Ratio Mathematica Volume 42, 2022 Vague Positive Implicative and Associative W- Implicative Ideals of Lattice Wajsberg Algebras A. Ibrahim * M. Mohamed Rajik ** Abstract In the present paper, we introduce the notions of vague positive implicative, and vague associative W-implicative ideals of lattice Wajsberg algebra. Further, we investigate some relevant properties. Moreover, we obtain some relationship between the vague associative W-implicative ideal, and the vague W-implicative ideal. Keywords: Wajsberg algebra; Lattice Wajsberg algebra; W-implicative ideal; Vague set; Vague W-implicative ideal; Vague positive implicative W-implicative ideal; Vague associative W-implicative ideal. AMS Mathematical Subject Classification 2020: 06B10, 06D35, 06D72.* * P.G. and Research Department of Mathematics, H. H. The Rajah’s College, Pudukkottai, Affiliated to Bharathidasan University, Tamilnadu, India. Email: dribra@hhrc.ac.in; dribrahimaadhil@gmail.com ** Department of Mathematics, Jansons Institute of Technology, Coimbatore, Research Scholar, P.G. and Research Department of Mathematics, H.H. The Rajah’s College, Pudukkottai, Affiliated to Bharathidasan University, Tamilnadu, India.Email: rajik4u@gmail.com. * Received on April 2nd, 2022. Accepted on June 12nd, 2022. Published on June 30th, 2021. doi: 10.23755/rm.v39i0.747. ISSN: 1592-7415. eISSN: 2282-8214. Β©The Authors. This paper is published under the CC-BY licence agreement. 183 A. Ibrahim and M. Mohamed Rajik 1. Introduction The concept of Wajsberg algebra was first proposed by Mordchaj Wajsberg[10] in 1935, and analysed by Font, Rodriguez and Torrens[4] in 1984. Zadeh introduced the notion of fuzzy set in 1965. Fuzzy logic has been applied to many fields, from control theory to artificial intelligence. In 1993, the idea of vague set was introduced by Gau and Buehrer[5]. Vague set as an extension of fuzzy sets, the idea of vague set is that the membership of every element can be divided into two aspects including supporting and opposing. It is the new extension not only provides a significant addition to existing theories for handling uncertainties, but it leads to potential areas of further field research and pertinent applications. The authors [9], introduced the notions of vague W-implicative ideals, vague implicative W-implicative ideals of lattice Wajsberg algebra, and investigated some properties. In this paper, we introduce the definitions of the vague positive implicative W-implicative ideal, and the vague associative W-implicative ideal of lattice Wajsberg algebra. Also, we discuss the relationship between the vague positive implicative W-implicative ideal, and the vague W-implicative ideal. 2. Preliminaries In this section, we recall some basic definitions and results that are helpful in developing our main results. Definition 2.1[4] Let (π•Ž, β†’, βˆ— ,1) be an algebra with a binary operation β€œβ†’β€ and a quasi complement β€œβˆ— ”. Then it is called Wajsberg algebra, if the following axioms are satisfied for all π‘₯, 𝑦, 𝑧 ∈ π•Ž, i 1 β†’ π‘₯ = π‘₯ ii (π‘₯ β†’ 𝑦) β†’ ((𝑦 β†’ 𝑧) β†’ (π‘₯ β†’ 𝑧)) = 1 iii (π‘₯ β†’ 𝑦) β†’ 𝑦 = (𝑦 β†’ π‘₯) β†’ π‘₯ iv (π‘₯βˆ— β†’ π‘¦βˆ—) β†’ (𝑦 β†’ π‘₯) = 1. Proposition 2.2[4] A Wajsberg algebra (π•Ž, β†’, βˆ— ,1)is satisfied the following axioms for all π‘₯, 𝑦, 𝑧 ∈ π•Ž, i π‘₯ β†’ π‘₯ = 1 ii If (π‘₯ β†’ 𝑦) = (𝑦 β†’ π‘₯) = 1 then π‘₯ = 𝑦 iii π‘₯ β†’ 1 = 1 iv (π‘₯ β†’ (𝑦 β†’ π‘₯)) = 1 v If (π‘₯ β†’ 𝑦) = (𝑦 β†’ 𝑧) = 1 then π‘₯ β†’ 𝑧 = 1 vi (π‘₯ β†’ 𝑦) β†’ ((𝑧 β†’ π‘₯) β†’ (𝑧 β†’ 𝑦)) = 1 vii π‘₯ β†’ (𝑦 β†’ 𝑧) = 𝑦 β†’ (π‘₯ β†’ 𝑧) viii π‘₯ β†’ 0 = π‘₯ β†’ 1βˆ— = π‘₯ βˆ— ix (π‘₯βˆ—)βˆ— = π‘₯ 184 Vague Positive Implicative and Associative W- Implicative Ideals of Lattice Wajsberg Algebra x (π‘₯βˆ— β†’ π‘¦βˆ—) = 𝑦 β†’ π‘₯. Definition 2.3[4] A Wajsberg algebra (π•Ž, β†’, βˆ— ,1) is called a lattice Wajsberg algebra, if the following conditions are satisfied for all π‘₯, 𝑦 ∈ π•Ž, i The partial ordering " ≀ "on a Wajsberg algebra π•Ž, such that π‘₯ ≀ 𝑦 if and only if π‘₯ β†’ 𝑦 = 1 ii (π‘₯ ∨ 𝑦) = (π‘₯ β†’ 𝑦) β†’ 𝑦 iii (π‘₯ ∧ 𝑦) = ((π‘₯βˆ— β†’ π‘¦βˆ—) β†’ π‘¦βˆ—)βˆ— . Thus, (π•Ž, ∨, ∧, βˆ—, 0, 1) is a lattice Wajsberg algebra with lower bound 0 and upper bound 1. Proposition 2.4[4] Let (π•Ž, β†’, βˆ— ,1) be lattice Wajsberg algebra. Then the following axioms hold for all π‘₯, 𝑦, 𝑧 ∈ π•Ž, i If π‘₯ ≀ 𝑦 then π‘₯ β†’ 𝑧 β‰₯ 𝑦 β†’ 𝑧 and 𝑧 β†’ π‘₯ ≀ 𝑧 β†’ 𝑦 ii π‘₯ ≀ 𝑦 β†’ 𝑧 if and only if 𝑦 ≀ π‘₯ β†’ 𝑧 iii (π‘₯ ∨ 𝑦)βˆ— = (π‘₯ βˆ— ∧ π‘¦βˆ—) iv (π‘₯ ∧ 𝑦)βˆ— = (π‘₯βˆ— ∨ π‘¦βˆ—) v (π‘₯ ∨ 𝑦) β†’ 𝑧 = (π‘₯ β†’ 𝑧) ∧ (𝑦 β†’ 𝑧) vi π‘₯ β†’ (𝑦 ∧ 𝑧) = (π‘₯ β†’ 𝑦) ∧ (π‘₯ β†’ 𝑧) vii (π‘₯ β†’ 𝑦) ∨ (𝑦 β†’ π‘₯) = 1 viii π‘₯ β†’ (𝑦 ∨ 𝑧) = (π‘₯ β†’ 𝑦) ∨ (π‘₯ β†’ 𝑧) ix (π‘₯ ∧ 𝑦) β†’ 𝑧 = (π‘₯ β†’ 𝑧) ∨ (𝑦 β†’ 𝑧) x (π‘₯ ∧ 𝑦) ∨ 𝑧 = (π‘₯ ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) xi (π‘₯ ∧ 𝑦) β†’ 𝑧 = (π‘₯ β†’ 𝑦) ∧ (π‘₯ β†’ 𝑧). Definition 2.5[6] Let(π•Ž, β†’, βˆ— ,1)be a lattice Wajsberg algebra. Then it is called lattice H-Wajsberg algebra, if it satisfied (π‘₯ ∨ 𝑦) ∨ (((π‘₯ ∧ 𝑦) β†’ 𝑧) = 1 for all π‘₯, 𝑦, 𝑧 ∈ π•Ž. Note. In a lattice H-Wajsberg algebra π•Ž, the following hold: i π‘₯ β†’ (π‘₯ β†’ 𝑦) = (π‘₯ β†’ 𝑦) ii π‘₯ β†’ (𝑦 β†’ 𝑧) = (π‘₯ β†’ 𝑦) β†’ (π‘₯ β†’ 𝑧)for all π‘₯, 𝑦, 𝑧 ∈ π•Ž. Definition 2.6[6] Let 𝐿 be a lattice. An ideal 𝐼 of 𝐿 is a non-empty subset of 𝐿 is called a lattice ideal, if the following axioms are satisfied for all π‘₯, 𝑦 ∈ 𝐼, i π‘₯ ∈ 𝐼and𝑦 ≀ π‘₯ imply 𝑦 ∈ 𝐼 185 A. Ibrahim and M. Mohamed Rajik ii π‘₯, 𝑦 ∈ 𝐼implies π‘₯ ∨ 𝑦 ∈ 𝐼. Definition 2.7[6] Let (π•Ž, β†’, βˆ— ,1) be a lattice Wajsberg algebra. Let 𝐼 be a non-empty subset of π•Ž. Then 𝐼 is called a W-implicative ideal of π•Ž, if the following axioms are satisfied for all π‘₯, 𝑦 πœ–π•Ž, i 0 ∈ 𝐼 ii (π‘₯ β†’ 𝑦)βˆ— ∈ 𝐼 and 𝑦 ∈ 𝐼 imply π‘₯ ∈ 𝐼. Definition 2.8[5] A vague set 𝐴 in the universal of discourse π•Ž is characterized by two membership functions given by: i A truth membership function 𝑑𝐴: 𝑋 β†’ [0,1] and ii A false membership function 𝑓𝐴: 𝑋 β†’ [0,1]. Where 𝑑𝐴(π‘₯) is a lower bound of the grade of membership of π‘₯ derived from the β€œevidence for x”, and 𝑓𝐴 (π‘₯) is a lower bound on the negation of π‘₯ derived from the β€œevidence against x” and 𝑑𝐴(π‘₯) + 𝑓𝐴 (π‘₯) ≀ 1. Thus the grade of membership of x in the vague set 𝐴 is bounded by subinterval [𝑑𝐴(π‘₯), 1 βˆ’ 𝑓𝐴 (π‘₯)] of [0, 1]. The vague set 𝐴 is written as 𝐴 = {〈π‘₯, [𝑑𝐴(π‘₯), 𝑓𝐴(π‘₯)]βŒͺ/ π‘₯ ∈ π•Ž}. Where the interval [𝑑𝐴(π‘₯), 1 βˆ’ 𝑓𝐴(π‘₯)] is called the value of π‘₯ in the vague set 𝐴 and denoted by 𝑉𝐴(π‘₯). Definition 2.9[5] A vague set 𝐴 of a universe 𝑋 with 𝑑𝐴(π‘₯) = 0 and 𝑓𝐴(π‘₯) = 1 for all π‘₯ ∈ π•Ž, is called the zero vague set of π•Ž. Definition 2.10[5] A vague set 𝐴 of a universe 𝑋 with 𝑑𝐴(π‘₯) = 1 and 𝑓𝐴(π‘₯) = 0 for all π‘₯ ∈ π•Ž is called the zero vague set of π•Ž. Definition 2.11[5] Let 𝐴 be a vague set of a universe 𝑋 with the truth membership function 𝑑𝐴 and the false membership function𝑓𝐴. For any 𝛼, 𝛽 ∈ [0,1]with 𝛼 ≀ 𝛽, the (𝛼, 𝛽) βˆ’ cut of a vague set A is a crisp subset 𝐴(𝛼,𝛽)of the set 𝑋 given by 𝐴(𝛼,𝛽) = {π‘₯ ∈ 𝒲/ 𝑉𝐴(π‘₯) β‰₯ [𝛼, 𝛽]}. Definition 2.12[5] The 𝛼-cut, 𝐴𝛼 of the vague set is the (𝛼, 𝛼)-cut of 𝐴 and hence given by 𝐴𝛼 = {π‘₯ ∈ π•Ž/ 𝑑𝐴(π‘₯) β‰₯ 𝛼}. Definition 2.13[4] Let 𝐼 = [0,1] denote the family of all closed subintervals of [0,1]. If 𝐼1 = [π‘Ž1, 𝑏1], 𝐼2 = [π‘Ž2, 𝑏2] are two elements of 𝐼[0,1], we call 𝐼1 β‰₯ 𝐼2if π‘Ž1 β‰₯ π‘Ž2 and 𝑏1 β‰₯ 𝑏2. We define the term rmax to mean the maximum of two intervals as π‘Ÿπ‘šπ‘Žπ‘₯[𝐼1, 𝐼2] = [max{π‘Ž1, π‘Ž2} , max{𝑏1, 𝑏2}]. Similarly, we can define the term rmin of any two intervals. Definition 2.14[5] The intersection of two vague sets 𝐴 and 𝐡 with respective truth membership functions and the false membership functions 𝑑𝐴, 𝑑𝐡 , 𝑓𝐴 π‘Žπ‘›π‘‘ 𝑓𝐡 is a vague set 𝐢 = 𝐴 ∩ 𝐡, whose truth membership function and false membership functions are related to those of 𝐴 and 𝐡 by 𝑑𝐢 = min{𝑑𝐴, 𝑑𝐡 } , 1 βˆ’ 𝑓𝐢 = min{1 βˆ’ 𝑓𝐴, 1 βˆ’ 𝑓𝐡 } = 1 βˆ’ max {𝑓𝐴,, 𝑓𝐡,}. 186 Vague Positive Implicative and Associative W- Implicative Ideals of Lattice Wajsberg Algebra Definition 2.15[9] Let 𝐴 be a vague set of lattice Wajsberg algebra π•Ž. Then 𝐴 is called a vague WI-ideal of π•Ž, if the following axioms are satisfied for all π‘₯, 𝑦 πœ– π•Ž, i 𝑉𝐴(0) β‰₯ 𝑉𝐴(π‘₯), ii 𝑉𝐴(π‘₯) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴(π‘₯ β†’ 𝑦) βˆ—, 𝑉𝐴(𝑦)}. 3.1. Vague positive implicative W-implicative ideal In this section, we introduce the definition of vague positive implicative W-implicative ideal of lattice Wajsberg algebra, and investigate some related properties. Definition 3.1.1 A vague set 𝐴 of lattice Wajsberg algebra π•Ž is called a vague positive implicative W-implicative ideal of π•Ž, if for all π‘₯, 𝑦, 𝑧 ∈ π•Ž, i 𝑉𝐴(0) β‰₯ 𝑉𝐴(π‘₯) ii 𝑉𝐴(𝑦) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴(((𝑦 β†’ (𝑧 β†’ 𝑦) βˆ—)βˆ— β†’ π‘₯)βˆ—), 𝑉𝐴(π‘₯)}. Example 3.1.2 Consider a set π•Ž = {0, π‘Ž, 𝑏, 𝑐, 1} with partial ordering as in Figure 3.1.1. Defining a binary operation β€² β†’ β€² and a quasi complement β€˜βˆ—β€™ on π•Ž as given in tables 3.1.1 and 3.1.2. Figure: 3.1.1 Table: 3.1.1 Table: 3.1.2 Lattice diagram Complement Implication Define " ∨ " and " ∧ " operations on π•Ž as follows: (π‘₯ ∨ 𝑦) = (π‘₯ β†’ 𝑦) β†’ 𝑦 (π‘₯ ∧ 𝑦) = ((π‘₯βˆ— β†’ π‘¦βˆ—) β†’ π‘¦βˆ—)βˆ— for all π‘₯, 𝑦 ∈ π•Ž. Then, (π•Ž, ∨, ∧, βˆ—, 0, 1) is a lattice Wajsberg algebra. Let 𝐴 be a vague set of π•Ž defined by 𝐴 = {〈0, [0.6,0.3]βŒͺ , βŒ©π‘Ž, [0.5,0.2]βŒͺ , βŒ©π‘, [0.6,0.2]βŒͺ , βŒ©π‘, [0.7,0.2]βŒͺ , 〈1, [0.7,0.3]βŒͺ} Then, 𝐴 is is vague positive implicative W-implicative ideal of π•Ž. Theorem 3.1.3 Every vague positive implicative W-implicative ideal of lattice Wajsberg algebra π•Ž is a vague W-implicative ideal of π•Ž. Proof: Let A be a vague positive implicative W-implicative ideal of π•Ž. π‘₯ π‘₯ βˆ— 0 1 a b b a c c 1 0 β†’ 0 a b c 1 0 1 1 1 1 1 a a a c 1 1 b c b 1 1 1 c b 1 1 1 1 1 0 a b c 1 1 b a c 0 187 A. Ibrahim and M. Mohamed Rajik Then from (ii) of definition 3.1.1, we have 𝑉𝐴(𝑦) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴(((𝑦 β†’ (𝑧 β†’ 𝑦) βˆ—)βˆ— β†’ π‘₯)βˆ—), 𝑉𝐴(π‘₯)} for all π‘₯, 𝑦, 𝑧 ∈ π•Ž. (3.1.1) Taking π‘₯ = 𝑦, 𝑦 = π‘₯, and 𝑧 = π‘₯ in (3.1.1), we get 𝑉𝐴(π‘₯) β‰₯ π‘Ÿπ‘šπ‘–π‘› {𝑉𝐴(((π‘₯ β†’ (π‘₯ β†’ π‘₯) βˆ—)βˆ— β†’ 𝑦)βˆ—), 𝑉𝐴(𝑦)} = π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴(((π‘₯ β†’ 1) βˆ— β†’)βˆ—)βˆ—, 𝑉𝐴(𝑦)} = π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴(((π‘₯ β†’ 0) βˆ— β†’)βˆ—)βˆ—, 𝑉𝐴(𝑦)} = π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴((π‘₯ β†’ 𝑦)) βˆ—, 𝑉𝐴(𝑦)} Thus, 𝑉𝐴(π‘₯) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴((π‘₯ β†’ 𝑦)) βˆ—, 𝑉𝐴(𝑦)}, and 𝑉𝐴(0) β‰₯ 𝑉𝐴(π‘₯). ∎ Note. The converse of the above proposition may not be true. Proposition 3.1.4 Let 𝑉𝐴 be a vague implicative W-implicative ideal of lattice Wajsberg algebra π•Ž. 𝑉𝐴 is a vague positive implicative W-implicative ideal of π•Ž if and only if 𝑉𝐴(π‘₯) β‰₯ 𝑉𝐴(((π‘₯ β†’ (𝑦 β†’ π‘₯) βˆ—)βˆ— for all π‘₯, 𝑦 ∈ π•Ž. Proof: Let 𝑉𝐴 be a vague positive implicative W-implicative ideal of π•Ž, then from (ii) of definition 3.1.1 we have 𝑉𝐴(𝑦) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴(((𝑦 β†’ (𝑧 β†’ 𝑦) βˆ—)βˆ— β†’ π‘₯)βˆ—), 𝑉𝐴(π‘₯)} for all π‘₯, 𝑦, 𝑧 ∈ π•Ž. (3.1.2) Substituting π‘₯ = 0, 𝑦 = π‘₯ and 𝑧 = 𝑦 in (3.1.2) we get 𝑉𝐴(π‘₯) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴(((π‘₯ β†’ (𝑦 β†’ π‘₯) βˆ—)βˆ— β†’ 0)βˆ—)βˆ—, 𝑉𝐴(0)} = π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴((π‘₯ β†’ (𝑦 β†’ π‘₯) βˆ—), 𝑉𝐴(0)} = 𝑉𝐴((π‘₯ β†’ (𝑦 β†’ π‘₯) βˆ—)βˆ—) Conversely, suppose 𝑉𝐴 is a vague W-implicative ideal and it satisfies the inequality, 𝑉𝐴(π‘₯) β‰₯ 𝑉𝐴((π‘₯ β†’ (𝑦 β†’ π‘₯) βˆ—)βˆ—) for all π‘₯, 𝑦, 𝑧 ∈ π•Ž (3.1.3) Put π‘₯ = 𝑦 in (3.1.3) then, we have 𝑉𝐴(𝑦) β‰₯ 𝑉𝐴((𝑦 β†’ (𝑧 β†’ 𝑦) βˆ—)βˆ—) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴(((𝑦 β†’ (𝑧 β†’ 𝑦) βˆ—)βˆ— β†’ π‘₯)βˆ—), 𝑉𝐴(π‘₯)} Thus, we have 𝑉𝐴(𝑦) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴(((𝑦 β†’ (𝑧 β†’ 𝑦) βˆ—)βˆ— β†’ π‘₯)βˆ—), 𝑉𝐴(π‘₯)}, and 𝑉𝐴(0) β‰₯ 𝑉𝐴(π‘₯) [From (i) of definition 3.1.1] Hence, 𝑉𝐴 is a vague positive implicative W-implicative ideal of π•Ž. ∎ Proposition 3.1.5 If 𝑉𝐴 is a vague positive implicative W-implicative ideal of lattice Wajsberg algebra π•Ž then, 𝐼 = {π‘₯ ∈ 𝐴/𝑉𝐴(π‘₯) = 𝑉𝐴(0)} is a positive implicative W-implicative ideal of π•Ž. 188 Vague Positive Implicative and Associative W- Implicative Ideals of Lattice Wajsberg Algebra Proof: Let 𝑉𝐴 be a vague positive implicative W-implicative ideal of π•Ž and 𝐼 = {π‘₯ ∈ 𝐴/𝑉𝐴(π‘₯) = 𝑉𝐴(0)}. Obviously, 0 ∈ 𝐴. Let ((𝑦 β†’ (𝑧 β†’ 𝑦)βˆ—)βˆ— β†’ π‘₯)βˆ—) ∈ 𝐼, π‘₯ ∈ 𝐼 for all π‘₯, 𝑦, 𝑧 ∈ π•Ž Then, we have 𝑉𝐴(((𝑦 β†’ (𝑧 β†’ 𝑦) βˆ—)βˆ— β†’ π‘₯)βˆ—) = 𝑉𝐴(0) and 𝑉𝐴(π‘₯) = 𝑉𝐴(0) (3.1.4) Since 𝑉𝐴 is a vague positive implicative W-implicative ideal, we have 𝑉𝐴(𝑦) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴(((𝑦 β†’ (𝑧 β†’ 𝑦) βˆ—)βˆ— β†’ π‘₯)βˆ—), 𝑉𝐴(π‘₯)} [From (ii) of definition 3.1.1] = 𝑉𝐴(0) [From 3.1.4] and 𝑉𝐴(0) β‰₯ 𝑉𝐴(𝑦) [From (i) of definition 3.1.1] Then, we get 𝑉𝐴(𝑦) = 𝑉𝐴(0) Thus, 𝑦 ∈ 𝐼 it follows that 𝐼 is a positive implicative W-implicative ideal of π•Ž. ∎ Theorem 3.1.6 Let 𝑉𝐴 be a vague subset of lattice Wajsberg algebra π•Ž. 𝑉𝐴 is a vague positive implicative W-implicative ideal of π•Ž if and only if 𝑉𝐴(𝛼, 𝛽) β‰  βˆ…; 𝛼, 𝛽 ∈ [0,1]. Proof: Let 𝑉𝐴 is a vague positive implicative W-implicative ideal of π•Ž and 𝛼, 𝛽 ∈ [0,1] such that 𝑉𝐴(𝛼, 𝛽) β‰  βˆ…. Clearly 0 ∈ 𝑉𝐴(𝛼, 𝛽). Let ((𝑦 β†’ (𝑧 β†’ 𝑦)βˆ—)βˆ— β†’ π‘₯)βˆ—) ∈ 𝑉𝐴(𝛼, 𝛽) and π‘₯ ∈ 𝑉𝐴(𝛼, 𝛽) for all π‘₯, 𝑦, 𝑧 ∈ π•Ž Then, we have 𝑉𝐴(((𝑦 β†’ (𝑧 β†’ 𝑦) βˆ—)βˆ— β†’ π‘₯)βˆ— β‰₯ [𝛼, 𝛽], 𝑉𝐴(π‘₯) β‰₯ [𝛼, 𝛽]. It follows that, 𝑉𝐴(𝑦) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴(((𝑦 β†’ (𝑧 β†’ 𝑦) βˆ—)βˆ— β†’ π‘₯)βˆ—), 𝑉𝐴(π‘₯)} β‰₯ [𝛼, 𝛽]. Thus, 𝑦 ∈ 𝑉𝐴[𝛼, 𝛽]. Hence, [𝛼, 𝛽] is a positive implicative W-implicative ideal of π•Ž. Conversely, if 𝑉𝐴(𝛼, 𝛽) β‰  βˆ… is a positive implicative W-implicative ideal of π•Ž, where 𝛼, 𝛽 ∈ [0,1]. For any π‘₯ ∈ π•Ž and π‘₯ ∈ 𝑉𝐴(𝐴), it follows that 𝑉𝐴(𝐴)(π‘₯) is a positive implicative W-implicative ideal of π•Ž. Thus, 0 ∈ 𝑉𝐴(𝐴)(π‘₯). That is, 𝑉𝐴(0) β‰₯ 𝑉𝐴(π‘₯) for all π‘₯, 𝑦, 𝑧 ∈ π•Ž. Let [𝛼, 𝛽] = π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴(((𝑦 β†’ (𝑧 β†’ 𝑦) βˆ—)βˆ— β†’ π‘₯)βˆ—)βˆ—, 𝑉𝐴(π‘₯)}, it follows that 𝑉𝐴(𝛼, 𝛽) is a positive implicative W-implicative ideal and ((𝑦 β†’ (𝑧 β†’ 𝑦)βˆ—)βˆ— β†’ π‘₯)βˆ—)βˆ— ∈ 𝑉𝐴[𝛼, 𝛽] and π‘₯ ∈ 𝑉𝐴[𝛼, 𝛽]. This implies that 𝑦 ∈ 𝑉𝐴[𝛼, 𝛽]. So, 𝑉𝐴(𝑦) β‰₯ [𝛼, 𝛽] = π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴(((𝑦 β†’ (𝑧 β†’ 𝑦) βˆ—)βˆ— β†’ π‘₯)βˆ—, 𝑉𝐴(π‘₯)} Thus, 𝑉𝐴 is a vague positive implicative W-implicative ideal of π•Ž. ∎ 189 A. Ibrahim and M. Mohamed Rajik Corollary 3.1.7 A vague subset 𝑉𝐴 of lattice Wajsberg algebra π•Ž is a vague positive implicative W-implicative ideal of π•Ž if and only if 𝑉𝛼 is a positive implicative W-implicative ideal of π•Ž, when 𝑉𝛼 β‰  βˆ…, 𝛼 ∈ [0,1]. Proposition 3.1.8 Let 𝑀 and 𝑁 be implicative W-implicative ideals of lattice Wajsberg algebra π•Ž, such that 𝑀 βŠ† 𝑁. If 𝑉𝐴 is a vague positive implicative W-implicative ideal of 𝑀. Then so on 𝑁. Proof: Let 𝑀 and 𝑁 be implicative W-implicative ideals of lattice Wajsberg algebra π•Ž. Let 𝑉𝐴 be a vague positive implicative W-implicative ideal of M. Since 𝑀 βŠ† 𝑁, 𝑉𝑀 (π‘₯) ≀ 𝑉𝑁(π‘₯) for all π‘₯ ∈ π•Ž. Then, clearly 𝑀𝛼 ≀ 𝑁𝛼 for every 𝛼 ∈ [0,1]. If 𝑉𝑀 is a vague positive implicative W-implicative ideal of π•Ž. Hence, we get 𝑀𝛼 is a positive implicative W-implicative ideal of π•Ž. [From corollary 3.1.7] Then, 𝑁𝛼 is a positive implicative W-implicative ideal of π•Ž. [From Proposition 2.10] Thus, 𝑉𝑁 is a positive implicative W-implicative ideal. Hence 𝑉𝐴 is a vague positive implicative W-implicative ideal of N. ∎ 3.2. Vague Associative W-implicative ideal In this section,we introduce an notation of vague associative W-implicative ideal of lattice Wajsberg algebra π•Ž and examine its properties. Definition 3.2.1 A vague subset 𝑉𝐴 of lattice Wajsberg algebra π•Ž is said to be a vague associative W-implicative ideal of π•Ž with respect to π‘₯, where π‘₯ is a fixed element of π•Ž, if it satisfies, i 𝑉𝐴(0) β‰₯ 𝑉𝐴(𝑦) ii 𝑉𝐴(𝑧) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴((𝑧 β†’ 𝑦) βˆ— β†’ π‘₯)βˆ—, 𝑉𝐴((𝑦 β†’ π‘₯) βˆ—)} for all π‘₯, 𝑦, 𝑧 ∈ π•Ž Note. A vague associative W-implicative ideal with respect to all π‘₯ β‰  1 is called a vague associative W-implicative ideal. Vague associative W-implicative ideal with respect to 1 is constant. Example 3.2.2 Consider a set 𝐴 = {0, 𝑓, 𝑔, 1} with partial ordering as in Figure 3.2.1. Define β€˜*’ and β€˜β†’β€™ on π•Ž as given in tables 3.2.1 and 3.2.2. β†’ 0 f g 1 0 1 1 1 1 190 Vague Positive Implicative and Associative W- Implicative Ideals of Lattice Wajsberg Algebra Figure 3.2.1 Table 3.2.1 Table 3.2.2 Lattice diagram Complement Implication Here, π•Ž is a lattice Wajsberg algebra. A vague subset 𝑉𝐴 of π•Ž is defined by, 𝐴 = {〈0, [0.7,0.2]βŒͺ , βŒ©π‘“, [0.7,0.2]βŒͺ , βŒ©π‘”, [0.5,0.3]βŒͺ , 〈1, [0.5,0.3]βŒͺ}. Then, 𝑉𝐴 is a vague associative W-implicative ideal of π•Ž. Proposition 3.2.3 If 𝑉𝐴 is a vague associative W-implicative ideal of π•Ž with respect to π‘₯ then 𝑉𝐴(0) = 𝑉𝐴(𝑦). Proof: Let 𝑉𝐴 be a vague associative W-implicative ideal of π•Ž with respect to π‘₯ if π‘₯ = (0, 1). Then it is trivial. If π‘₯ is neither 0 nor 1. Then, 𝑉𝐴(π‘₯) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴((π‘₯ β†’ 0) βˆ— β†’ π‘₯)βˆ—, 𝑉𝐴((𝑦 β†’ π‘₯) βˆ—)} [From (ii) of definition 3.2.1] Thus, 𝑉𝐴(π‘₯) = 𝑉𝐴(0). ∎ Proposition 3.2.4 Every vague associative W-implicative ideal of lattice Wajsberg algebra π•Ž with respect to 0 is a vague W-implicative ideal of π•Ž. Proof: Let 𝑉𝐴 be a vague associative W-implicative ideal of π•Ž with respect to 0. Then, we have 𝑉𝐴(π‘₯) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴((π‘₯ β†’ 𝑦) βˆ— β†’ 0)βˆ—, 𝑉𝐴((𝑦 β†’ 0) βˆ—)} for all π‘₯, 𝑦 ∈ π•Ž [From (ii) of definition 3.2.1] = π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴((π‘₯ β†’ 𝑦) βˆ—), 𝑉𝐴(𝑦)} Thus, 𝑉𝐴 is a vague W-implicative ideal of π•Ž. ∎ Theorem 3.2.5 Let 𝑉𝐴 be a vague W-implicative ideal of lattice Wajsberg algebra of π•Ž. 𝑉𝐴 is a vague associative W-implicative ideal of π•Ž if and only if it satisfies, 𝑉𝐴((𝑧 β†’ (𝑦 β†’ π‘₯)βˆ—)βˆ— β‰₯ 𝑉𝐴((𝑧 β†’ 𝑦) βˆ— β†’ π‘₯)βˆ— for all π‘₯, 𝑦, 𝑧 ∈ π•Ž. Proof: Let 𝑉𝐴 be a vague W-implicative ideal of π•Ž satisfying f f 1 1 1 g f g 1 1 1 0 f g 1 π‘₯ π‘₯ βˆ— 0 1 f g g f 1 0 0 g f 1 191 A. Ibrahim and M. Mohamed Rajik 𝑉𝐴((𝑧 β†’ (𝑦 β†’ π‘₯) βˆ—)βˆ— β‰₯ 𝑉𝐴((𝑧 β†’ 𝑦) βˆ— β†’ π‘₯)βˆ— for all π‘₯, 𝑦, 𝑧 ∈ π•Ž Then, 𝑉𝐴(𝑧) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴((𝑧 β†’ (𝑦 β†’ π‘₯) βˆ—)βˆ—), 𝑉𝐴((𝑦 β†’ π‘₯) βˆ—)} = π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴(((𝑧 β†’ 𝑦) βˆ— β†’ π‘₯)βˆ—), 𝑉𝐴((𝑦 β†’ π‘₯) βˆ—)} Thus, 𝑉𝐴 is a vague associative W-implicative ideal of π•Ž. Conversely, if 𝑉𝐴 be a vague associative W-implicative ideal of π•Ž. Then, 𝑉𝐴((𝑧 β†’ (𝑦 β†’ π‘₯) βˆ—)βˆ—) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴(((𝑧 β†’ (𝑦 β†’ π‘₯) βˆ—)βˆ— β†’ (𝑧 β†’ 𝑦)βˆ—)βˆ— β†’ π‘₯), 𝑉𝐴((𝑧 β†’ (𝑦 β†’ π‘₯)βˆ—)βˆ—)} Let us consider, (((𝑧 β†’ (𝑦 β†’ π‘₯)βˆ—)βˆ— β†’ (𝑧 β†’ 𝑦)βˆ—)βˆ— β†’ π‘₯) = π‘₯ βˆ— β†’ ((𝑧 β†’ (𝑦 β†’ π‘₯)βˆ—)βˆ— β†’ (𝑧 β†’ 𝑦)βˆ—) = π‘₯βˆ— β†’ ((𝑧 β†’ 𝑦) β†’ (𝑧 β†’ (𝑦 β†’ π‘₯)βˆ—)) = (π‘₯ β†’ 𝑦) β†’ (π‘₯βˆ— β†’ ((𝑦 β†’ π‘₯) β†’ π‘§βˆ—) = (𝑧 β†’ 𝑦) β†’ ((𝑦 β†’ π‘₯) β†’ (π‘₯βˆ— β†’ π‘§βˆ—)) = (𝑧 β†’ 𝑦) β†’ ((𝑧 β†’ 𝑦) β†’ (𝑧 β†’ 𝑦)) = 1 It follows that 𝑉𝐴((𝑧 β†’ (𝑦 β†’ π‘₯) βˆ—)βˆ—) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴(0), 𝑉𝐴(((𝑧 β†’ 𝑦) βˆ— β†’ π‘₯)βˆ—)} = 𝑉𝐴(((𝑧 β†’ 𝑦) βˆ— β†’ π‘₯ βˆ—) Thus, 𝑉𝐴((𝑧 β†’ (𝑦 β†’ π‘₯) βˆ—)βˆ—) β‰₯ 𝑉𝐴(((𝑧 β†’ 𝑦) βˆ— β†’ π‘₯ βˆ—). ∎ Theorem 3.2.6 Let 𝑉𝐴 be a vague W-implicative ideal of lattice Wajsberg algebra π•Ž. 𝑉𝐴 is a vague associative W-implicative ideal of π•Ž if and only if 𝑉𝐴(𝑧) β‰₯ 𝑉𝐴(((𝑧 β†’ π‘₯)βˆ— β†’ π‘₯ βˆ—) for all π‘₯, 𝑦, 𝑧 ∈ π•Ž. Proof: Let 𝑉𝐴 be a vague associative W-implicative ideal of π•Ž. Then, 𝑉𝐴(𝑧) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴((𝑧 β†’ 𝑦) βˆ— β†’ π‘₯)βˆ—, 𝑉𝐴((𝑦 β†’ π‘₯) βˆ—)} for all π‘₯, 𝑦, 𝑧 ∈ π•Ž. [From (ii) of definition 3.2.1] Taking 𝑦 = π‘₯ we get, 𝑉𝐴(𝑧) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴((𝑧 β†’ π‘₯) βˆ— β†’ π‘₯)βˆ—, 𝑉𝐴((π‘₯ β†’ π‘₯) βˆ—)} = π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴((𝑧 β†’ 𝑦) βˆ— β†’ π‘₯)βˆ—, 𝑉𝐴(0)} = 𝑉𝐴(((𝑧 β†’ 𝑦) βˆ— β†’ π‘₯βˆ—) Conversely, if 𝑉𝐴 is a vague W-implicative ideal and satisfies 𝑉𝐴(𝑧) β‰₯ 𝑉𝐴(((𝑧 β†’ 𝑦) βˆ— β†’ π‘₯)βˆ—) for all π‘₯, 𝑦, 𝑧 ∈ π•Ž Clearly, (((𝑧 β†’ π‘₯)βˆ—) β†’ (𝑦 β†’ π‘₯)βˆ—)βˆ— β†’ (𝑧 β†’ 𝑦)βˆ—)βˆ— = 0 192 Vague Positive Implicative and Associative W- Implicative Ideals of Lattice Wajsberg Algebra and ((𝑧 β†’ 𝑦)βˆ— β†’ (𝑧 β†’ π‘₯)βˆ—)βˆ— ≀ (π‘₯ β†’ 𝑦)βˆ— It follows that, (((𝑧 β†’ (𝑦 β†’ π‘₯)βˆ—)βˆ— β†’ π‘₯)βˆ— β†’ ((𝑧 β†’ 𝑦)βˆ— β†’ π‘₯)βˆ—)βˆ— = 0 𝑉𝐴((𝑧 β†’ (𝑦 β†’ π‘₯) βˆ—)βˆ— β‰₯ 𝑉𝐴(((𝑧 β†’ 𝑦 β†’ π‘₯) βˆ—) β†’ π‘₯)βˆ— β†’ π‘₯)βˆ—) β‰₯ π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴(((𝑧 β†’ (𝑦 β†’ π‘₯) βˆ— β†’ π‘₯)βˆ—, 𝑉𝐴((𝑧 β†’ 𝑦) βˆ— β†’ π‘₯)βˆ—)βˆ—} 𝑉𝐴(((𝑧 β†’ 𝑦) βˆ— β†’ π‘₯)βˆ—) = π‘Ÿπ‘šπ‘–π‘›{𝑉𝐴(0), 𝑉𝐴(((𝑧 β†’ 𝑦) βˆ— β†’ π‘₯)βˆ—) = 𝑉𝐴(((𝑧 β†’ 𝑦) βˆ— β†’ π‘₯)βˆ—) From the proposition 3.2.3, 𝑉𝐴 is a vague associative W-implicative ideal of π•Ž. ∎ 4. Conclusions In this paper, we have introduced the notions of vague positive implicative W-implicative ideal and vague associative W-implicative ideal of lattice Wajsberg algebras. Further, we have discussed the relationship between vague positive implicative W-implicative ideal, and vague W-implicative ideal. Moreover, we have given some of the characterization of the vague associative W-implicative ideal. References [1] Anitha, T., and Amarendra Babu, V., Vague positive implicative and vague associative LI-ideals of lattice implication algebras, International Journal of Pure and Applied Mathematics Volume 105, No. 1 (2015), 39-57. [2] Anitha, T., and Amarendra Babu, V., Vague LI - ideals on lattice implication algebras, J. Emerging Trends in Computing and Information Sciences, 5, (2014), 788-793. [3] Anitha, T., and Amarendra Babu,V., Vague implicative LI - ideals of lattice implication algebras, Mathematics and statistics, 3, No. 3, (2015), 53-57. [4] Font, J. M., Rodriguez, A. J., and Torrens, A., Wajsberg algebras, STOCHASTICA Volume 8, Number 1, (1984), 5-31. [5] Gau, W. L., Buehrer, D. J., Vague sets, IEEE Transactions on Systems, Man and Cybernetics, 23(20)(1993), 610-614. [6] Ibrahim, A., and Shajitha Begum, C., On WI-ideals of lattice Wajsberg algebras, Global Journal of Pure and Applied Mathematics, Volume 13, Number 10 (2017), 7237-7254. [6] Ibrahim, A., and Shajitha Begum, C., Ideals and implicative WI-ideals of Lattice Wajsberg algebras, IPASJ International Journal of Computer Science, Volume 6, Issue 4 (2018), 30-38. [7] Ibrahim, A., and Shajitha Begum, C., Fuzzy implicative WI-ideals of Lattice Wajsberg algebras, Journal of Computer and Mathematical Science, Volume 9, Number 8 (2018), 1026 -1035. [8] Ibrahim, A., and Mohamed Rajik, M., VWI-ideals of lattice Wajsberg algebras, Journal of Xidian University, Volume 14, Number 3(2020), 1284-1289. [9] Wajsberg, M., Beitragezum Metaaussagenkalkull,Monat. Mat. phys. 42 (1935), 221-242. [10] Zadeh, L. A., Fuzzy sets, Information and Control 8 (1965), 338-353. 193