Estimation of fuzzy metric spaces from metric spaces Ratio Mathematica 64 Estimation of fuzzy metric spaces from metric spaces Senthil Kumar Pichai* Thiruveni Packirisamy† Abstract In this paper we estimate the new way for analyzing the fuzzy metric spaces from metric spaces using fuzzy fixed point theorem and vice versa. We derive some definitions and theorems for analyzing the metric spaces with new structure of fuzzy metric space using fixed point theorems. Also, we have given new examples for fuzzy metric spaces using fixed point theorem. Keywords: metric space, fuzzy logic, fixed point theorem. 2020 AMS subject classifications: 54E35, 03B52, 47H10 * Department of Mathematics, Rajah Serfoji Government College (Autonomous) (Affiliated to Bharathidasan University), Thanjavur, India; pskmaths@rsgc.ac.in. †Department of Mathematics, Rajah Serfoji Government College (Autonomous) (Affiliated to Bharathidasan University), Thanjavur, India; smile.thiruveni@gmail.com. Received on October 10, 2021. Accepted on December 15, 2021. Published on December 31, 2021. doi: 10.23755/rm.v41i0.670. ISSN: 1592-7415. eISSN: 2282-8214. Β©The Authors. This paper is published under the CC-BY licence agreement. Volume 41, 2021, pp. 64-70 mailto:pskmaths@rsgc.ac.in mailto:smile.thiruveni@gmail.com Estimation of fuzzy metric spaces from metric spaces 65 1. Introduction In earlier of 1906, Maurice Freechet provided the concept of metric spaces. In 1922, Banach developed a reliable result called Banach contraction principle on the basis of fixed point theory [15]. Later in 1965, Zadeh [10] defined the way of fuzzy set in metric spaces. This fuzzy concept used in various field of engineering, science and technology. This fuzzy concept is used to analyze the complex state as to easy by simple condition and conversion. Then several mathematicians gave their various concept towards the concept of fuzzy metric space Erceg [4] [5], Diamond and Kolden [7], George & Veeramani [6], Gregori and Romaguera [11]. The analysis of fuzzy metric spaces was introduced in various way and its topologies developed by many researchers. On the line of this, we frame a new structure to analyze the fuzzy metric spaces from metric spaces using fuzzy fixed point theorem [13] [14]. In this paper, we discuss and give various definition and theorem to estimate the fuzzy metric space from metric space and converse also using fixed point theorem[1][9][12][16]. 2. Prefatory In this part, we look back on some basic concepts and results in both metric and fuzzy based metric spaces. Definition 2.1: [2] A metric space is given by a set 𝑋 and a distance function dΜ… ∢ X Γ— X β†’ R defined on 𝑋 such that π‘Ž,𝑏,𝑐 ∈ 𝑋 (𝑖) dΜ…(π‘Ž,𝑏) β‰₯ 0,dΜ…(π‘Ž,𝑏) = 0 ↔ π‘Ž = 𝑏 (𝑖𝑖) dΜ…(π‘Ž,𝑏) = dΜ…(𝑏,π‘Ž) (𝑖𝑖𝑖) dΜ…(π‘Ž,𝑐) ≀ dΜ…(π‘Ž,𝑏)+ dΜ… (𝑏,𝑐) Definition 2.2: [10] A fuzzy set 𝐴 in 𝑋 is a function with domain 𝑋 and values in [0, 1]. Definition 2.3: [8] A binary operation βˆ— ∢ [0,1] 2 β†’ [0,1] is called a continuous triangular norm (called t- norm) if it satisfies the following conditions: (i) * is associative and commutative, (ii) * is continuous, (iii) π‘βˆ—1 = 𝑝 for all 𝑝,π‘ž,π‘Ÿ ∈ [0,1], (iv) π‘βˆ—π‘ž ≀ π‘Ÿ βˆ—π‘‘ whenever 𝑝 ≀ π‘Ÿ and π‘ž ≀ 𝑝 for all 𝑝,π‘ž,π‘Ÿ,𝑑 ∈ [0,1] Senthil Kumar Pichai and Thiruveni Packirisamy 66 Examples of t-norm are π‘βˆ—π‘ž = π‘π‘ž,𝑝 βˆ—π‘ž = min{𝑝,π‘ž} and π‘βˆ—π‘ž = max {𝑝,π‘ž}. Definition 2.4: [3, 6] The 3-tuple (𝑋,𝐹�̅�,βˆ—) is called a fuzzy metric space if 𝑋 is an arbitrary (non-empty) set, * is a continuous t-norm and 𝐹�̅� is a fuzzy set on 𝑋2 Γ—[0,∞) satisfying the following conditions, for all π‘Ž,𝑏,𝑐 ∈ 𝑋, each t and 𝑒 > 0 (i) 𝐹�̅�(π‘Ž,𝑏,𝑑) > 0 (ii) 𝐹�̅�(π‘Ž,𝑏,𝑑) = 0 if and only if π‘Ž = 𝑏, (iii) 𝐹�̅�(π‘Ž,𝑏,𝑑) βˆ—πΉοΏ½Μ…οΏ½(𝑏,π‘Ž,𝑑), (iv) 𝐹�̅�(π‘Ž,𝑏,𝑑) βˆ—πΉοΏ½Μ…οΏ½(𝑏,𝑐,𝑒) ≀ 𝐹�̅�(π‘Ž,𝑐,𝑑 +𝑒), (v) 𝐹�̅�(π‘Ž,𝑏,Β°):(0,∞) β†’ [0,1] is continuous. Then is 𝐹�̅� called a fuzzy metric on 𝑋. Then 𝐹�̅�(π‘Ž,𝑏,𝑑) denotes the degree of nearness between π‘Ž and 𝑏 with respect to 𝑑. Lemma 2.5: (𝑋,𝐹�̅�,βˆ—) is non-decreasing for all π‘Ž,𝑏 ∈ 𝑋. 3. Main Results The main aim of this paper is to estimate the fuzzy metric spaces from any ordinary metric spaces and converse also and justify the Banach fixed point. Theorem 3.1: Let οΏ½Μ…οΏ½ and 𝐹�̅� are metric and fuzzy metric respectively, so the following diagram 𝑋 Γ— 𝑋 Γ— ℛ́+ 𝐹�̅� β‡’ 𝐼 π‘‘π‘π‘Ÿ ↓ ↑ 𝛽 𝑋 Γ— 𝑋 οΏ½Μ…οΏ½ β‡’ ℛ́ + Figure (1): commutative diagram is commutative. Where, οΏ½Μ…οΏ½π‘₯𝑦:(π‘Ž,𝑏,𝑑) β†’ (π‘‘π‘Ž,𝑑𝑏), οΏ½Μ…οΏ½(π‘‘π‘Ž,𝑑𝑏) β†’ 𝑑𝑦 for some metric οΏ½Μ…οΏ½(π‘Ž,𝑏) = 𝑦 > 0 and 𝛽:(𝑑𝑦) β†’ 1βˆ’sin(𝑑𝑦) =: οΏ½Μ‚οΏ½πœ–πΌ. Further more 𝐹�̅� = 𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦. Proof: According to the below equation it is very easy to check that 𝛽 is continuous. sinβˆ’1(𝑑𝑦) in ℛ́+ is continuous ⟹ 𝛽 is continuous. Now we justify that οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦 = 𝛽 βˆ’1 Β° 𝐹�̅�. For (a,b,c) ∈ XΓ—X×ℛ́ +, we have, οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦(π‘Ž,𝑏,𝑑) = οΏ½Μ…οΏ½(π‘‘π‘Ž,π‘‘π‘Žπ‘) = 𝑑𝑦 ≔ π‘ž > 0. On the other hand, π›½βˆ’1 °𝐹�̅�(π‘Ž,𝑏,𝑑) = 𝛽 βˆ’1(οΏ½Μ‚οΏ½) = π›½βˆ’1(1βˆ’sin𝑑𝑦)= sinβˆ’1{1βˆ’(1βˆ’sin𝑑𝑦)} = 𝑑𝑦 Therefore, the above diagram (Figure 1) is commutative. Estimation of fuzzy metric spaces from metric spaces 67 Lemma 3.2: Let 𝑑1, 𝑑2 ∈ ℛ́ +, if 𝑑1 ≀ 𝑑2, then 𝛽(𝑑1) β‰₯ 𝛽(𝑑2) and 𝛽(𝑑1 +𝑑2) β‰₯ max { 𝛽(𝑑1),𝛽(𝑑2)}. Proof: If 𝑑1 ≀ 𝑑2, this ⟹ sin𝑑1 ≀ sin𝑑2 ⟹ βˆ’sin𝑑1 β‰₯ βˆ’sin𝑑2 ⟹ 1βˆ’ sin𝑑1 β‰₯ 1βˆ’sin𝑑2 Hence, 𝛽(𝑑1) β‰₯ 𝛽(𝑑2). Now, the second declaration is clear. Theorem 3.3: Let (𝑋, οΏ½Μ…οΏ½) be the metric space and (𝑋,𝐹�̅�,βˆ—) is a fuzzy metric space with π‘βˆ—π‘ž = max {𝑝,π‘ž} for all 𝑝,π‘ž ∈ 𝐼. Then for all π‘Ž,𝑏,𝑐 ∈ 𝑋,𝑑,π‘ž,𝑦 ∈ ℛ́+, we have (𝑋,𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦,βˆ—) is a fuzzy metric space. Proof: We verify the fuzzy metric space conditions (i), (ii), (iii) from the above definition (2.4), For (i) 𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦(π‘Ž,𝑏,𝑑) = 𝛽 Β° οΏ½Μ…οΏ½(π‘‘π‘Ž,𝑑𝑏) = 𝛽 { οΏ½Μ…οΏ½(π‘‘π‘Ž,𝑑𝑏)} = οΏ½Μ‚οΏ½ > 0 . For (ii) 𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦(π‘Ž,π‘Ž,𝑑) = 𝛽 Β° οΏ½Μ…οΏ½(π‘‘π‘Ž,π‘‘π‘Ž) = 𝛽 { οΏ½Μ…οΏ½(π‘‘π‘Ž,π‘‘π‘Ž)} = 𝛽(0) = 1 For (iii) 𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦(π‘Ž,𝑏,𝑑) = 𝛽 Β° οΏ½Μ…οΏ½(π‘‘π‘Ž,𝑑𝑏) = 𝛽 { οΏ½Μ…οΏ½(π‘‘π‘Ž,𝑑𝑏)} = 𝛽(𝑑𝑦) = οΏ½Μ‚οΏ½. Another side, 𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦(𝑏,π‘Ž,𝑑) = 𝛽 Β° οΏ½Μ…οΏ½(𝑑𝑏,π‘‘π‘Ž) = 𝛽 { οΏ½Μ…οΏ½(𝑑𝑏,π‘‘π‘Ž)} = 𝛽(𝑑𝑦) = οΏ½Μ‚οΏ½ > 0 Therefore, symmetric condition satisfied. Next, we check the condition (iv) 𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦(π‘Ž,𝑐,𝑑 +𝑒) = 𝛽 Β° οΏ½Μ…οΏ½ {(𝑑+𝑒)π‘Ž,(𝑑+𝑒)𝑐) =𝛽 {οΏ½Μ…οΏ½(𝑑+𝑒)π‘Ž,(𝑑+𝑒)𝑐) =𝛽 { οΏ½Μ…οΏ½(𝑑+𝑒)π‘Ÿ)} =𝛽 (π‘‘π‘Ÿ +π‘’π‘Ÿ) Using the above lemma, 𝛽(π‘‘π‘Ÿ +π‘’π‘Ÿ) β‰₯ max{𝛽(π‘‘π‘Ÿ),𝛽(π‘’π‘Ÿ)} =𝛽(π‘‘π‘Ÿ)βˆ—π›½(π‘’π‘Ÿ) =𝛽{οΏ½Μ…οΏ½(π‘‘π‘Ž,𝑑𝑏)}βˆ—π›½{οΏ½Μ…οΏ½(π‘’π‘Ž,𝑒𝑐)} =𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦(π‘Ž,𝑏,𝑑) βˆ—π›½ Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦(𝑏,π‘Ž,𝑒) For (v) is trivially true. Therefore, (𝑋,𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦,βˆ—) is a fuzzy metric space. Comments: On the other hand we reach the metric space from the fuzzy metric space basis on the above commutative diagram (Figure 1). So, if (𝑋,𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦,βˆ— ) is a fuzzy metric space, then the associative metric is (𝑋 ,𝛽 βˆ’1 Β° 𝐹�̅� Β° οΏ½Μ…οΏ½π‘₯𝑦 βˆ’1 ). Definition 3.4: Let (X, οΏ½Μ…οΏ½) be a metric space on X, and {π‘Žπ‘›} be a sequence in X the n is {π‘Žπ‘›} called converge Sequence to some fixed π‘Ž ∈ 𝑋 𝑖𝑓 πœ€ > 0,𝑁 πœ– β„•, οΏ½Μ…οΏ½(π‘Žπ‘›,π‘Ž) < πœ– π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑛 > 𝑁 We represent π‘Žπ‘› β†’ a if {π‘Žπ‘›} converge to π‘Ž ; and {π‘Žπ‘›} is called a Cauchy Senthil Kumar Pichai and Thiruveni Packirisamy 68 sequence. οΏ½Μ…οΏ½(π‘Žπ‘›,π‘Žπ‘š) < πœ– π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑛,π‘š > 𝑁 Definition 3.5: Let (X, dΜ…)and(𝑋,𝐹�̅�,βˆ—) are metric and fuzzy metric space on X, respectively. And {π‘Žπ‘›} is a sequence in 𝑋 then the following is equivalent. (i) {π‘Žπ‘›} is convergent in the metric space (𝑋,οΏ½Μ…οΏ½) (ii) οΏ½Μ…οΏ½(π‘Žπ‘›,π‘Ž) < πœ– π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑛 > 𝑁 (iii) {π‘Žπ‘›} is convergent in the fuzzy metric space (𝑋,𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦,βˆ—) (iv) For any 0 < πœ€ < 1 and 𝑑 > 0 there exists 𝑛 > 𝑁 such that 𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦(π‘Žπ‘›,π‘Ž, 𝑑) > 1βˆ’πœ€ Definition 3.6: A metric space (𝑋,𝑑̅) is complete if every Cauchy sequence in 𝑋 is convergent. Definition 3.7: A fuzzy metric space (𝑋,𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦,βˆ—) is complete if and only if (𝑋,𝑑̅) is complete. In the below mentioned theorem we prove that if any self map has fixed point theorems in the metric space, then we induced fuzzy metric space for the same point and vice versa. We point to Mihet & Shen et al. [5] for fixed point theorems in the fuzzy metric spaces. Theorem 3.8: Let (𝑋,𝑑̅) be a complete metric space on 𝑋, suppose the mapping 𝑆:𝑋 β†’ 𝑋 satisfy the contractive condition, thus οΏ½Μ…οΏ½(π‘†π‘Ž,𝑆𝑏) < π‘˜ οΏ½Μ…οΏ½(π‘Ž,𝑏), for all π‘Ž,𝑏 ∈ 𝑋,π‘˜ ∈ [0,1) is a constant. If 𝑇 has a unique fixed point in 𝑋 with respect to the metric (𝑋,𝑑̅), then 𝑇 has a unique fixed point with respect to the induced fuzzy metric (𝑋,𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦,βˆ—). Proof: Suppose that 𝑇 has a unique fixed point in 𝑋 with respect to the metric space (𝑋,𝑑̅). So, we have 𝑑̅(π‘†π‘Ž,π‘Ž) = 0 for some π‘₯. Therefore 𝐹�̅�(π‘†π‘Ž,π‘Ž,𝑑) = 𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦(π‘†π‘Ž,π‘Ž,𝑑) = 𝛽 Β° {𝑠(π‘†π‘Ž),𝑠(𝑆𝑏)} = 𝛽(𝑑𝑦) = 𝛽(0) = 1 This represents that π‘†π‘Ž = π‘Ž with respect to the fuzzy metric space (𝑋,𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦,βˆ—) If there is another fixed point 𝑏 ∈ 𝑋 then, 𝐹�̅�(π‘Ž,𝑏, 𝑑) = 𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦(π‘†π‘Ž,𝑆𝑏,𝑑) = 𝛽 Β° {𝑠(π‘†π‘Ž),𝑠(𝑆𝑏)} = 𝛽(𝑑𝑦) = 𝛽(0) = 1 and therefore, π‘Ž = 𝑏. Theorem 3.9: Let οΏ½Μ…οΏ½ and 𝐹�̅� are metric and fuzzy metric respectively and commutative. Where, οΏ½Μ…οΏ½π‘₯𝑦:(π‘Ž,𝑏,𝑑) β†’ (π‘‘π‘Ž,𝑑𝑏), οΏ½Μ…οΏ½(π‘‘π‘Ž,𝑑𝑏) β†’ 𝑑𝑦 for some metric οΏ½Μ…οΏ½(π‘Ž,𝑏) = 𝑦 > 0 and 𝛽:(𝑑𝑦) β†’ 1βˆ’cos(𝑑𝑦) =:οΏ½Μ‚οΏ½πœ–πΌ. Further more 𝐹�̅� = 𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦. Estimation of fuzzy metric spaces from metric spaces 69 Proof for this theorem is similar to the proof of theorem 3.1. Example 3.10: Let οΏ½Μ…οΏ½ and 𝐹�̅� are metric and fuzzy metric respectively. οΏ½Μ…οΏ½π‘₯𝑦:(π‘Ž,𝑏,𝑑) β†’ (π‘‘π‘Ž,𝑑𝑏), οΏ½Μ…οΏ½(π‘‘π‘Ž,𝑑𝑏) β†’ 𝑑𝑦 for some metric οΏ½Μ…οΏ½(π‘Ž,𝑏) = 𝑦 > 0 and 𝛽:(𝑑𝑦) β†’ 1βˆ’π‘ π‘–π‘›2(𝑑𝑦) =:οΏ½Μ‚οΏ½πœ–πΌ. Furthermore 𝐹�̅� = 𝛽 Β° οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦. And we prove it is commutative. Solution: According to the below equation it is very easy to check that 𝛽 is continuous. sin2(𝑑𝑦) in ℛ́+ is continuous ⟹ 𝛽 is continuous. Now we justify that οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦 = 𝛽 βˆ’1 Β° 𝐹�̅�. For (a,b,c) ∈ XΓ—X×ℛ́ +, we have, οΏ½Μ…οΏ½ Β° οΏ½Μ…οΏ½π‘₯𝑦(π‘Ž,𝑏,𝑑) = οΏ½Μ…οΏ½(π‘‘π‘Ž,π‘‘π‘Žπ‘) = 𝑑𝑦 ≔ π‘ž > 0. On the other hand, π›½βˆ’1 °𝐹�̅�(π‘Ž,𝑏,𝑑) = 𝛽 βˆ’1(οΏ½Μ‚οΏ½) = π›½βˆ’1(1βˆ’π‘ π‘–π‘›2(𝑑𝑦))= sinβˆ’1{√1βˆ’(1βˆ’π‘ π‘–π‘›2(𝑑𝑦)) } = 𝑑𝑦 Therefore, it is commutative. 4. Conclusion In this article we design a new structure to estimate the fuzzy metric space with the help of metric space using fuzzy fixed point theorems and converse also. We discussed the various definitions and provided the proof for the same definitions with new structure using fuzzy fixed point theorems. We have also given some examples which satisfies the condition of our new structure basis on fixed point theorem. This paper makes away to analysis the applications of fuzzy metric space in various field of engineering. References [1] Saleh Omran, H.S. Al-Saadi (2017), Some notes on metric and fuzzy metric spaces, International Journal of Advanced and Applied Sciences, 4(5); 41- 43. [2] FrΓ©chet MM (1906). Surquelques points du calculfonctionnel, Rendicontidel Circolo Matematico di Palermo (1884-1940), 22(1); 1-72. [3] George A and Veeramani P (1994), On some results of fuzzy metric spaces, Fuzzy Sets and Systems, 64(3); 395-399. [4] Erceg MA (1979), Metric spaces in fuzzy set theory, Journal of Mathematical Analysis and Applications, 69(1); 205-230. Senthil Kumar Pichai and Thiruveni Packirisamy 70 [5] Mihet D (2004), A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, 144(3); 431-439. [6] Valentin Gregori, Samuel Morillas, Almanzor Sapena (2011), Examples of fuzzy metrics and applications, Fuzzy Sets and Systems 170; 95-111. [7] Diamond P and Kloden P (1999), Metric space so fuzzy sets, Fuzzy Sets and Systems, 35(2):241-249. [8] Schweizer B and Skala A (1960), Statistical metric spaces, The Pacific Journal of Mathematics, 10 (1); 314-334. [9] Dhamodharan D, Nihal Tas and Krishnakumar R (2019), Common Fixed- Point Theorems Satisfying Implicit Relations on 2-cone Banach Space with an Application, Mathematical Sciences and Applications E-Notes, 7 (1); 9- 18. [10] Zadeh LA (1965), Fuzzy sets, Information and Control, 8(3); 338-353. [11] Gregori V and Romaguera S (2000), Some properties of fuzzy metric spaces, Fuzzy Sets and Systems, 115(3):485-489. [12] Shen Y, Qiu D, and Chen W (2012), Fixed point theorems in fuzzy metric spaces, Applied Mathematics Letters, 25(2); 138-141. [13] George A and Veeramani P (1997), On Some Results of Analysis for Fuzzy Metric Spaces, Fuzzy Sets and Systems (90) 365-368. [14] Karmosil O, Michalek J (1975), Fuzzy metric and Statistical Metric Spaces, Kybernetica 11, 326-334. [15] Banach S (1922), sur les operations dans les ensembles abstraitsetleur application aux equations integrals, Fundamenta Mathematicae, Vol.3, pp.133-181 [16] Krishnakumar R, Damodharan D (2016), Fixed point theorems in normal cone metric spaces, International Journal of Math.Sci & Engg.appls.10, 213-224.