4โˆ’๐œ’(๐‘›) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘›) 3 โŒ‹ + โŒŠ1 โˆ’ ๐œ’(๐‘›) 3 โŒ‹ โŒŠ ๐œ’(๐‘›)+2 3 โŒ‹ ๐‘ โŒŠ ๐œ’(๐‘›)+1 3 โŒ‹ (๐›ผ + ๐›ฝ) + ๐‘Ž 2โŒŠ 4โˆ’๐œ’(๐‘›) 3 โŒ‹ ๐‘ 2โŒŠ1โˆ’ ๐œ’(๐‘›) 3 โŒ‹ +(โˆ’1)๐œ’(๐‘›) โŒŠ ๐œ’(๐‘›)+2 3 โŒ‹ ๐‘Ž โŒŠ 4โˆ’๐œ’(๐‘›) 3 โŒ‹ ๐‘ โŒŠ ๐œ’(๐‘›)+1 3 โŒ‹+โŒŠ1โˆ’ ๐œ’(๐‘›) 3 โŒ‹ (๐›ผ + ๐›ฝ) + โŒŠ ๐œ’(๐‘›)+2 3 โŒ‹ 2 ๐‘ 2โŒŠ ๐œ’(๐‘›)+1 3 โŒ‹ ๐›ผ๐›ฝ This on simplification gives the value of ๐‘ค = ๐›พ(๐‘›)๐›ฟ(๐‘›) as ๐‘ค = { (1 + ๐‘Ž๐‘)2 ; if ๐‘› โ‰ก 0(๐‘š๐‘œ๐‘‘ 3) (1 + ๐‘Ž๐‘)(1 + ๐‘) ; if ๐‘› โ‰ก 1(๐‘š๐‘œ๐‘‘ 3) (1 + ๐‘Ž๐‘)(1 + ๐‘๐‘); if ๐‘› โ‰ก 2(๐‘š๐‘œ๐‘‘ 3) This can be further written as ๐‘ค = { ๐‘ƒ3 2 ; if ๐‘› โ‰ก 0(๐‘š๐‘œ๐‘‘ 3) (1 + ๐‘)๐‘ƒ3 ; if ๐‘› โ‰ก 1(๐‘š๐‘œ๐‘‘ 3) (1 + ๐‘๐‘)๐‘ƒ3; if ๐‘› โ‰ก 2(๐‘š๐‘œ๐‘‘ 3) We first obtain an identity for the terms of {๐‘ƒ๐‘›}, which is analogous to that of Catalanโ€™s identity for Fibonacci numbers. Theorem 4.1. For any two nonnegative integers ๐‘˜ and ๐‘Ÿ (โ‰ค ๐‘˜ 3 ), we have ๐‘ƒ๐‘˜โˆ’3๐‘Ÿ๐‘ƒ๐‘˜+3๐‘Ÿ โˆ’ ๐‘ƒ๐‘˜ 2 = (โˆ’1)๐‘™โˆ’๐‘Ÿ+1๐‘ค ( ๐‘ƒ3๐‘Ÿ ๐‘ƒ3 ) 2 . Proof. If ๐‘˜ โ‰ก 0(๐‘š๐‘œ๐‘‘ 3) then taking ๐‘˜ = 3๐‘™ and using corollary 3.5, we get ๐‘ƒ3๐‘™โˆ’3๐‘Ÿ๐‘ƒ3๐‘™+3๐‘Ÿ โˆ’ ๐‘ƒ3๐‘™ 2 = (1 + ๐‘Ž๐‘) ( ๐›ผ๐‘™โˆ’๐‘Ÿโˆ’๐›ฝ๐‘™โˆ’๐‘Ÿ ๐›ผโˆ’๐›ฝ ) (1 + ๐‘Ž๐‘) ( ๐›ผ๐‘™+๐‘Ÿโˆ’๐›ฝ๐‘™+๐‘Ÿ ๐›ผโˆ’๐›ฝ ) โˆ’ (1 + ๐‘Ž๐‘)2 ( ๐›ผ๐‘™โˆ’๐›ฝ๐‘™ ๐›ผโˆ’๐›ฝ ) 2 = (1+๐‘Ž๐‘)2 (๐›ผโˆ’๐›ฝ)2 {(๐›ผ๐‘™โˆ’๐‘Ÿ โˆ’ ๐›ฝ๐‘™โˆ’๐‘Ÿ)(๐›ผ๐‘™+๐‘Ÿ โˆ’ ๐›ฝ๐‘™+๐‘Ÿ) โˆ’ (๐›ผ๐‘™ โˆ’ ๐›ฝ๐‘™)2} = (1+๐‘Ž๐‘)2 (๐›ผโˆ’๐›ฝ)2 {๐›ผ2๐‘™ โˆ’ (โˆ’1)๐‘™ ( ๐›ฝ ๐›ผ ) ๐‘Ÿ โˆ’ (โˆ’1)๐‘™ ( ๐›ผ ๐›ฝ ) ๐‘Ÿ + ๐›ฝ2๐‘™ โˆ’ (๐›ผ2๐‘™ โˆ’ 2(โˆ’1)๐‘™ + ๐›ฝ2๐‘™)} The sequence of trifurcating Fibonacci numbers 193 = (1+๐‘Ž๐‘)2 (๐›ผโˆ’๐›ฝ)2 (โˆ’1)๐‘™โˆ’๐‘Ÿ+1{๐›ผ2๐‘Ÿ โˆ’ 2(โˆ’1)๐‘Ÿ + ๐›ฝ2๐‘Ÿ} = (1+๐‘Ž๐‘)2 (๐›ผโˆ’๐›ฝ)2 (โˆ’1)๐‘™โˆ’๐‘Ÿ+1(๐›ผ๐‘Ÿ โˆ’ ๐›ฝ๐‘Ÿ)2 = (โˆ’1)๐‘™โˆ’๐‘Ÿ+1 ( (1+๐‘Ž๐‘)(๐›ผ๐‘Ÿโˆ’๐›ฝ๐‘Ÿ) (๐›ผโˆ’๐›ฝ) ) 2 Thus, ๐‘ƒ3๐‘™โˆ’3๐‘Ÿ๐‘ƒ3๐‘™+3๐‘Ÿ โˆ’ ๐‘ƒ3๐‘™ 2 = (โˆ’1)๐‘™โˆ’๐‘Ÿ+1๐‘ƒ3๐‘Ÿ 2 Next, if we let ๐‘˜ โ‰ก 1(๐‘š๐‘œ๐‘‘ 3) then by considering ๐‘˜ = 3๐‘™ + 1, we get ๐‘ƒ3๐‘™โˆ’3๐‘Ÿ+1๐‘ƒ3๐‘™+3๐‘Ÿ+1 โˆ’ ๐‘ƒ3๐‘™+1 2 = ( (๐‘Ž๐›ฝ+1)๐›ผ๐‘™โˆ’๐‘Ÿ+1โˆ’(๐‘Ž๐›ผ+1)๐›ฝ๐‘™โˆ’๐‘Ÿ+1 ๐›ผโˆ’๐›ฝ ) ( (๐‘Ž๐›ฝ+1)๐›ผ๐‘™+๐‘Ÿ+1โˆ’(๐‘Ž๐›ผ+1)๐›ฝ๐‘™+๐‘Ÿ+1 ๐›ผโˆ’๐›ฝ ) โˆ’ ( (๐‘Ž๐›ฝ+1)๐›ผ๐‘™+1โˆ’(๐‘Ž๐›ผ+1)๐›ฝ๐‘™+1 ๐›ผโˆ’๐›ฝ ) 2 = 1 (๐›ผโˆ’๐›ฝ)2 [ ๐‘Ž2(๐›ผ๐‘™โˆ’๐‘Ÿ โˆ’ ๐›ฝ๐‘™โˆ’๐‘Ÿ)(๐›ผ๐‘™+๐‘Ÿ โˆ’ ๐›ฝ๐‘™+๐‘Ÿ) โˆ’๐‘Ž(๐›ผ๐‘™โˆ’๐‘Ÿ โˆ’ ๐›ฝ๐‘™โˆ’๐‘Ÿ)(๐›ผ๐‘™+๐‘Ÿ+1 โˆ’ ๐›ฝ๐‘™+๐‘Ÿ+1) โˆ’ ๐‘Ž(๐›ผ๐‘™โˆ’๐‘Ÿ+1 โˆ’ ๐›ฝ๐‘™โˆ’๐‘Ÿ+1)(๐›ผ๐‘™+๐‘Ÿ โˆ’ ๐›ฝ๐‘™+๐‘Ÿ) +(๐›ผ๐‘™โˆ’๐‘Ÿ+1 โˆ’ ๐›ฝ๐‘™โˆ’๐‘Ÿ+1)(๐›ผ๐‘™+๐‘Ÿ+1 โˆ’ ๐›ฝ๐‘™+๐‘Ÿ+1) โˆ’{๐‘Ž2(๐›ผ๐‘™ โˆ’ ๐›ฝ๐‘™)2 โˆ’ 2๐‘Ž(๐›ผ๐‘™ โˆ’ ๐›ฝ๐‘™)(๐›ผ๐‘™+1 โˆ’ ๐›ฝ๐‘™+1) + (๐›ผ๐‘™+1 โˆ’ ๐›ฝ๐‘™+1)2}] = 1 (๐›ผโˆ’๐›ฝ)2 [ ๐‘Ž2(โˆ’1)๐‘™โˆ’๐‘Ÿ+1[๐›ฝ2๐‘Ÿ + ๐›ผ2๐‘Ÿ + 2(โˆ’1)๐‘Ÿ] โˆ’(โˆ’1)๐‘™โˆ’๐‘Ÿ+1[๐›ฝ2๐‘Ÿ + ๐›ผ2๐‘Ÿ + 2(โˆ’1)๐‘Ÿ] โˆ’๐‘Ž(โˆ’1)๐‘™+1 [( ๐›ฝ ๐›ผ ) ๐‘Ÿ (๐›ผ + ๐›ฝ) + ( ๐›ผ ๐›ฝ ) ๐‘Ÿ (๐›ผ + ๐›ฝ) + 2(๐›ผ + ๐›ฝ)] ] = (โˆ’1)๐‘™โˆ’๐‘Ÿ+1 (๐›ผโˆ’๐›ฝ)2 {๐‘Ž2(๐›ผ๐‘Ÿ โˆ’ ๐›ฝ๐‘Ÿ)2 โˆ’ ๐‘Ž๐‘ข[๐›ฝ2๐‘Ÿ + ๐›ผ2๐‘Ÿ + 2(โˆ’1)๐‘Ÿ] โˆ’ (๐›ผ๐‘Ÿ โˆ’ ๐›ฝ๐‘Ÿ)2} = (โˆ’1)๐‘™โˆ’๐‘Ÿ+1 (๐›ผโˆ’๐›ฝ)2 (๐›ผ๐‘Ÿ โˆ’ ๐›ฝ๐‘Ÿ)2{๐‘Ž2 โˆ’ ๐‘Ž๐‘ข โˆ’ 1} = (โˆ’1)๐‘™โˆ’๐‘Ÿ+1 (1+๐‘Ž๐‘)2 {๐‘Ž2 โˆ’ ๐‘Ž๐‘ข โˆ’ 1}๐‘ƒ3๐‘Ÿ 2 Thus, ๐‘ƒ3๐‘™โˆ’3๐‘Ÿ+1๐‘ƒ3๐‘™+3๐‘Ÿ+1 โˆ’ ๐‘ƒ3๐‘™+1 2 = (โˆ’1)๐‘™โˆ’๐‘Ÿ+1๐‘ค๐‘ƒ3๐‘Ÿ 2 ๐‘ƒ3 โˆ’2. Finally, if ๐‘˜ โ‰ก 2(๐‘š๐‘œ๐‘‘ 3) then by considering ๐‘˜ = 3๐‘™ + 2, we get ๐‘ƒ3๐‘™โˆ’3๐‘Ÿ+2๐‘ƒ3๐‘™+3๐‘Ÿ+2 โˆ’ ๐‘ƒ3๐‘™+2 2 = ( (๐›ฝโˆ’๐‘)๐›ผ๐‘™โˆ’๐‘Ÿ+1โˆ’(๐›ผโˆ’๐‘)๐›ฝ๐‘™โˆ’๐‘Ÿ+1 ๐›ผโˆ’๐›ฝ ) ( (๐›ฝโˆ’๐‘)๐›ผ๐‘™+๐‘Ÿ+1โˆ’(๐›ผโˆ’๐‘)๐›ฝ๐‘™+๐‘Ÿ+1 ๐›ผโˆ’๐›ฝ ) โˆ’ ( (๐›ฝโˆ’๐‘)๐›ผ๐‘™+1โˆ’(๐›ผโˆ’๐‘)๐›ฝ๐‘™+1 ๐›ผโˆ’๐›ฝ ) 2 . = 1 (๐›ผโˆ’๐›ฝ)2 [ (๐›ผ๐‘™โˆ’๐‘Ÿ โˆ’ ๐›ฝ๐‘™โˆ’๐‘Ÿ)(๐›ผ๐‘™+๐‘Ÿ โˆ’ ๐›ฝ๐‘™+๐‘Ÿ) + ๐‘(๐›ผ๐‘™โˆ’๐‘Ÿ โˆ’ ๐›ฝ๐‘™โˆ’๐‘Ÿ)(๐›ผ๐‘™+๐‘Ÿ+1 โˆ’ ๐›ฝ๐‘™+๐‘Ÿ+1) +๐‘(๐›ผ๐‘™โˆ’๐‘Ÿ+1 โˆ’ ๐›ฝ๐‘™โˆ’๐‘Ÿ+1)(๐›ผ๐‘™+๐‘Ÿ โˆ’ ๐›ฝ๐‘™+๐‘Ÿ) +๐‘2(๐›ผ๐‘™โˆ’๐‘Ÿ+1 โˆ’ ๐›ฝ๐‘™โˆ’๐‘Ÿ+1)(๐›ผ๐‘™+๐‘Ÿ+1 โˆ’ ๐›ฝ๐‘™+๐‘Ÿ+1) โˆ’(๐›ผ๐‘™โˆ’๐‘Ÿ โˆ’ ๐›ฝ๐‘™โˆ’๐‘Ÿ)2 โˆ’ (๐›ผ๐‘™ โˆ’ ๐›ฝ๐‘™)(๐›ผ๐‘™+1 โˆ’ ๐›ฝ๐‘™+1) โˆ’ ๐‘2(๐›ผ๐‘™+1 โˆ’ ๐›ฝ๐‘™+1)2 ] = 1 (๐›ผโˆ’๐›ฝ)2 [ (โˆ’1)๐‘™โˆ’๐‘Ÿ+1[๐›ฝ2๐‘Ÿ + ๐›ผ2๐‘Ÿ + 2(โˆ’1)๐‘Ÿ] โˆ’๐‘2(โˆ’1)๐‘™โˆ’๐‘Ÿ+1[๐›ฝ2๐‘Ÿ + ๐›ผ2๐‘Ÿ + 2(โˆ’1)๐‘Ÿ] โˆ’๐‘(โˆ’1)๐‘™+1 [( ๐›ฝ ๐›ผ ) ๐‘Ÿ (๐›ผ + ๐›ฝ) + ( ๐›ผ ๐›ฝ ) ๐‘Ÿ (๐›ผ + ๐›ฝ) โˆ’ 2(๐›ผ + ๐›ฝ)] ] = (โˆ’1)๐‘™โˆ’๐‘Ÿ+1 (๐›ผโˆ’๐›ฝ)2 {(๐›ผ๐‘Ÿ โˆ’ ๐›ฝ๐‘Ÿ)2 โˆ’ ๐‘๐‘ข[๐›ฝ2๐‘Ÿ + ๐›ผ2๐‘Ÿ + 2(โˆ’1)๐‘Ÿ] โˆ’ ๐‘2(๐›ผ๐‘Ÿ โˆ’ ๐›ฝ๐‘Ÿ)2} Parimalkumar A. Patel, Devbhadra V. Shah 194 = (โˆ’1)๐‘™โˆ’๐‘Ÿ+1 (๐›ผโˆ’๐›ฝ)2 (๐›ผ๐‘Ÿ โˆ’ ๐›ฝ๐‘Ÿ)2{1 + ๐‘๐‘ข โˆ’ ๐‘2} = (โˆ’1)๐‘™โˆ’๐‘Ÿ+1 (1+๐‘Ž๐‘)2 {1 + ๐‘๐‘ข โˆ’ ๐‘2}๐‘ƒ3๐‘Ÿ 2 Thus, ๐‘ƒ3๐‘™โˆ’3๐‘Ÿ+2๐‘ƒ3๐‘™+3๐‘Ÿ+2 โˆ’ ๐‘ƒ3๐‘™+2 2 = (โˆ’1)๐‘™โˆ’๐‘Ÿ+1๐‘ค๐‘ƒ3๐‘Ÿ 2 ๐‘ƒ3 โˆ’2 Hence, in general we write ๐‘ƒ๐‘˜โˆ’3๐‘Ÿ๐‘ƒ๐‘˜+3๐‘Ÿ โˆ’ ๐‘ƒ๐‘˜ 2 = (โˆ’1)๐‘™โˆ’๐‘Ÿ+1๐‘ค๐‘ƒ3๐‘Ÿ 2 ๐‘ƒ3 โˆ’2. The following identity is analogous to the Cassiniโ€™s identity for Fibonacci numbers which follows easily from the above theorem. Corollary 4.2. ๐‘ƒ๐‘˜โˆ’3๐‘ƒ๐‘˜+3 โˆ’ ๐‘ƒ๐‘˜ 2 = (โˆ’1)๐‘›๐‘ค for any integer ๐‘˜ โ‰ฅ 3. The following identity is similar to dโ€™Ocagneโ€™s identity of Fibonacci numbers. Theorem 4.3. ๐‘ƒ๐‘š๐‘ƒ๐‘›+3 โˆ’ ๐‘ƒ๐‘š+3๐‘ƒ๐‘› = (โˆ’1) ๐‘›๐‘ƒ๐‘šโˆ’๐‘› ( ๐‘ค ๐‘ƒ3 ) where ๐‘š, ๐‘› are nonnegative integers such that ๐‘š โ‰ฅ ๐‘› and ๐‘š โ‰ก ๐‘›(๐‘š๐‘œ๐‘‘ 3). Proof. Since ๐‘š โ‰ก ๐‘›(๐‘š๐‘œ๐‘‘ 3), we first let both ๐‘š, ๐‘› to be of the form 3๐‘—, 3๐‘˜ respectively, for positive integers ๐‘— and ๐‘˜ โ‰ค ๐‘—. Then ๐‘ƒ3๐‘—๐‘ƒ3๐‘˜+3 โˆ’ ๐‘ƒ3๐‘—+3๐‘ƒ3๐‘˜ = (1 + ๐‘Ž๐‘) ( ๐›ผ๐‘—โˆ’๐›ฝ๐‘— ๐›ผโˆ’๐›ฝ ) (1 + ๐‘Ž๐‘) ( ๐›ผ๐‘˜+1โˆ’๐›ฝ๐‘˜+1 ๐›ผโˆ’๐›ฝ ) โˆ’(1 + ๐‘Ž๐‘) ( ๐›ผ๐‘—+1โˆ’๐›ฝ๐‘—+1 ๐›ผโˆ’๐›ฝ ) (1 + ๐‘Ž๐‘) ( ๐›ผ๐‘˜โˆ’๐›ฝ๐‘˜ ๐›ผโˆ’๐›ฝ ) = (1+๐‘Ž๐‘)2 (๐›ผโˆ’๐›ฝ)2 {๐›ผ๐‘—๐›ฝ๐‘˜(๐›ผ โˆ’ ๐›ฝ) โˆ’ ๐›ผ๐‘˜๐›ฝ๐‘—(๐›ผ โˆ’ ๐›ฝ)} = (1 + ๐‘Ž๐‘)2(โˆ’1)๐‘˜ ( ๐›ผ๐‘—โˆ’๐‘˜โˆ’๐›ฝ๐‘—โˆ’๐‘˜ ๐›ผโˆ’๐›ฝ ) = (โˆ’1) โŒŠ ๐‘›โˆ’1 3 โŒ‹ ๐‘ค๐‘ƒ๐‘šโˆ’๐‘›๐‘ƒ3 โˆ’1 If ๐‘š, ๐‘› are of the form 3๐‘— + 1 and 3๐‘˜ + 1 respectively, then for positive integers ๐‘— and ๐‘˜ โ‰ค ๐‘—, we have ๐‘ƒ3๐‘—+1๐‘ƒ3๐‘˜+3+1 โˆ’ ๐‘ƒ3๐‘—+3+1๐‘ƒ3๐‘˜+1 = [ ( (๐‘Ž๐›ฝ+1)๐›ผ๐‘—+1โˆ’(๐‘Ž๐›ผ+1)๐›ฝ๐‘—+1 ๐›ผโˆ’๐›ฝ ) ( (๐‘Ž๐›ฝ+1)๐›ผ๐‘˜+2โˆ’(๐‘Ž๐›ผ+1)๐›ฝ๐‘˜+2 ๐›ผโˆ’๐›ฝ ) โˆ’ ( (๐‘Ž๐›ฝ+1)๐›ผ๐‘—+2โˆ’(๐‘Ž๐›ผ+1)๐›ฝ๐‘—+2 ๐›ผโˆ’๐›ฝ ) ( (๐‘Ž๐›ฝ+1)๐›ผ๐‘˜+1โˆ’(๐‘Ž๐›ผ+1)๐›ฝ๐‘˜+1 ๐›ผโˆ’๐›ฝ ) ] = 1 (๐›ผโˆ’๐›ฝ)2 [ ๐‘Ž 2 (๐›ผ๐‘—๐›ฝ๐‘˜(๐›ผ โˆ’ ๐›ฝ) โˆ’ ๐›ผ๐‘˜๐›ฝ๐‘—(๐›ผ โˆ’ ๐›ฝ)) โˆ’๐‘Ž (๐›ผ๐‘—๐›ฝ๐‘˜(๐›ผ2 โˆ’ ๐›ฝ2) โˆ’ ๐›ผ๐‘˜๐›ฝ๐‘—(๐›ผ2 โˆ’ ๐›ฝ2)) โˆ’(๐›ผ๐‘—๐›ฝ๐‘˜(๐›ผ โˆ’ ๐›ฝ) โˆ’ ๐›ผ๐‘˜๐›ฝ๐‘—(๐›ผ โˆ’ ๐›ฝ) ] = 1 (๐›ผโˆ’๐›ฝ) [(๐‘Ž2 โˆ’ ๐‘Ž๐‘ข โˆ’ 1)๐›ผ๐‘˜๐›ฝ๐‘˜(๐›ผ๐‘—โˆ’๐‘˜ โˆ’ ๐›ฝ๐‘—โˆ’๐‘˜)] = (โˆ’1)๐‘˜(๐‘Ž2 โˆ’ ๐‘Ž๐‘ข โˆ’ 1) ( ๐›ผ๐‘—โˆ’๐‘˜โˆ’๐›ฝ๐‘—โˆ’๐‘˜ ๐›ผโˆ’๐›ฝ ) = (โˆ’1) โŒŠ ๐‘›โˆ’1 3 โŒ‹ ๐‘ค๐‘ƒ๐‘šโˆ’๐‘›๐‘ƒ3 โˆ’1 The sequence of trifurcating Fibonacci numbers 195 Finally, if ๐‘š, ๐‘› are of the form 3๐‘— + 2 and 3๐‘˜ + 2 respectively, then for positive integers ๐‘— and ๐‘˜ โ‰ค ๐‘—, we have ๐‘ƒ3๐‘—+2๐‘ƒ3๐‘˜+3+2 โˆ’ ๐‘ƒ3๐‘—+3+2๐‘ƒ3๐‘˜+2 = ( (๐›ฝโˆ’๐‘)๐›ผ๐‘—+1โˆ’(๐›ผโˆ’๐‘)๐›ฝ๐‘—+1 ๐›ผโˆ’๐›ฝ ) ( (๐›ฝโˆ’๐‘)๐›ผ๐‘˜+2โˆ’(๐›ผโˆ’๐‘)๐›ฝ๐‘˜+2 ๐›ผโˆ’๐›ฝ ) โˆ’ ( (๐›ฝโˆ’๐‘)๐›ผ๐‘—+2โˆ’(๐›ผโˆ’๐‘)๐›ฝ๐‘—+2 ๐›ผโˆ’๐›ฝ ) ( (๐›ฝโˆ’๐‘)๐›ผ๐‘˜+1โˆ’(๐›ผโˆ’๐‘)๐›ฝ๐‘˜+1 ๐›ผโˆ’๐›ฝ ) = 1 (๐›ผโˆ’๐›ฝ)2 [ ๐›ผ๐‘—๐›ฝ๐‘˜(๐›ผ โˆ’ ๐›ฝ) โˆ’ ๐›ผ๐‘˜๐›ฝ๐‘—(๐›ผ โˆ’ ๐›ฝ) โˆ’ ๐‘2(๐›ผ๐‘—๐›ฝ๐‘˜(๐›ผ โˆ’ ๐›ฝ) โˆ’ ๐›ผ๐‘˜๐›ฝ๐‘—(๐›ผ โˆ’ ๐›ฝ) +๐‘ (๐›ผ๐‘—๐›ฝ๐‘˜(๐›ผ2 โˆ’ ๐›ฝ2) โˆ’ ๐›ผ๐‘˜๐›ฝ๐‘—(๐›ผ2 โˆ’ ๐›ฝ2)) ] = 1 (๐›ผโˆ’๐›ฝ) [(1 + ๐‘๐‘ข โˆ’ ๐‘2)๐›ผ๐‘˜๐›ฝ๐‘˜(๐›ผ๐‘—โˆ’๐‘˜ โˆ’ ๐›ฝ๐‘—โˆ’๐‘˜)] = (โˆ’1)๐‘˜(๐‘Ž2 โˆ’ ๐‘Ž๐‘ข โˆ’ 1) ( ๐›ผ๐‘—โˆ’๐‘˜โˆ’๐›ฝ๐‘—โˆ’๐‘˜ ๐›ผโˆ’๐›ฝ ) = (โˆ’1) โŒŠ ๐‘›โˆ’1 3 โŒ‹ ๐‘ค๐‘ƒ๐‘šโˆ’๐‘›๐‘ƒ3 โˆ’1 Combining all the above cases, we finally get ๐‘ƒ๐‘š๐‘ƒ๐‘›+3 โˆ’ ๐‘ƒ๐‘š+3๐‘ƒ๐‘› = (โˆ’1) โŒŠ ๐‘›โˆ’1 3 โŒ‹ ๐‘ค๐‘ƒ๐‘šโˆ’๐‘›๐‘ƒ3 โˆ’1. We use above Binet-like formula to prove the following identity which combines four consecutive ๐‘ƒ๐‘›โ€™s. Theorem 4.4. ๐‘Ž โŒŠ1โˆ’ ๐œ’(๐‘˜+2) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜+1) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜) 3 โŒ‹ ๐‘ƒ๐‘˜+1 2 + ๐‘Ž โŒŠ1โˆ’ ๐œ’(๐‘˜) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜+2) 3 โŒ‹ ๐‘ โŒŠ1โˆ’ ๐œ’(๐‘˜+1) 3 โŒ‹ ๐‘ƒ๐‘˜+2 2 = ๐‘ƒ๐‘˜+2๐‘ƒ๐‘˜+3 โˆ’ ๐‘ƒ๐‘˜๐‘ƒ๐‘˜+1. Proof. We prove the result only for the case ๐‘˜ = 3๐‘› and the remaining cases ๐‘˜ = 3๐‘› + 1 and ๐‘˜ = 3๐‘› + 2 can be handled accordingly. Now, ๐‘๐‘ƒ3๐‘›+1 2 + ๐‘Ž๐‘ƒ3๐‘›+2 2 = ๐‘ {( (๐‘Ž๐›ฝ+1)๐›ผ๐‘›+1โˆ’(๐‘Ž๐›ผ+1)๐›ฝ๐‘›+1 ๐›ผโˆ’๐›ฝ )} 2 + ๐‘Ž {( (๐›ฝโˆ’๐‘)๐›ผ๐‘›+1โˆ’(๐›ผโˆ’๐‘)๐›ฝ๐‘›+1 ๐›ผโˆ’๐›ฝ )} 2 . = 1 (๐›ผโˆ’๐›ฝ)2 [ ๐‘Ž2๐‘(๐›ผ2๐‘› โˆ’ 2(โˆ’1)๐‘› + ๐›ฝ2๐‘›) โˆ’2๐‘Ž๐‘(๐›ผ2๐‘›+1 โˆ’ (โˆ’1)๐‘›๐›ผ โˆ’ (โˆ’1)๐‘›๐›ฝ + ๐›ฝ2๐‘›+1) +๐‘(๐›ผ2๐‘›+2 โˆ’ 2(โˆ’1)๐‘›+1 + ๐›ฝ2๐‘›+2) +2๐‘Ž๐‘(๐›ผ2๐‘›+1 โˆ’ (โˆ’1)๐‘›๐›ฝ + (โˆ’1)๐‘›๐›ผ + ๐›ฝ2๐‘›+1) +๐‘2(๐›ผ2๐‘›+2 โˆ’ 2(โˆ’1)๐‘›+1 + ๐›ฝ2๐‘›+2) + ๐‘Ž(๐›ผ2๐‘› โˆ’ 2(โˆ’1)๐‘› + ๐›ฝ2๐‘›)] = (1+๐‘Ž๐‘) (๐›ผโˆ’๐›ฝ)2 {๐‘Ž(๐›ผ๐‘› โˆ’ ๐›ฝ๐‘›)2 + ๐‘(๐›ผ๐‘›+1 โˆ’ ๐›ฝ๐‘›+1)2} Also, ๐‘ƒ3๐‘›+2๐‘ƒ3๐‘›+3 โˆ’ ๐‘ƒ3๐‘›๐‘ƒ3๐‘›+1 = ( (๐›ฝโˆ’๐‘)๐›ผ๐‘›+1โˆ’(๐›ผโˆ’๐‘)๐›ฝ๐‘›+1 ๐›ผโˆ’๐›ฝ ) (1 + ๐‘Ž๐‘) ( ๐›ผ๐‘›+1โˆ’๐›ฝ๐‘›+1 ๐›ผโˆ’๐›ฝ ) โˆ’(1 + ๐‘Ž๐‘) ( ๐›ผ๐‘›โˆ’๐›ฝ๐‘› ๐›ผโˆ’๐›ฝ ) ( (๐‘Ž๐›ฝ+1)๐›ผ๐‘›+1โˆ’(๐‘Ž๐›ผ+1)๐›ฝ๐‘›+1 ๐›ผโˆ’๐›ฝ ) Parimalkumar A. Patel, Devbhadra V. Shah 196 = (1+๐‘Ž๐‘) (๐›ผโˆ’๐›ฝ)2 [ (๐›ผ๐‘› โˆ’ ๐›ฝ๐‘›)(๐›ผ๐‘›+1 โˆ’ ๐›ฝ๐‘›+1) + ๐‘(๐›ผ๐‘›+1 โˆ’ ๐›ฝ๐‘›+1)2 +๐‘Ž(๐›ผ๐‘› โˆ’ ๐›ฝ๐‘›)2 โˆ’ (๐›ผ๐‘› โˆ’ ๐›ฝ๐‘›)(๐›ผ๐‘›+1 โˆ’ ๐›ฝ๐‘›+1) ] = (1+๐‘Ž๐‘) (๐›ผโˆ’๐›ฝ)2 {๐‘Ž(๐›ผ๐‘› โˆ’ ๐›ฝ๐‘›)2 + ๐‘(๐›ผ๐‘›+1 โˆ’ ๐›ฝ๐‘›+1)2} This proves the required result. 4. Conclusions In this paper, we considered the sequence of โ€˜trifurcating Fibonacci numbersโ€™ and obtained its Binet-like formula. We also obtained the analogous of Cassiniโ€™s identity, Catalanโ€™s identity, dโ€™Ocagneโ€™s identity and some fundamental identities for the terms of this sequence. References [1] Arvadia M. P., Shah D. V. Left k-Fibonacci sequence and related identities. Journal Club for Applied Sciences. 2 (1), 20 โ€“ 26, July 2015. [2] Diwan D. M., Shah D. V. Explicit and recursive formulae for the class of generalized Fibonacci sequence. International Journal of Advanced Research in Engineering, Science and Management. 1 (10), 1 โ€“ 6, July 2015. [3] Diwan D. M., Shah D. V. Extended Binetโ€™s formula for the class of generalized Fibonacci sequences. VNSGU Journal of Science and Technology. 4 (1), 205 โ€“ 210, 2015. [4] Edson M., Yayenie O. A new generalization of Fibonacci sequence and extended Binetโ€™s formula. INTEGERS, Electron. J. Comb. Number Theor., 9, 639 โ€“ 654, 2009. [5] Gupta V. K., Panwar Y. K., O. Sikhwal. Generalized Fibonacci sequences. Theoretical Mathematics & Applications. 2 (2), 115 โ€“ 124, 2012. [6] Koshy Thomas. Fibonacci and Lucas Numbers with applications. John Wiley and Sons, Inc., N. York., 2001. [7] Patel Vandana R., Shah Devbhadra V. Generalized Fibonacci sequence and its properties. Int. Journal of Physics and Mathematical Sciences. 4 (2), 118 โ€“ 124, 2014. [8] Singh B., Sikhwal O., Bhatnagar S. Fibonacci-like sequence and its properties. Int. J. Contemp-Math. Sciences. 5 (18), 857 โ€“ 868, 2010. [9] Verma, Ankur Bala. On Properties of generalized Bi-variate Bi-Periodic Fibonacci polynomials. International journal of Advanced science and Technology. 29 (3), 8065 โ€“ 8072, 2020. [10] Yayenie O. A note on generalized Fibonacci sequence. Applied Mathematics and computation. 217, 5603 โ€“ 5611, 2011.