Ratio Mathematica Volume 42, 2022 To some structural properties of ∞-languages Ivan MeznΓ­k1 Abstract Properties of catenation of sequences of finite (words) and infinite (πœ”-words) lengths are largely studied in formal language theory. These operations are derived from the mechanism how they are accepted or generated by the corresponding devices. Finite automata accept structures containing only words, πœ”-automata accept only πœ”-words. Structures containing both words and πœ”-words (∞-words) are mostly generated by various types of ∞-automata (∞-machines). The aim of the paper is to investigate algebraic properties of operations on ∞-words generated by IGk-automata, where k is to model the depth of memory. It has importance in many applications (shift registers, discrete systems with memory…). It is shown that resulting algebraic structures are of β€žpureβ€œ groupoid or partial groupoid type. Keywords: ∞-words; ∞-language; ρn,p,r-catenation; closure of an ∞- language; ρ-operation. Mathematics Subject Classification: 68Q70, 08A552 1 Institute of Informatics, Faculty of Business and Management, Brno University of Technology, KolejnΓ­ 2906/4, 612 00 Brno, Czech Republic; meznik@vutbr.cz. 2 Received on January 23th, 2022. Accepted on June 4th, 2022. Published on June 30th, 2022. doi: 10.23755/rm.v41i0.721. ISSN: 1592-7415. eISSN: 2282-8214. Β©The Authors. This paper is published under the CC-BY licence agreement. 127 Ivan MeznΓ­k 1. Introduction The notion of an ∞-language was introduced by Nivat ([10]) as a free-monoid structure containing words finite (β€žclasicalβ€œ languages) and infinite (Ο‰-languages) lengths. The theory of Ο‰-languages has been intensively developed so far, mostly as a generalization of acceptance conditions of various types of automata ([1], [8], [9], [11], [12], [13], [14], [15] among others). Devices capable to accept (or generate) simultaneously words or finite or infinite (Ο‰-words) lengths were described and investigated in [2], [3]. Such devices (k-machines, IGk-machines) also provide to implement the depth of memory and possess various applications (shift registers, modelling of phenomena working in a discrete time scale). They also make a lot of properties. In [3] lattice structures were described. The way how they generate words and Ο‰-words motivates to study various types of catenation of words, which is the aim of the paper. The paper is organized as follows. In Section 2 we introduce basic concepts. In Sections 3 and 4 we examine properties of 𝜌-closure and 𝜌-operation, respectively. 2. Preliminaries An alphabet is any finite set (including the empty set) and is denoted by 𝛴; its elements are called letters. Let Ο‰ be the least infinite ordinal and n, 0 ≀ 𝑛 ≀ πœ” be an ordinal. For 𝛴 β‰  βˆ… the set of all finite sequences of elements of Ξ£ including the empty sequence Ξ» is denoted by π›΄βˆ—, the set of all infinite sequences of elements of Ξ£ by π›΄πœ” and the set π›΄βˆ— βˆͺ π›΄πœ” by π›΄βˆž. For 𝛴 = βˆ…, by definition, π›΄βˆ— = π›΄πœ” = π›΄βˆž = βˆ…. The elements of π›΄βˆ— are words, the elements of π›΄πœ” are Ο‰-words, the elements of π›΄βˆž are ∞-words. Instead of (π‘Ž0, π‘Ž1, … , π‘Žπ‘›βˆ’1) ∈ 𝛴 βˆ—, 𝑛 β‰₯ 1 and (π‘Ž0, π‘Ž1, … ) ∈ 𝛴 πœ” we write simply π‘Ž0π‘Ž1 … π‘Žπ‘›βˆ’1 and π‘Ž0π‘Ž1 …. For 𝑀 ∈ 𝛴 ∞, the length of w, denoted by |𝑀| is defined as follows: if 𝑀 = π‘Ž0π‘Ž1 … π‘Žπ‘›βˆ’1 ∈ 𝛴 βˆ— then |𝑀| = 𝑛, if 𝑀 = π‘Ž0π‘Ž1 … ∈ 𝛴 πœ” then |𝑀| = πœ” and if 𝑀 = πœ† then |𝑀| = 0. A subset of π›΄βˆ— and π›΄πœ” and π›΄βˆž is referred to as a language and an Ο‰-language and an ∞-language (over Ξ£) respectively. For 𝐿 βŠ† π›΄βˆž we define π‘š(𝑙) = 𝑖𝑛𝑓{|𝑀|; 𝑀 ∈ 𝐿}. Let 𝑀 ∈ π›΄βˆž βˆ’ {πœ†}, 1 ≀ π‘š ≀ 𝑛 < 1 + |𝑀|; by 𝑀(𝑛) we denote the n-th letter of w, by w[π‘š, 𝑛] the word 𝑀(π‘š) … 𝑀(𝑛) and if |𝑀| = πœ” by 𝑀[π‘š, πœ”] the word 𝑀(π‘š)𝑀(π‘š + 1) …. Instead of 𝑀[1, 𝑛] we write only 𝑀[𝑛]. In case π‘š > 𝑛 we formally put 𝑀[π‘š, 𝑛] = πœ†. The usual operation of catenation on π›΄βˆ— may be extended to π›΄βˆž as a partial operation as follows. Let 𝑀 ∈ π›΄βˆ—, |𝑀| = 𝑛, 𝑀 β€² ∈ π›΄βˆž; if 𝑀 β€² ∈ π›΄βˆ—, then 𝑀𝑀 β€² is defined by catenation on π›΄βˆ— and if 𝑀 β€² ∈ π›΄πœ”, then 𝑀𝑀 β€² = 𝑀(1)𝑀(2) … 𝑀(𝑛)𝑀 β€²(1)𝑀 β€²(2) …. For 𝑀 ∈ π›΄βˆ—, π‘˜ β‰₯ 1, the symbol 𝑀 π‘˜ denotes the result of k catenations of w and the symbol 𝑀 πœ” denotes the result of infinite number of catenations of w; by definition, 𝑀 0 = πœ†. 3. Closure of an ∞-language In this section we define the notion of a 𝜌-catenation. Subsequently the concept of a 𝜌-closure is introduced and its closure characterization is derived. 128 To some structural properties of ∞-languages 2.1 Definition. Let 𝑛, 𝑝, π‘Ÿ be positive integers and 𝑒 ∈ π›΄βˆž, 𝑣 ∈ π›΄βˆž. For u,v satisfying the property 𝑒[𝑝, 𝑝 + 𝑛 βˆ’ 1] = 𝑣[π‘Ÿ, π‘Ÿ + 𝑛 βˆ’ 1] we define the operation πœŒπ‘›,𝑝,π‘Ÿ by (2.1) πœŒπ‘›,𝑝,π‘Ÿ (𝑒, 𝑣) = 𝑒[𝑝 + 𝑛 βˆ’ 1]𝑣[π‘Ÿ + 𝑛, |𝑣|] called a πœŒπ‘›,𝑝,π‘Ÿ-catenation or only ρ-catenation if n,p,r are given by the context. Apparently, each πœŒπ‘›,𝑝,π‘Ÿ-catenation is a partial operation in 𝛴 ∞. In other words, each πœŒπ‘›,𝑝,π‘Ÿ-catenation defines a partial groupoid in 𝛴 ∞. In this manner (regarding the given n,p,r) the set of partial operations (groupoids) in π›΄βˆž is given. Instead of πœŒπ‘›,𝑝,π‘Ÿ (𝑒, 𝑣) we write as customary π‘’πœŒπ‘›,𝑝,π‘Ÿ 𝑣 or only π‘’πœŒπ‘£, if 𝑛, 𝑝, π‘Ÿ are clear from the context. To simplify the text, by stating π‘’πœŒπ‘›,𝑝,π‘Ÿ 𝑣 it is supposed that (𝑒, 𝑣) ∈ π·π‘œπ‘š(πœŒπ‘›,𝑝,π‘Ÿ ). 2.2 Lemma. Suppose 𝑒 ∈ π›΄βˆž and π‘’πœŒπ‘›,𝑝,π‘Ÿ 𝑒 for some 𝑛, 𝑝, π‘Ÿ . Then it holds π‘’πœŒπ‘›,𝑝,π‘Ÿ 𝑒 = 𝑒. Proof. It is an immediate consequence of Definition 2.1 Remarks. 1∘ Suppose 𝑒 ∈ π›΄βˆž and 𝑛, 𝑝, π‘Ÿ ≀ |𝑒|. Then there is obviously an infinite number of words π‘₯ ∈ π›΄βˆž such that π‘’πœŒπ‘›,𝑝,π‘Ÿ π‘₯ = 𝑒 playing the role of the β€židentityβ€œ element of πœŒπ‘›,𝑝,π‘Ÿ-catenation. 2∘ Operation πœŒπ‘›,𝑝,π‘Ÿ is in general not commutative. For example consider words u,v over 𝛴 = {π‘Ž, 𝑏}, 𝑒 = (π‘Žπ‘)3, 𝑣 = π‘Ž3. Applying the previous definition we get π‘’πœŒ1,3,1𝑣 = π‘Žπ‘π‘Ž3, π‘£πœŒ1,3,1𝑒 = π‘Ž 2(π‘Žπ‘)3, π‘’πœŒ1,3,1𝑣 β‰  π‘£πœŒ1,3,1𝑒. 3∘ Operation πœŒπ‘›,𝑝,π‘Ÿ is in general not associative. For example consider 𝜌1,3,2 βˆ’ π‘π‘Žπ‘‘π‘’π‘›π‘Žπ‘‘π‘–π‘œπ‘› in {π‘Ž, 𝑏}∞ and let 𝑒 = (π‘Žπ‘)4, 𝑣 = π‘Ž5, 𝑀 = π‘Ž7. Construct (π‘’πœŒ1,3,2𝑣)𝜌1,3,2𝑀, π‘’πœŒ1,3,2(π‘£πœŒ1,3,2𝑀). Due to Definition 2.1 we get (π‘’πœŒ1,3,2𝑣)𝜌1,3,2𝑀 = π‘Žπ‘π‘Ž 5, whereas π‘’πœŒ1,3,2(π‘£πœŒ1,3,2𝑀) = π‘Žπ‘π‘Ž 7. Of course, some of catenations in the given expressions need not be defined. 2.3 Theorem Let 𝑒 ∈ π›΄βˆž, 𝑣 ∈ π›΄βˆž and suppose π‘’πœŒπ‘›,𝑝,π‘Ÿ 𝑣, π‘£πœŒπ‘›,π‘Ÿ,𝑠𝑀 for some 𝑛, 𝑝, π‘Ÿ, 𝑠 β‰₯ 1. Then π‘’πœŒπ‘›,𝑝,𝑠𝑀 and there holds (2.2) π‘’πœŒπ‘›,𝑝,𝑠𝑀 = π‘’πœŒπ‘›,𝑝,π‘Ÿ (π‘£πœŒπ‘›,π‘Ÿ,𝑠𝑀). Proof. Suppose that π‘’πœŒπ‘›,𝑝,π‘Ÿ 𝑣, π‘£πœŒπ‘›,π‘Ÿ,𝑠 𝑀 hold for given 𝑛, 𝑝, π‘Ÿ, 𝑠 β‰₯ 1. From Definition 2.1 it follows that 𝑒[𝑝, 𝑝 + 𝑛 βˆ’ 1] = 𝑣[π‘Ÿ, π‘Ÿ + 𝑛 βˆ’ 1] and 𝑣[π‘Ÿ, π‘Ÿ + 𝑛 βˆ’ 1] = 𝑀[𝑠, 𝑠 + 𝑛 βˆ’ 1]. Then evidently 𝑒[𝑝, 𝑝 + 𝑛 βˆ’ 1] = 𝑀[𝑠, 𝑠 + 𝑛 βˆ’ 1], applying Definition 2.1 we get π‘’πœŒπ‘›,𝑝,𝑠𝑀 = 𝑒[𝑝 + 𝑛 βˆ’ 1]𝑀[𝑠 + 𝑛, |𝑀|] and the first part of the statement is verified. Rewriting this expression we obtain (2.3) π‘’πœŒπ‘›,𝑝,𝑠𝑀 = 𝑒[1] … 𝑒[𝑝 + 𝑛 βˆ’ 1]𝑀[𝑠 + 𝑛]𝑀[𝑠 + 𝑛 + 1] … 𝑀[|𝑀|]. Now we costruct the right part of (2.2). By Definition 2.1 we have 129 Ivan MeznΓ­k π‘£πœŒπ‘›,π‘Ÿ,𝑠𝑀 = 𝑣[1] … 𝑣[π‘Ÿ] … 𝑣[π‘Ÿ + 𝑛 βˆ’ 1]𝑀[𝑠 + 𝑛] … 𝑀[|𝑀|], where 𝑣[π‘Ÿ, π‘Ÿ + 𝑛 βˆ’ 1] = 𝑣[π‘Ÿ] … 𝑣[π‘Ÿ + 𝑛 βˆ’ 1] = 𝑀[𝑠] … 𝑀[𝑠 + 𝑛 βˆ’ 1] = 𝑀[𝑠, 𝑠 + 𝑛 βˆ’ 1] and (2.4) π‘’πœŒπ‘›,𝑝,π‘Ÿ (π‘£πœŒπ‘›,π‘Ÿ,𝑠𝑀) = 𝑒[1] … 𝑒[𝑝] … 𝑒[𝑝 + 𝑛 βˆ’ 1]𝑀[𝑠 + 𝑛] … 𝑀[|𝑀|]. From (2.3) and (2.4) the statement (2.2) holds and the proof is completed. 2.4 Theorem Let 𝑒, 𝑣 ∈ π›΄βˆž and suppose π‘’πœŒπ‘›,𝑝,π‘Ÿ 𝑣 for fixed 𝑛 > 1, 𝑝 β‰₯ 1, π‘Ÿ β‰₯ 1. Then π‘’πœŒπ‘š,𝑝,π‘Ÿ 𝑣 for any π‘š < 𝑛 and it holds (2.5) π‘’πœŒπ‘›,𝑝,π‘Ÿ 𝑣 = π‘’πœŒπ‘š,𝑝,π‘Ÿ 𝑣 . Proof. Let π‘’πœŒπ‘›,𝑝,π‘Ÿ 𝑣 for the given 𝑛, 𝑝, π‘Ÿ. From Definition 2.1 it follows that 𝑒[𝑝, 𝑝 + 𝑛 βˆ’ 1] = 𝑣[π‘Ÿ, π‘Ÿ + 𝑛 βˆ’ 1]. Since π‘š < 𝑛 , then apparently 𝑒[𝑝, 𝑝 + π‘š βˆ’ 1] = 𝑣[π‘Ÿ, π‘Ÿ + π‘š βˆ’ 1] holds for any π‘š < 𝑛 as well and thus π‘’πœŒπ‘š,𝑝,π‘Ÿ 𝑣. Due to (2.1) π‘’πœŒπ‘›,𝑝,π‘Ÿ 𝑣 = 𝑒[𝑝 + 𝑛 βˆ’ 1]𝑣[π‘Ÿ + 𝑛, |𝑣|]. In a detailed version we have (2.6) π‘’πœŒπ‘›,𝑝,π‘Ÿ 𝑣 = 𝑒[1] … 𝑒[𝑝 + 𝑛 βˆ’ 1]𝑣[π‘Ÿ + 𝑛] … 𝑣[|𝑣|]. With a view to π‘š < 𝑛, (2.6) may be rewritten as (2.7) π‘’πœŒπ‘›,𝑝,π‘Ÿ 𝑣 = 𝑒[1] … 𝑒[𝑝 + π‘š βˆ’ 1]𝑒[𝑝 + π‘š] … 𝑒[𝑝 + 𝑛 βˆ’ 1]𝑣[π‘Ÿ + 𝑛]𝑣[π‘Ÿ + 𝑛 + 1] … 𝑣[|𝑣|]. Now, we construct π‘’πœŒπ‘š,𝑝,π‘Ÿ 𝑣 for π‘š < 𝑛. It holds 𝑒[𝑝, 𝑝 + π‘š βˆ’ 1] = 𝑣[π‘Ÿ, π‘Ÿ + π‘š βˆ’ 1] and by (2.1) (2.8) π‘’πœŒπ‘š,𝑝,π‘Ÿ 𝑣 = 𝑒[𝑝 + π‘š βˆ’ 1]𝑣[π‘Ÿ + π‘š, |𝑣|]. In detail (2.9) π‘’πœŒπ‘š,𝑝,π‘Ÿ 𝑣 = 𝑒[1] … 𝑒[𝑝 + π‘š βˆ’ 1]𝑣[π‘Ÿ + π‘š] … 𝑣[|𝑣|]. With a view to π‘š < 𝑛, (2.9) may be rewritten as (2.10) π‘’πœŒπ‘š,𝑝,π‘Ÿ 𝑣 = 𝑒[1] … 𝑒[𝑝] … 𝑒[𝑝 + π‘š βˆ’ 1]𝑣[π‘Ÿ + π‘š] … 𝑣[π‘Ÿ + 𝑛 βˆ’ 1]𝑣[π‘Ÿ + 𝑛] … 𝑣[|𝑣|]. Due to (2.7) and (2.10) 𝑒[1] … 𝑒[𝑝 + π‘š βˆ’ 1] and 𝑣[π‘Ÿ + 𝑛] … 𝑣[|𝑣|] are common parts. It remains to verify that 𝑣[π‘Ÿ + π‘š] … 𝑣[π‘Ÿ + 𝑛 βˆ’ 1] = 𝑒[𝑝 + π‘š] … 𝑒[𝑝 + 𝑛 βˆ’ 1]. Using assumptions of Definition 2.1 we have 𝑒[𝑝, 𝑝 + 𝑛 βˆ’ 1] = 𝑣[π‘Ÿ, π‘Ÿ + 𝑛 βˆ’ 1] and thus also 𝑣[π‘Ÿ + π‘š] … 𝑣[π‘Ÿ + 𝑛 βˆ’ 1] = 𝑒[𝑝 + π‘š] … 𝑒[𝑝 + 𝑛 βˆ’ 1]. Hence (2.7) and (2.10) are identical words and the proof is completed. 2.5 Definition. Let a πœŒπ‘›,𝑝,π‘Ÿ βˆ’ catenation be given. Define a relation 𝑅𝑛,𝑝,π‘Ÿ on 𝛴 ∞ by (2.11) 𝑅𝑛,𝑝,π‘Ÿ = {𝑒, 𝑣 ∈ 𝛴 ∞; (𝑒, 𝑣) ∈ π·π‘œπ‘š(πœŒπ‘›,𝑝,π‘Ÿ )} βŠ† 𝛴 ∞ Γ— π›΄βˆž. 2.6 Lemma. The relation 𝑅𝑛,𝑝,π‘Ÿ is (i) reflexive, (ii) not symmetric, (iii) not antisymmetric, 130 To some structural properties of ∞-languages (iv) not transitive. Proof. (i) Reflexivity of 𝑅𝑛,𝑝,π‘Ÿ follows immediately from Lemma 2.2. (ii) Consider 𝑒 = π‘Žπ‘π‘π‘, 𝑣 = π‘Žπ‘Žπ‘π‘π‘. By Definition 2.1 it holds 𝑒 = π‘Žπ‘π‘π‘πœŒ2,3,3π‘Žπ‘Žπ‘π‘π‘ = 𝑣, whereas 𝑣 = π‘Žπ‘Žπ‘π‘π‘πœŒ2,3,3π‘Žπ‘π‘π‘ = 𝑒 does not hold, so the relation 𝑅𝑛,𝑝,π‘Ÿ is not transitive. (iii) Put 𝑒 = π‘Žπ‘π‘Žπ‘π‘Žπ‘π‘Žπ‘ = (π‘Žπ‘)4, 𝑣 = π‘π‘Žπ‘π‘Žπ‘π‘Žπ‘π‘Žπ‘π‘Ž = (π‘π‘Ž)5. By Definition 2.1 we have π‘’πœŒ1,2,5𝑣, π‘£πœŒ1,2,5𝑒, but 𝑒 β‰  𝑣 and hence the relation 𝑅𝑛,𝑝,π‘Ÿ is not antisymmetric. (iv) Let 𝑒 = π‘Žπ‘π‘π‘, 𝑣 = π‘π‘Žπ‘π‘Žπ‘π‘Ž, 𝑀 = 𝑏𝑏𝑏𝑏. From Definition it follows π‘’πœŒ1,1,2𝑣, π‘£πœŒ1,1,2𝑀, but π‘’πœŒ1,1,2𝑀 does not hold and the relation 𝑅𝑛,𝑝,π‘Ÿ is not transitive. 2.5 Definition. Let 𝐿 βŠ† π›΄βˆž be an ∞-language, 𝑛 β‰₯ 1 integer and 𝑒, 𝑣 ∈ π›΄βˆž. Put 𝐢𝑛 𝜌 (𝑒, 𝑣) = βˆͺ 𝑝, π‘Ÿ π‘’πœŒπ‘›,𝑝,π‘Ÿ 𝑣, 𝐢𝑛 𝜌 (𝐿) = βˆͺ 𝑒, 𝑣 𝐢𝑛 𝜌 (𝑒, 𝑣), 𝐢𝜌(𝐿) = βˆͺ 𝑛 𝐢𝑛 𝜌 (𝐿). The set 𝐢𝑛 𝜌 (𝐿) is called the n-th ρ-closure of L and the set 𝐢𝜌(𝐿) = βˆͺ 𝑛 𝐢𝑛 𝜌 (𝐿) the ρ- closure of L respectively. 2.6 Lemma. Let 𝐿 βŠ† π›΄βˆž βˆ’ {πœ†} be an ∞-language. Then 𝐿 βŠ† 𝐢𝜌(𝐿) holds true. Proof. Suppose 𝑀 ∈ 𝐿. Trivially 𝑀(1) = 𝑀(1) and by Definition 2.1 it holds π‘€πœŒ1,1,1𝑀 = 𝑀[1]𝑀[2, |𝑀|] = 𝑀 and hence by Definition 2.5 𝑀 ∈ 𝐢1 𝜌 (𝐿) and also 𝑀 ∈ 𝐢𝜌(𝐿) and the statement holds true. 2.7 Theorem Let 𝐿 βŠ† (π›΄βˆž βˆ’ {πœ†}) be an ∞-language. Then for every 𝑖 β‰₯ 1 there holds 𝐢𝑖+1 𝜌 (𝐿) βŠ† 𝐢𝑖 𝜌 (𝐿). Proof. Let 𝑀 ∈ 𝐢𝑖+1 𝜌 (𝐿). According to Definition 2.1 there exist 𝑒, 𝑣 ∈ π›΄βˆž and 𝑖, 𝑝, π‘Ÿ β‰₯ 1 with the property 𝑒[𝑝, 𝑝 + 𝑖] = 𝑣[π‘Ÿ, π‘Ÿ + 𝑖] for which π‘’πœŒπ‘–+1,𝑝.π‘Ÿ 𝑣 = 𝑒[𝑝 + 𝑖]𝑣[π‘Ÿ + 𝑖 + 1, |𝑣|] = 𝑀 holds. Obviously if 𝑒[𝑝, 𝑝 + 𝑖] = 𝑣[π‘Ÿ, π‘Ÿ + 𝑖] then also 𝑒[𝑝, 𝑝 + 𝑖 βˆ’ 1] = 𝑣[π‘Ÿ, π‘Ÿ + 𝑖 βˆ’ 1] holds. By Definition 2.5 we get π‘’πœŒπ‘–,𝑝,π‘Ÿ 𝑣 = 𝑒[𝑝 + 𝑖 βˆ’ 1]𝑣[π‘Ÿ + 𝑖, |𝑣|] = 𝑀 β€² ∈ 𝐢𝑖 𝜌 (𝐿). But apparently 𝑀, 𝑀 β€² are identical words. Hence 𝑀 ∈ 𝐢𝑖 𝜌 (𝐿) and the statement is valid. As a consequence of Definition 2.5 and Theorem 2.7 the following Corollary 2.8 holds: 2.8 Corollary Let 𝐿 βŠ† (π›΄βˆž βˆ’ {πœ†}) be an ∞-language. Then 𝐢𝜌(𝐿) = 𝐢1 𝜌 (𝐿) holds true. 2.9 Example Let 𝐿 = {π‘Žπ‘, π‘π‘Žπ‘˜ , π‘Žπœ” ; π‘˜ β‰₯ 1} βŠ† {π‘Ž, 𝑏}∞ be an ∞ - language. To find 𝐢𝑛 𝜌 (𝐿) and 𝐢𝜌(𝐿) applying Definition 2.5 we get the results as follows. (i) 𝐢1 𝜌 (𝐿): 𝐢1 𝜌 (π‘Žπ‘, π‘Žπ‘) = {π‘Žπ‘}, 𝐢1 𝜌 (π‘Žπ‘, π‘π‘Žπ‘˜ ) = {π‘Žπ‘˜ , π‘Žπ‘π‘Žπ‘˜ ; π‘˜ β‰₯ 1}, 𝐢1 𝜌 (π‘π‘Žπ‘˜ , π‘Žπ‘) = {𝑏, π‘π‘Žπ‘˜ 𝑏; π‘˜ β‰₯ 1}, 𝐢1 𝜌 (π‘π‘Žπ‘˜ , π‘π‘Žπ‘˜ ) = {π‘π‘Žπ‘˜ ; π‘˜ β‰₯ 1}, 𝐢1 𝜌 (π‘Žπ‘, π‘Žπœ” ) = {π‘Žπœ” }, 𝐢1 𝜌 (π‘Žπœ” , π‘Žπ‘) = {π‘Žπ‘˜ 𝑏; π‘˜ β‰₯ 1}, 𝐢1 𝜌 (π‘Žπœ” , π‘Žπœ” ) = {π‘Žπœ” }, 𝐢1 𝜌 (π‘π‘Žπ‘˜ , π‘Žπœ” ) = {π‘π‘Žπœ” }, 𝐢1 𝜌 (π‘Žπœ” , π‘π‘Žπ‘˜ ) = {π‘Žπ‘˜ ; π‘˜ β‰₯ 1}; therefore 𝐢1 𝜌 (𝐿) = {π‘Žπ‘, π‘Žπ‘˜ , π‘Žπ‘π‘Žπ‘˜ , π‘π‘Žπ‘˜ 𝑏, π‘π‘Žπ‘˜ , π‘Žπœ” , π‘Žπ‘˜ 𝑏, π‘π‘Žπœ” ; π‘˜ β‰₯ 1}. 131 Ivan MeznΓ­k (ii) 𝐢2 𝜌 (𝐿): 𝐢2 𝜌 (π‘Žπ‘, π‘Žπ‘) = {π‘Žπ‘}, 𝐢2 𝜌 (π‘Žπ‘, π‘π‘Žπ‘˜ ) = βˆ…, 𝐢2 𝜌 (π‘π‘Žπ‘˜ , π‘Žπ‘) = βˆ…, 𝐢2 𝜌 (π‘Žπœ” , π‘Žπœ” ) = {π‘Žπœ” }, 𝐢2 𝜌 (π‘π‘Žπ‘˜ , π‘Žπœ” ) = {π‘π‘Žπœ” } for π‘˜ β‰₯ 2, 𝐢2 𝜌 (π‘Žπœ”, π‘π‘Žπ‘˜ ) = {π‘Žπ‘˜ ; π‘˜ β‰₯ 2}, 𝐢2 𝜌 (π‘π‘Žπ‘˜ , π‘π‘Žπ‘˜ ) = {π‘π‘Žπ‘˜ ; π‘˜ β‰₯ 1}, 𝐢2 𝜌 (π‘Žπ‘, π‘Žπœ” ) = βˆ…, 𝐢2 𝜌 (π‘Žπœ” , π‘Žπ‘) = βˆ…; therefore 𝐢2 𝜌 (𝐿) = {π‘Žπ‘, π‘π‘Žπ‘˜ , π‘Žπœ” , π‘π‘Žπœ” , π‘Žπ‘˜+1; π‘˜ β‰₯ 1}. (iii) 𝐢3 𝜌 (𝐿): 𝐢3 𝜌 (π‘Žπ‘, π‘Žπ‘)=𝐢3 𝜌 (π‘Žπ‘, π‘π‘Žπ‘˜ ) = 𝐢3 𝜌 (π‘π‘Žπ‘˜ , π‘Žπ‘) = 𝐢3 𝜌 (π‘Žπ‘, π‘Žπœ” ) = 𝐢3 𝜌 (π‘Žπœ” , π‘Žπ‘) = βˆ…, 𝐢3 𝜌 (π‘π‘Žπ‘˜ , π‘π‘Žπ‘˜ ) = {π‘π‘Žπ‘˜ ; π‘˜ β‰₯ 2}, 𝐢3 𝜌 (π‘Žπœ” , π‘Žπœ” ) = {π‘Žπœ” }, 𝐢3 𝜌 (π‘π‘Žπ‘˜ , π‘Žπœ” ) = {π‘π‘Žπœ” } for π‘˜ β‰₯ 3, 𝐢3 𝜌 (π‘Žπœ” , π‘π‘Žπ‘˜ ) = {π‘Žπ‘˜ ; π‘˜ β‰₯ 3}; therefore 𝐢3 𝜌 (𝐿) = {π‘π‘Žπ‘˜ , π‘Žπœ” , π‘π‘Žπœ” , π‘Žπ‘˜+1; π‘˜ β‰₯ 2}. (iv) 𝐢𝑛 𝜌 (𝐿) for 𝑛 β‰₯ 4: 𝐢𝑛 𝜌 (π‘Žπ‘, π‘Žπ‘)=𝐢𝑛 𝜌 (π‘Žπ‘, π‘π‘Žπ‘˜ ) = 𝐢𝑛 𝜌 (π‘π‘Žπ‘˜ , π‘Žπ‘) = 𝐢𝑛 𝜌 (π‘Žπ‘, π‘Žπœ” ) = 𝐢𝑛 𝜌 (π‘Žπœ” , π‘Žπ‘) = βˆ…, 𝐢𝑛 𝜌 (π‘π‘Žπ‘˜ , π‘π‘Žπ‘˜ ) = {π‘π‘Žπ‘˜ ; π‘˜ β‰₯ 𝑛 βˆ’ 1}, 𝐢𝑛 𝜌 (π‘Žπœ” , π‘Žπœ” ) = {π‘Žπœ” }, 𝐢𝑛 𝜌 (π‘π‘Žπ‘˜ , π‘Žπœ” ) = {π‘π‘Žπœ” } for π‘˜ β‰₯ 𝑛 βˆ’ 1, 𝐢𝑛 𝜌 (π‘Žπœ”, π‘π‘Žπ‘˜ ) = {π‘Žπ‘˜ ; π‘˜ β‰₯ 𝑛 βˆ’ 1}; therefore 𝐢𝑛 𝜌 (𝐿) = {π‘π‘Žπ‘˜ , π‘Žπœ” , π‘π‘Žπœ” , π‘Žπ‘˜+1; π‘˜ β‰₯ 𝑛 βˆ’ 1}. Conclusion: 𝐢𝜌(𝐿) = {π‘Žπ‘, π‘Žπ‘˜ , π‘Žπ‘π‘Žπ‘˜ , π‘π‘Žπ‘˜ 𝑏, π‘π‘Žπ‘˜ , π‘Žπœ” , π‘Žπ‘˜ 𝑏, π‘π‘Žπœ” ; π‘˜ β‰₯ 1} = 𝐢1 𝜌 (𝐿). 2.10 Theorem. The set of ρ-closures is not closed under set union. Proof. We state an counterexample. Consider 𝐿1 = {π‘Žπ‘}, 𝐿2 = {π‘Ž πœ”} over {π‘Ž, 𝑏}∞and put 𝐿 = 𝐿1 βˆͺ 𝐿2 = {π‘Žπ‘, π‘Ž πœ” }. Applying Definition 2.1 and Corollary 2.8 we get 𝐢𝜌(𝐿1) = 𝐢1 𝜌 (𝐿1) = 𝐢 𝜌({π‘Žπ‘}) = {π‘Žπ‘}, 𝐢𝜌(𝐿2) = 𝐢1 𝜌 (𝐿2) = 𝐢 𝜌({π‘Žπœ” }) = {π‘Žπœ” }. Further, 𝐢𝜌(𝐿) = 𝐢𝜌(𝐿1 βˆͺ 𝐿2) = 𝐢 𝜌({π‘Žπ‘, π‘Žπœ” }) = {π‘Žπœ” , π‘Žπ‘˜ 𝑏; π‘˜ β‰₯ 1}. Obviously 𝐢𝜌(𝐿1 βˆͺ 𝐿2) β‰  𝐢 𝜌(𝐿1) βˆͺ 𝐢𝜌𝐿2) and the statement is verified. 2.11 Theorem. Let 𝐿1, 𝐿2 βŠ† 𝛴 ∞ . Then 𝐢𝜌(𝐿1) βˆͺ 𝐢 𝜌𝐿2) βŠ† 𝐢 𝜌(𝐿1 βˆͺ 𝐿2). Proof. With a view to Corollary 2.6 we may consider 𝐢1 𝜌 instead of 𝐢𝜌. Let 𝑀 ∈ 𝐢1 𝜌 (𝐿1) βˆͺ 𝐢1 𝜌 (𝐿2). According to Definition 2.3 then (a) there exist 𝑒 ∈ 𝐿1, 𝑣 ∈ 𝐿1 and positive integers 𝑝, π‘Ÿ such that π‘’πœŒ1,𝑝,π‘Ÿ 𝑣 = 𝑀 ∈ 𝐢1 𝜌 (𝐿1) or (b) there exist 𝑒 ∈ 𝐿2, 𝑣 ∈ 𝐿2 and positive integers 𝑝, π‘Ÿ such that π‘’πœŒ1,𝑝,π‘Ÿ 𝑣 = 𝑀 ∈ 𝐢1 𝜌 (𝐿2). Assuming (a), the statement there exist 𝑒 ∈ 𝐿1 βˆͺ 𝐿2, 𝑣 ∈ 𝐿1 βˆͺ 𝐿2 and positive integers 𝑝, π‘Ÿ such that π‘’πœŒ1,𝑝,π‘Ÿ 𝑣 = 𝑀 ∈ 𝐢1 𝜌 (𝐿1 βˆͺ 𝐿2) is obviously also valid for an arbitrary set 𝐿2. Assuming (b), the statement there exist 𝑒 ∈ 𝐿2 βˆͺ 𝐿1, 𝑣 ∈ 𝐿2 βˆͺ 𝐿1 and positive integers 𝑝, π‘Ÿ such that π‘’πœŒ1,𝑝,π‘Ÿ 𝑣 = 𝑀 ∈ 𝐢1 𝜌 (𝐿2 βˆͺ 𝐿1) is valid as well for ab arbitrary set 𝐿1. Thus 𝑀 ∈ 𝐢1 𝜌 (𝐿1 βˆͺ 𝐿2) and the proof is completed. 2.12 Theorem. The set of ρ-closures is not closed under set intersection. Proof. We state an counterexample. Consider 𝐿1 = {π‘Ž πœ”, π‘Ž3, 𝑏}, 𝐿2 = {π‘Ž 3, π‘Žπ‘} over {π‘Ž, 𝑏}∞and put 𝐿 = 𝐿1 ∩ 𝐿2 = {π‘Ž 3}. Applying Definition 2.1 and Corollary 2.8 we get 𝐢𝜌(𝐿1) = 𝐢1 𝜌 (𝐿1) = 𝐢1 𝜌 ({π‘Žπœ”, π‘Ž3, 𝑏}) = {π‘Žπœ” , 𝑏, π‘Žπ‘˜ ; π‘˜ β‰₯ 1}, 𝐢𝜌(𝐿2) = 𝐢1 𝜌 (𝐿2) = 𝐢1 𝜌 ({π‘Ž3, π‘Žπ‘}) = {π‘Ž, π‘Ž2, π‘Ž3, π‘Ž4, π‘Ž5, 𝑏, π‘Žπ‘, π‘Ž2𝑏, π‘Ž3𝑏}, 𝐢𝜌(𝐿1) ∩ 𝐢 𝜌(𝐿2) = {π‘Ž, π‘Ž2, π‘Ž3, π‘Ž4, π‘Ž5, 𝑏}. Further,𝐢𝜌(𝐿) = 𝐢𝜌(𝐿1 ∩ 𝐿2) = 𝐢 𝜌({π‘Ž3}) = {π‘Žπ‘˜ ; 1 ≀ π‘˜ ≀ 5}. Obviously 𝐢𝜌(𝐿1 ∩ 𝐿2) β‰  𝐢 𝜌(𝐿1) ∩ 𝐢 𝜌(𝐿2) and the statement is verified. 2.13 Theorem. Let 𝐿1, 𝐿2 βŠ† 𝛴 ∞. Then 𝐢𝜌(𝐿1 ∩ 𝐿2) βŠ† 𝐢 𝜌(𝐿1) ∩ 𝐢 𝜌(𝐿2). 132 To some structural properties of ∞-languages Proof. With a view to Corollary 2.6 we may work with 𝐢1 𝜌 instead of 𝐢𝜌. Let 𝑀 ∈ 𝐢1 𝜌 (𝐿1 ∩ 𝐿2). According to Definition 2.3 there exist 𝑒 ∈ (𝐿1 ∩ 𝐿2), 𝑣 ∈ (𝐿1 ∩ 𝐿2) and positive integers 𝑝, π‘Ÿ such that π‘’πœŒ1,𝑝,π‘Ÿ 𝑣 = 𝑀 ∈ 𝐢1 𝜌 (𝐿1 ∩ 𝐿2). Since 𝑒 ∈ (𝐿1 ∩ 𝐿2), 𝑣 ∈ (𝐿1 ∩ 𝐿2), then 𝑀 ∈ 𝐢1 𝜌 (𝐿1) and also 𝑀 ∈ 𝐢1 𝜌 (𝐿2). Thus 𝑀 ∈ 𝐢1 𝜌 (𝐿1) ∩ 𝐢1 𝜌 (𝐿2) and the statement holds. 2.14 Example. Using the setting of the counterexample from the proof of Theorem 2.12, we have 𝐢𝜌(𝐿1 ∩ 𝐿2) = 𝐢 𝜌({π‘Ž3}) = {π‘Žπ‘˜ ; 1 ≀ π‘˜ ≀ 5} βŠ† 𝐢𝜌(𝐿1) ∩ 𝐢 𝜌(𝐿2) = {π‘Ž, π‘Ž2, π‘Ž3, π‘Ž4, π‘Ž5, 𝑏} to illustrate Theorem 2.13. Further, we have 𝐢𝜌(𝐿1) βˆͺ 𝐢 𝜌𝐿2) = {π‘Žπœ” , 𝑏, π‘Žπ‘, π‘Ž2𝑏, π‘Ž3𝑏, π‘Žπ‘˜ ; π‘˜ β‰₯ 1} βŠ† 𝐢𝜌(𝐿1 βˆͺ 𝐿2) = {π‘Ž πœ” , π‘Žπ‘˜ , π‘Žπ‘˜ 𝑏, 𝑏; π‘˜ β‰₯ 1} to illustrate Theorem 2.11. 3. Operation 𝝆𝒏 3.1 Definition. Given 𝐿1, 𝐿2 βŠ† 𝛴 ∞ and 𝑛 β‰₯ 1, an operation πœŒπ‘› is defined as follows: πœŒπ‘›(𝐿1, 𝐿2) = {π‘₯𝑒𝑦; π‘‘β„Žπ‘’π‘Ÿπ‘’ 𝑒π‘₯𝑖𝑠𝑑𝑠 𝑒 ∈ 𝛴 𝑛 π‘€π‘–π‘‘β„Ž π‘₯𝑒 ∈ 𝐿1π‘Žπ‘›π‘‘ 𝑒𝑦 ∈ 𝐿2}. Clearly, for each n, πœŒπ‘› is the operation on 2 π›΄βˆž . In this manner the set of operations on 2𝛴 ∞ is given. Instead of πœŒπ‘› (𝐿1, 𝐿2) we also write 𝐿1πœŒπ‘› 𝐿2. 3.2 Theorem. (i) Let 𝐿1, 𝐿2 βŠ† 𝛴 πœ” . Then for all 𝑛 β‰₯ 1 there holds 𝐿1πœŒπ‘› 𝐿2 = βˆ…. (ii) Given 𝐿1, 𝐿2 βŠ† 𝛴 βˆ— and let 𝐿1 βˆͺ 𝐿2 be a finite set. Then for all 𝑛 > max π‘€βˆˆπΏ1βˆͺ𝐿2 |𝑀| here holds 𝐿1πœŒπ‘› 𝐿2 = βˆ…. Proof. Both statements (i), (ii) follow immediately from Definition 3.1. 3.3 Example. (a) Let 𝐿1, 𝐿2 βŠ† {π‘Ž, 𝑏} βˆ—, 𝐿1 = {(π‘Žπ‘) π‘˜ ; π‘˜ β‰₯ 1},𝐿2 = {π‘Ž π‘˜ , π‘π‘˜ ; π‘˜ β‰₯ 1}. Applying Definition 3.1 we have 𝐿1𝜌1𝐿2 = {π‘Žπ‘ π‘˜ , (π‘Žπ‘)π‘˜ , (π‘Žπ‘)π‘˜ π‘π‘š; π‘˜, π‘š β‰₯ 1}. Similarly, and with accordance to Theorem 3.2(ii) we get 𝐿1πœŒπ‘›πΏ2 = βˆ… and 𝐿2πœŒπ‘› 𝐿1 = βˆ… for any 𝑛 β‰₯ 2. (b) Let 𝐿1, 𝐿2, 𝐿3 βŠ† {π‘Ž, 𝑏} ∞, 𝐿1 = {π‘Ž π‘˜ , 𝑏; π‘˜ β‰₯ 1}, 𝐿2 = {π‘Ž 3, 𝑏2}, 𝐿3 = {π‘Ž πœ” , π‘Žπ‘}. Applying Definition 3.1 we have 𝐿1𝜌1𝐿2 = {π‘Ž π‘˜ , 𝑏2; π‘˜ β‰₯ 3}, 𝐿2𝜌1𝐿3 = {π‘Žπœ” , π‘Ž3𝑏}, ( 𝐿1𝜌1𝐿2)𝜌1𝐿3 = {π‘Ž πœ” , π‘Žπ‘˜ 𝑏; π‘˜ β‰₯ 1}, 𝐿1𝜌1(𝐿2𝜌1𝐿3) = {π‘Ž πœ” , π‘Ž3𝑏}. 3.4 Theorem. The operation πœŒπ‘› is generally (i) not commutative, (ii) not associative. Proof. It follows immediately from the results of Example 3.3. 3.4 Remark. Theorem 3.4 justifies the conclusion that the set 2𝛴 ∞ with the operation πœŒπ‘› forms a β€žpureβ€œ groupoid. Also nonexistence of an identity element may be simply verified. 4. Conclusion In this paper we examined algebraic properties of operations on ∞-words having direct relation to ∞-languages generated by ∞- automata. It may motivate to consider further types of operations, particularly modeling the depth of memory of such devices. 133 Ivan MeznΓ­k As a generalization a variant structure of ∞-automata may be considered and the corresponding structures of their ∞-languages studied. References [1] J. Chvalina, Ε . HoΕ‘kovΓ‘-MayerovΓ‘, General πœ”-hyperstructures and certain applications of those, Ratio Mathematica 23, 3–20(2012) [2] Z. Grodzki, The k-machines, Bull. Acad. Polon. Sci. SΓ©r. Sci. Math. Astronom. Phys., Vol. XVIII, 7, 541–544(1970) [3] M. JurΓ‘Ε‘ and I. MeznΓ­k, On IG-languages, Mathematics University of Oulu(1992) [4] W. Kwasowiec, Generable sets, Information and Control 17, 257–264(1970) [5] M. Linna, On Ο‰-sets associated with context-free languages, Inform. and Control 31, 273-293(1976) [6] R. McNaughton, Testing and generating infinite sequences by a finite automaton. Inform. and Control 9, 521–530 (1966) [7] I. MeznΓ­k, On a subclass of ∞-regular languages, Theoretical Computer Science 61, 25–32(1988) [8] I. MeznΓ­k, On some structural properties of a subclass of ∞-regular languages, Discrete Applied Mathematics 18, 315–319(1987) [9] D.E. Muller, Infinite sequences and finite machines, In: IEEE Proc. Fourth Ann. Symp. On Switching Theory and Logical Design, 3–16(1963) [10] M. Nivat, Infinite words, infinite trees, infinite computations, In: J. W. De Bakker and J. Van Leeuwen, eds., Foundations of Computer Science III (Mathematisch Centrum, Amsterdam), 5–52(1979) [11] M. NovotnΓ½, Sets constructed by acceptors, Inform. and Control 26, 116–133(1974) [12] Z. Pawlak, Stored program computers. Algorytmy 10, 7–22(1969) [13] D. Perrin, An introduction to finite automata on infinite words, Lecture Notes in Computer Science 192, 2–17(1984) [14] A. Skowron, Languages determined by machine systems, Bull. Acad. Polon. Sci. SΓ©r. Sci. Math. Astronom. Phys., Vol.XIX, 4, 327–329(1971) [15] L. Staiger, Finite-state Ο‰-languages, J. of Comp. And Syst. Sci. 27, 434–448(1983) 134