Ratio Mathematica Volume 43, 2022 Existence and Uniqueness of solution of Volterra Integrodifferential Equation of Fractional Order via S-Iteration Haribhau L. Tidke ∗ Gajanan S. Patil † Rupesh T. More ‡ Abstract In this paper, we study the existence, uniqueness and other properties of solutions of Volterra integrodifferential equation of fractional order involving the Caputo fractional derivative. The tool employed in the analysis is based on application of S− iteration method. Since the study of qualitative properties in general required differential and in- tegral inequalities, but here S−iteration method itself has equally im- portant contribution to study various properties such as dependence on initial data, closeness of solutions and dependence on parameters and functions involved therein. An example in support of the all- established results is given. Keywords: Existence and uniqueness; Normal S−iterative method; Fractional derivative; Continuous dependence; Closeness; Parame- ters. 2020 AMS subject classifications: 35A01, 35A02, 34A12, 26A33, 35B30, 45D05, 47H10. 1 ∗(Department of Mathematics, School of Mathematical Sciences, Kavayitri Bahinabai Chaud- hari North Maharashtra University, Jalgaon, India); tharibhau@gmail.com. †(Department of Mathematics, PSGVPM’s ASC College, Shahada, India); ga- janan.umesh@rediffmail.com. ‡(Department of Mathematics, Arts, Commerce and Science College, Bodwad, India); rupesh- more82@gmail.com. 1Received on May 28th, 2022. Accepted on December 25th, 2022. Published on December 30th, 2022. doi: 10.23755/rm.v41i0.791. ISSN: 1592-7415. eISSN: 2282-8214. c©The Authors. This paper is published under the CC-BY licence agreement. Haribhau L. Tidke, Gajanan S. Patil and Rupesh T. More 1 Introduction We consider the following Volterra integrodifferential equation of fractional order involving the Caputo fractional derivative of the type: ( Dα∗a ) y(t) = F ( t,y(t), ∫ t a h ( s,y(s) ) ds ) , (1) for t ∈ I = [a,b], n− 1 < α ≤ n, n ∈ N, with the given initial conditions y(j)(a) = cj, j = 0, 1, 2, · · · ,n− 1, (2) where F : I × X × X → X, h : I × X → X are continuous functions and cj (j = 0, 1, 2, . . . ,n− 1) are given elements in X. Several researchers have introduced many iteration methods for certain classes of operators in the sense of their convergence, equivalence of convergence and rate of convergence etc. (see [1, 3, 4, 5, 6, 8, 9, 18, 19, 20, 21, 22, 23, 24, 31, 32]). The most of iterations devoted for both analytical and numerical approaches. The S− iteration method, due to simplicity and fastness, has attracted the attention and hence, it is used in this paper. The problems of existence, uniqueness and other properties of solutions of special forms of IVP (1)-(2) and its variants have been studied by several researchers under variety of hypotheses by using different techniques, [2, 7, 10, 11, 12, 13, 14, 15, 16, 26, 27, 29, 30] and some of references cited therein. In recently, Soltuz and Grosan [33] have studied the special version of equation (1) for different qualitative properties of solutions. Authors are motivated by the work of Sahu [31] and influenced by [5,33]. The main objective of this paper is to use normal S−iteration method to establish the existence and uniqueness of solution of the initial value problem (1)-(2) and other qualitative properties of solutions. 2 Preliminaries Before proceeding to the statement of our main results, we shall setforth some preliminaries and hypotheses that will be used in our subsequent discussion. Let X be a Banach space with norm ‖ · ‖ and I = [a,b] denotes an interval of the real line R. For the fractional order α, n − 1 < α ≤ n, n ∈ N, we define B = Cr(I,X), (where r = n for α ∈ N and r = n− 1 for α /∈ N), as a Banach space of all r times continuously differentiable functions from I into X, endowed with the norm Existence and Uniqueness of solution via S-Iteration ‖y‖B = sup{‖y(t)‖ : y ∈ B}, t ∈ I. Definition 2.1 (28). The Riemann Liouville fractional integral (left-sided) of a function h ∈ C1[a,b] of order α ∈ R+ = (0,∞) is defined by Iαa h(t) = 1 Γ(α) ∫ t a (t−s)α−1h(s) ds, t ∈ I where Γ is the Euler gamma function. Definition 2.2 (28). Let n− 1 < α ≤ n, n ∈ N. Then the expression Dαah(t) = dn dtn [ In−αa h(t) ] , t ∈ [a,b] is called the (left-sided) Riemann Liouville derivative of h of order α whenever the expression on the right-hand side is defined. Definition 2.3 (25). Let h ∈ Cn[a,b] and n − 1 < α ≤ n, n ∈ N. Then the expression ( Dα∗a ) h(t) = In−αa h (n)(t), t ∈ [a,b] is called the (left-sided) Caputo derivative of h of order α. Lemma 2.1 (17). If the function f = (f1, · · · ,fn) ∈ C1[a,b], then the initial value problems( Dαi∗a ) y(t) = fi(t,y1, · · · ,yn), y (k) i (0) = c i k, i = 1, 2, · · · ,n, k = 1, 2, · · · ,mi where mi < αi ≤ mi + 1 is equivalent to Volterra integral equations: yi(t) = mi∑ k=0 cik tk k! + Iαia fi(t,y1, · · · ,yn), 1 ≤ i ≤ n. As a consequence of the Lemma 2.1, it is easy to observe that if y ∈ B and F ∈ C1[a,b], then y(t) satisfies the integral equation y(t) = n−1∑ j=0 cj j! (t−a)j + 1 Γ(α) ∫ t a (t−s)α−1F ( s,y(s), ∫ s a h ( σ,y(σ) ) dσ ) ds, (3) which is equivalent to (1)-(2). We need the following pair of known results: Haribhau L. Tidke, Gajanan S. Patil and Rupesh T. More Theorem 2.1. ([31], p.194) Let C be a nonempty closed convex subset of a Ba- nach space X and T : C → C a contraction operator with contractivity factor m ∈ [0, 1) and fixed point x∗. Let αk and βk be two real sequences in [0, 1] such that α ≤ αk ≤ 1 and β ≤ βk < 1 for all k ∈ N and for some α,β > 0. For given u1 = v1 = w1 ∈ C, define sequences uk,vk and wk in C as follows: S-iteration process: { uk+1 = (1 −αk)Tuk + αkTyk, yk = (1 −βk)uk + βkTuk,k ∈ N. Picard iteration: vk+1 = Tvk,k ∈ N. Mann iteration process: wk+1 = (1 −βk)wk + βkTwk,k ∈ N. Then we have the following: (a) ‖uk+1 −x∗‖≤ mk [ 1 − (1 −m)αβ ]k ‖u1 −x∗‖, for all k ∈ N. (b) ‖vk+1 −x∗‖≤ mk‖v1 −x∗‖, for all k ∈ N. (c) ‖wk+1 −x∗‖≤ [ 1 − (1 −m)β ]k ‖w1 −x∗‖, for all k ∈ N. Moreover, the S-iteration process is faster than the Picard and Mann iteration processes. Definition 2.4. ([31], p.194) In particular, for αk = 1, k ∈ N ∪ {0} in the S-iteration process, then it reduces to as follows:  u0 ∈ C, uk+1 = Tyk, yk = (1 − ξk)uk + ξkTuk, k ∈ N∪{0}. (4) This is called normal S−iteration method. Note: For our convenience, we replaced βk in the S-iteration process by ξk. Lemma 2.2. ([33], p.4) Let {βk}∞k=0 be a nonnegative sequence for which one as- sumes there exists k0 ∈ N, such that for all k ≥ k0 one has satisfied the inequality βk+1 ≤ (1 −µk)βk + µkγk, (5) where µk ∈ (0, 1), for all k ∈ N ∪{0}, ∞∑ k=0 µk = ∞ and γk ≥ 0, ∀k ∈ N ∪{0}. Then the following inequality holds 0 ≤ lim sup k→∞ βk ≤ lim sup k→∞ γk. (6) Existence and Uniqueness of solution via S-Iteration 3 Existence and Uniqueness of Solutions via S−iteration Now, we are able to state and prove the following main theorem which deals with the existence and uniqueness of solutions of the problem (1)-(2). Theorem 3.1. Assume that there exist functions p, q ∈ C(I,R+) such that ‖F ( t,u1,u2 ) −F ( t,v1,v2 ) ‖≤ p(t) [ ‖u1 −v1‖ + ‖u2 −v2‖ ] (7) and ‖h(t,u1) −h(t,v1)‖≤ q(t)‖u1 −v1‖, for t ∈ I. If Θ = Iaαp(t) ( 1 + (b − a)Q ) < 1 ( where Q = sup a≤t≤b q(t) ) , then the iterative sequence {yk}∞k=0 generated by normal S− iteration method (4) with the real control sequence {ξk}∞k=0 in [0, 1] satisfying ∞∑ k=0 ξk = ∞, converges to a unique point y ∈ B, which is the required solution of the equations (1)-(2) with the following estimate: ‖yk+1 −y‖B ≤ Θk+1 e ( 1−Θ )∑k i=0 ξi ‖y0 −y‖B. (8) Proof. Let y(t) ∈ B and define the operator (Ty)(t) = n−1∑ j=0 cj j! (t−a)j + 1 Γ(α) ∫ t a (t−s)α−1F ( s,y(s), ∫ s a h ( σ,y(σ) ) dσ ) ds, t ∈ I. (9) Let {yk}∞k=0 be iterative sequence generated by normal S−iteration method (4) for the operator given in (9). We will show that yk → y as k →∞. From (4), (9) and assumption, we obtain ‖yk+1(t) −y(t)‖ = ‖(Tzk)(t) − (Ty)(t)‖ = ‖ n−1∑ j=0 cj j! (t−a)j + 1 Γ(α) ∫ t a (t−s)α−1F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ ) ds Haribhau L. Tidke, Gajanan S. Patil and Rupesh T. More − n−1∑ j=0 cj j! (t−a)j − 1 Γ(α) ∫ t a (t−s)α−1F ( s,y(s), ∫ s a h ( σ,y(σ) ) dσ ) ds‖ ≤ 1 Γ(α) ∫ t a (t−s)α−1‖F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ ) −F ( s,y(s), ∫ s a h ( σ,y(σ) ) dσ ) ‖ds ≤ 1 Γ(α) ∫ t a (t−s)α−1p(s) [ ‖zk(s) −y(s)‖ + ∫ s a q(σ)‖zk(σ) −y(σ)‖dσ ] ds. (10) Now, we estimate ‖zk(t) −y(t)‖ = [ (1 − ξk)‖yk(t) −y(t)‖ + ξk‖(Tyk)(t) − (Ty)(t)‖ ] ≤ (1 − ξk)‖yk(t) −y(t)‖ + ξk 1 Γ(α) ∫ t a (t−s)α−1p(s) × [ ‖yk(s) −y(s)‖ + ∫ s a q(σ)‖yk(σ) −y(σ)‖dσ ] ds. (11) Now, by taking supremum in the inequalities (10) and (11), we obtain ‖yk+1 −y‖B ≤ 1 Γ(α) ∫ t a (t−s)α−1p(s) [ ‖zk −y‖B + ∫ s a q(σ)‖zk −y‖Bdσ ] ds ≤ 1 Γ(α) ∫ t a (t−s)α−1p(s) [ ‖zk −y‖B + (b−a)Q‖zk −y‖B ] ds ≤ Iaαp(t) ( 1 + (b−a)Q ) ‖zk −y‖B = Θ‖zk −y‖B (12) and ‖zk −y‖B ≤ [ (1 − ξk)‖yk −y‖B + ξkΘ‖yk −y‖B ] = [ 1 − ξk ( 1 − Θ )] ‖yk −y‖B, (13) respectively. Therefore, using (13) in (12), we have ‖yk+1 −y‖B ≤ Θ [ 1 − ξk ( 1 − Θ )] ‖yk −y‖B. (14) Thus, by induction, we get ‖yk+1 −y‖B ≤ Θk+1 k∏ j=0 [ 1 − ξk ( 1 − Θ )] ‖y0 −y‖B. (15) Existence and Uniqueness of solution via S-Iteration Since ξk ∈ [0, 1] for all k ∈ N∪{0}, the definition of Θ and ξk ≤ 1 yields, ⇒ ξkΘ < ξk ⇒ ξk ( 1 − Θ ) < 1, ∀ k ∈ N∪{0}. (16) From the classical analysis, we know that 1 −x ≤ e−x = 1 −x + x2 2! − x3 3! + · · · , x ∈ [0, 1]. Hence by utilizing this fact with (16) in (15), we obtain ‖yk+1 −y‖B ≤ Θk+1e− ( 1−Θ )∑k j=0 ξj‖y0 −y‖B = Θk+1 e ( 1−Θ )∑k i=0 ξi ‖y0 −y‖B. (17) Since ∞∑ k=0 ξk = ∞, e − ( 1−Θ )∑k j=0 ξj → 0 as k →∞. (18) Hence, using this, the inequality (17) implies lim k→∞ ‖yk+1 −y‖B = 0 and therefore, we have yk → y as k →∞. Remark: It is an interesting to note that the inequality (17) gives the bounds in terms of known functions, which majorizes the iterations for solutions of the problem (1)-(2) for t ∈ I. 4 Continuous dependence via S−iteration In this section, we shall deal with continuous dependence of solution of the prob- lem (1) on the initial data, functions involved therein and also on parameters. 4.1 Dependence on initial data Suppose y(t) and y(t) are solutions of (1) with initial data y(j)(a) = cj, j = 0, 1, 2, · · · ,n− 1, (19) Haribhau L. Tidke, Gajanan S. Patil and Rupesh T. More and y(j)(a) = dj, j = 0, 1, 2, · · · ,n− 1, (20) respectively, where cj,dj are elements of the space X. Then looking at the steps as in the proof of Theorem 3.1, we define the operator for the equation (1) with the initial conditions (20): (Ty)(t) = n−1∑ j=0 dj j! (t−a)j + 1 Γ(α) ∫ t a (t−s)α−1F ( s,y(s), ∫ s a h ( σ,y(σ) ) dσ ) ds, t ∈ I. (21) We shall deal with the continuous dependence of solutions of equations (1) on initial data. Theorem 4.1. Suppose the function F in equation (1) satisfies the condition (7). Consider the sequences {yk}∞k=0 and {yk} ∞ k=0 generated normal S− itera- tive method associated with operators T in (9) and T in (21), respectively with the real sequence {ξk}∞k=0 in [0, 1] satisfying 1 2 ≤ ξk for all k ∈ N ∪{0}. If the sequence {yk} ∞ k=0 converges to y, then we have ‖y −y‖B ≤ 3M( 1 − Θ ), (22) where M = n−1∑ j=0 ‖cj −dj‖ j! (b−a)j. Proof. From iteration (4) and equations (9); (21) and assumptions, we obtain ‖yk+1(t) −yk+1(t)‖ = ‖(Tzk)(t) − (Tzk)(t)‖ = ‖ n−1∑ j=0 cj j! (t−a)j + 1 Γ(α) ∫ t a (t−s)α−1F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ ) ds − n−1∑ j=0 dj j! (t−a)j − 1 Γ(α) ∫ t a (t−s)α−1F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ ) ds‖ ≤ n−1∑ j=0 ‖cj −dj‖ j! (b−a)j Existence and Uniqueness of solution via S-Iteration + 1 Γ(α) ∫ t a (t−s)α−1‖F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ ) −F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ ) ‖ds ≤ M + 1 Γ(α) ∫ t a (t−s)α−1p(s) [ ‖zk(s) −zk(s)‖ + ∫ s a q(σ)‖zk(σ) −zk(σ)‖dσ ] ds. (23) Recalling the equations (12) and (13), the above inequality becomes ‖yk+1 −yk+1‖B ≤ M + Θ‖zk −zk‖B, (24) and similarly, it is seen that ‖zk −zk‖B ≤ ξkM + [ 1 − ξk ( 1 − Θ )] ‖yk −yk‖B. (25) Therefore, using (25) in (24) and using hypothesis Θ < 1, and 1 2 ≤ ξk for all k ∈ N∪{0}, the resulting inequality becomes ‖yk+1 −yk+1‖B ≤ M + ‖zk −zk‖B ≤ M + ξkM + [ 1 − ξk ( 1 − Θ )] ‖yk −yk‖B ≤ 2ξkM + ξkM + [ 1 − ξk ( 1 − Θ )] ‖yk −yk‖B ≤ [ 1 − ξk ( 1 − Θ )] ‖yk −yk‖B + ξk ( 1 − Θ ) 3M( 1 − Θ ). (26) We denote βk = ‖yk −yk‖B ≥ 0, µk = ξk ( 1 − Θ ) ∈ (0, 1), γk = 3M( 1 − Θ ) ≥ 0. The assumption 1 2 ≤ ξk for all k ∈ N ∪{0} implies ∞∑ k=0 ξk = ∞. Now, it can be easily seen that (26) satisfies all the conditions of Lemma 2.2 and hence, we have 0 ≤ lim sup k→∞ βk ≤ lim sup k→∞ γk Haribhau L. Tidke, Gajanan S. Patil and Rupesh T. More ⇒ 0 ≤ lim sup k→∞ ‖yk −yk‖B ≤ lim sup k→∞ 3M( 1 − Θ ) ⇒ 0 ≤ lim sup k→∞ ‖yk −yk‖B ≤ 3M( 1 − Θ ). (27) Using the assumptions, lim k→∞ yk = y, lim k→∞ yk = y, we get from (27) that ‖y −y‖B ≤ 3M( 1 − Θ ), (28) which shows that the dependency of solutions of the equations (1)-(2) and (1) with the initial conditions (20) on given initial data. 4.2 Closeness of solution via S−iteration Consider the problem (1)-(2) and the corresponding problem ( Dα∗a ) y(t) = F ( t,y(t), ∫ t a h ( s,y(s) ) ds ) , (29) for t ∈ I = [a,b], n− 1 < α ≤ n, n ∈ N, with the given initial conditions y(j)(a) = dj, j = 0, 1, 2, · · · ,n− 1, (30) where F is defined as F and dj (j = 0, 1, 2, . . . ,n−1) are given elements in X. Then looking at the steps as in the proof of Theorem 3.1, we define the operator for the equations (29)- (30) (Ty)(t) = n−1∑ j=0 dj j! (t−a)j + 1 Γ(α) ∫ t a (t−s)α−1F ( s,y(s), ∫ s a h ( σ,y(σ) ) dσ ) ds, t ∈ I. (31) The next theorem deals with the closeness of solutions of the problems (1)-(2) and (29)-(30). Theorem 4.2. Consider the sequences {yk}∞k=0 and {yk} ∞ k=0 generated normal S− iterative method associated with operators T in (9) and T in (31), respectively with the real sequence {ξk}∞k=0 in [0, 1] satisfying 1 2 ≤ ξk for all k ∈ N ∪{0}. Assume that Existence and Uniqueness of solution via S-Iteration (i) all conditions of Theorem 3.1 hold, and y(t) and y(t) are solutions of (1)- (2) and (29)-(30) respectively, (ii) there exist non negative constant � such that ‖F ( t,u1,u2 ) −F ( t,u1,u2 ) ‖≤ �, ∀ t ∈ I. (32) If the sequence {yk} ∞ k=0 converges to y, then we have ‖y −y‖B ≤ 3 [ M + �(b−a)α Γ(α+1) ] ( 1 − Θ ) . (33) Proof. From iteration (4) and equations (9); (31) and hypotheses, we obtain ‖yk+1(t) −yk+1(t)‖ = ‖(Tzk)(t) − (Tzk)(t)‖ = ‖ n−1∑ j=0 cj j! (t−a)j + 1 Γ(α) ∫ t a (t−s)α−1F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ ) ds − n−1∑ j=0 dj j! (t−a)j − 1 Γ(α) ∫ t a (t−s)α−1F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ ) ds‖ ≤ n−1∑ j=0 ‖cj −dj‖ j! (b−a)j + 1 Γ(α) ∫ t a (t−s)α−1‖F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ ) −F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ ) ‖ds ≤ M + 1 Γ(α) ∫ t a (t−s)α−1‖F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ ) −F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ ) ‖ds + 1 Γ(α) ∫ t a (t−s)α−1‖F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ ) −F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ ) ‖ds ≤ M + 1 Γ(α) ∫ t a (t−s)α−1�ds Haribhau L. Tidke, Gajanan S. Patil and Rupesh T. More + 1 Γ(α) ∫ t a (t−s)α−1p(s) [ ‖zk(s) −zk(s)‖ + ∫ s a q(σ)‖zk(σ) −zk(σ)‖dσ ] ds ≤ M + �(b−a)α Γ(α + 1) + 1 Γ(α) ∫ t a (t−s)α−1p(s) [ ‖zk(s) −zk(s)‖ + ∫ s a q(σ)‖zk(σ) −zk(σ)‖dσ ] ds. (34) Recalling the derivations obtained in equations (12) and (13), the above inequality becomes ‖yk+1 −yk+1‖B ≤ M + �(b−a)α Γ(α + 1) + Θ‖zk −zk‖B, (35) and similarly, it is seen that ‖zk −zk‖B ≤ ξk [ M + �(b−a)α Γ(α + 1) ] + [ 1 − ξk ( 1 − Θ )] ‖yk −yk‖B. (36) Therefore, using (36) in (35) and using hypothesis Θ < 1, and 1 2 ≤ ξk for all k ∈ N, the resulting inequality becomes ‖yk+1 −yk+1‖B ≤ [ M + �(b−a)α Γ(α + 1) ] + ‖zk −zk‖B ≤ [ M + �(b−a)α Γ(α + 1) ] + ξk [ M + �(b−a)α Γ(α + 1) ] + [ 1 − ξk ( 1 − Θ )] ‖yk −yk‖B ≤ 2ξk [ M + �(b−a)α Γ(α + 1) ] + ξk [ M + �(b−a)α Γ(α + 1) ] + [ 1 − ξk ( 1 − Θ )] ‖yk −yk‖B ≤ [ 1 − ξk ( 1 − Θ )] ‖yk −yk‖B + ξk ( 1 − Θ )3[M + �(b−a)α Γ(α+1) ] ( 1 − Θ ) . (37) We denote βk = ‖yk −yk‖B ≥ 0, µk = ξk ( 1 − Θ ) ∈ (0, 1), γk = 3 [ M + �(b−a)α Γ(α+1) ] ( 1 − Θ ) ≥ 0. Existence and Uniqueness of solution via S-Iteration The assumption 1 2 ≤ ξk for all k ∈ N ∪{0} implies ∞∑ k=0 ξk = ∞. Now, it can be easily seen that (37) satisfies all the conditions of Lemma 2.2 and hence, we have 0 ≤ lim sup k→∞ βk ≤ lim sup k→∞ γk ⇒ 0 ≤ lim sup k→∞ ‖yk −yk‖B ≤ lim sup k→∞ 3 [ M + �(b−a)α Γ(α+1) ] ( 1 − Θ ) ⇒ 0 ≤ lim sup k→∞ ‖yk −yk‖B ≤ 3 [ M + �(b−a)α Γ(α+1) ] ( 1 − Θ ) . (38) Using the assumptions, lim k→∞ yk = y, lim k→∞ yk = y, we get from (38) that ‖y −y‖B ≤ 3 [ M + �(b−a)α Γ(α+1) ] ( 1 − Θ ) , (39) which shows that the dependency of solutions of IVP (1)-(2) on the function in- volved on the right hand side of the given equation. Remark: The inequality (39) relates the solutions of the problems (1)-(2) and (29)-(30) in the sense that, if F and F are close as � → 0, then not only the solu- tions of the problems (1)-(2) and (29)-(30) are close to each other (i.e. ‖y−y‖B → 0), but also depends continuously on the functions involved therein and initial data. 4.3 Dependence on Parameters We next consider the following problems ( Dα∗a ) y(t) = F ( t,y(t), ∫ t a h ( s,y(s) ) ds,µ1 ) , (40) for t ∈ I = [a,b], n− 1 < α ≤ n, n ∈ N, with the given initial conditions y(j)(a) = cj, j = 0, 1, 2, · · · ,n− 1, (41) and ( Dα∗a ) y(t) = F ( t,y(t), ∫ t a h ( s,y(s) ) ds,µ2 ) , (42) Haribhau L. Tidke, Gajanan S. Patil and Rupesh T. More for t ∈ I = [a,b], n− 1 < α ≤ n, n ∈ N, with the given initial conditions y(j)(a) = dj, j = 0, 1, 2, · · · ,n− 1, (43) where F : I × X × X × R → X is continuous function, cj, dj (j = 0, 1, 2, . . . ,n− 1) are given elements in X and constants µ1, µ2 are real parame- ters. Let y(t), y(t) ∈ B and following steps from the proof of Theorem 3.1, define the operators for the equations (40) and (42), respectively (Ty)(t) = n−1∑ j=0 cj j! (t−a)j + 1 Γ(α) ∫ t a (t−s)α−1F ( s,y(s), ∫ s a h ( σ,y(σ) ) dσ,µ1 ) ds, t ∈ I; (44) and (Ty)(t) = n−1∑ j=0 dj j! (t−a)j + 1 Γ(α) ∫ t a (t−s)α−1F ( s,y(s), ∫ s a h ( σ,y(σ) ) dσ,µ2 ) ds, t ∈ I. (45) The following theorem states the continuous dependency of solutions on parame- ters. Theorem 4.3. Consider the sequences {yk}∞k=0 and {yk} ∞ k=0 generated normal S− iterative method associated with operators T in (44) and T in (45), respec- tively with the real sequence {ξk}∞k=0 in [0, 1] satisfying 1 2 ≤ ξk for all k ∈ N∪{0}. Assume that (i) y(t) and y(t) are solutions of (40)-(41) and (42)-(43) respectively, (ii) there exist functions p, r ∈ C(I,R+) such that ‖F ( t,u1,u2,µ1 ) −F ( t,v1,v2,µ1 ) ‖≤ p(t) [ ‖u1 −v1‖ + ‖u2 −v2‖ ] , and ‖F ( t,u1,u2,µ1 ) −F ( t,u1,u2,µ2 ) ‖≤ r(t) ∣∣∣µ1 −µ2∣∣∣. Existence and Uniqueness of solution via S-Iteration If the sequence {yk} ∞ k=0 converges to y, then we have ‖y −y‖B ≤ 3 [ M + |µ1 −µ2|Iaαr(t) ] ( 1 − Θ ) , (46) where Θ = Ia αp(t) ( 1 + (b−a)Q ) < 1, t ∈ I. Proof. From iteration (4) and equations (44); (45) and hypotheses, we obtain ‖yk+1(t) −yk+1(t)‖ = ‖(Tzk)(t) − (Tzk)(t)‖ = ‖ n−1∑ j=0 cj j! (t−a)j + 1 Γ(α) ∫ t a (t−s)α−1F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ,µ1 ) ds − n−1∑ j=0 dj j! (t−a)j − 1 Γ(α) ∫ t a (t−s)α−1F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ,µ2 ) ds‖ ≤ n−1∑ j=0 ‖cj −dj‖ j! (b−a)j + 1 Γ(α) ∫ t a (t−s)α−1‖F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ,µ1 ) −F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ,µ2 ) ‖ds ≤ M + 1 Γ(α) ∫ t a (t−s)α−1‖F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ,µ1 ) −F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ,µ1 ) ‖ds + 1 Γ(α) ∫ t a (t−s)α−1‖F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ,µ1 ) −F ( s,zk(s), ∫ s a h ( σ,zk(σ) ) dσ,µ2 ) ‖ds ≤ M + 1 Γ(α) ∫ t a (t−s)α−1r(s)|µ1 −µ2|ds + 1 Γ(α) ∫ t a (t−s)α−1p(s) [ ‖zk(s) −zk(s)‖ + ∫ s a q(σ)‖zk(σ) −zk(σ)‖dσ ] ds ≤ M + |µ1 −µ2|Iaαr(t) Haribhau L. Tidke, Gajanan S. Patil and Rupesh T. More + 1 Γ(α) ∫ t a (t−s)α−1p(s) [ ‖zk(s) −zk(s)‖ + ∫ s a q(σ)‖zk(σ) −zk(σ)‖dσ ] ds. (47) Recalling the derivations obtained in equations (12) and (13), the above inequality becomes ‖yk+1 −yk+1‖B ≤ M + |µ1 −µ2|Ia αr(t) + Θ‖zk −zk‖B, (48) and similarly, it is seen that ‖zk −zk‖B ≤ ξk [ M + |µ1 −µ2|Iaαr(t) ] + [ 1 − ξk ( 1 − Θ )] ‖yk −yk‖B. (49) Therefore, using (49) in (48) and using hypothesis Θ < 1, and 1 2 ≤ ξk for all k ∈ N∪{0}, the resulting inequality becomes ‖yk+1 −yk+1‖B ≤ [ M + |µ1 −µ2|Iaαr(t) ] + ‖zk −zk‖B ≤ [ M + |µ1 −µ2|Iaαr(t) ] + ξk [ M + |µ1 −µ2|Iaαr(t) ] + [ 1 − ξk ( 1 − Θ )] ‖yk −yk‖B ≤ 2ξk [ M + |µ1 −µ2|Iaαr(t) ] + ξk [ M + |µ1 −µ2|Iaαr(t) ] + [ 1 − ξk ( 1 − Θ )] ‖yk −yk‖B ≤ [ 1 − ξk ( 1 − Θ )] ‖yk −yk‖B + ξk ( 1 − Θ )3[M + |µ1 −µ2|Iaαr(t)]( 1 − Θ ) . (50) We denote βk = ‖yk −yk‖B ≥ 0, µk = ξk ( 1 − Θ ) ∈ (0, 1), γk = 3 [ M + |µ1 −µ2|Iaαr(t) ] ( 1 − Θ ) ≥ 0. The assumption 1 2 ≤ ξk for all k ∈ N ∪{0} implies ∞∑ k=0 ξk = ∞. Now, it can be easily seen that (50) satisfies all the conditions of Lemma 2.2 and hence we have 0 ≤ lim sup k→∞ βk ≤ lim sup k→∞ γk Existence and Uniqueness of solution via S-Iteration ⇒ 0 ≤ lim sup k→∞ ‖yk −yk‖B ≤ lim sup k→∞ 3 [ M + |µ1 −µ2|Iaαr(t) ] ( 1 − Θ ) ⇒ 0 ≤ lim sup k→∞ ‖yk −yk‖B ≤ 3 [ M + |µ1 −µ2|Iaαr(t) ] ( 1 − Θ ) . (51) Using the assumption lim k→∞ yk = y, lim k→∞ yk = y, we get from (51) that ‖y −y‖B ≤ 3 [ M + |µ1 −µ2|Iaαr(t) ] ( 1 − Θ ) , (52) which shows the dependence of solutions of the problem (1)-(2) is on parameters µ1 and µ2. Remark: The result dealing with the property of a solution called “dependence of solutions on parameters”. Here the parameters are scalars. Notice that the initial conditions do not involve parameters. The dependence on parameters is an important aspect in various physical problems. 5 Example We consider the following problem: ( Dα∗ ) y(t) = 3t 5 [t− sin(y(t)) 2 + 1 9 ∫ t 0 e−s (2 + s)2 y(s)ds ] , (53) for t ∈ [0, 1], n− 1 < α ≤ n, n ∈ N, with the given initial conditions y(j)(0) = cj, j = 0, 1, 2, · · · ,n− 1. (54) Comparing this equation with the equation (1), we get F ∈ C(I ×R2,R), with F ( t,y(t), ∫ t 0 h(s,y(s))ds ) = 3t 5 [t− sin(y(t)) 2 + 1 9 ∫ t 0 e−s (2 + s)2 y(s)ds ] and h(t,y(t)) = 3t 45 e−t (2 + t)2 y(t). Haribhau L. Tidke, Gajanan S. Patil and Rupesh T. More Now, one can easily show that∣∣∣F(t,y(t),z(t)) −F(t,y(t),z(t))∣∣∣ ≤ 3t 5 [1 2 ∣∣∣ sin(y(t)) − sin(y(t))∣∣∣ + 1 9 ∣∣∣z(t) −z(t)∣∣∣] ≤ 3t 10 [∣∣∣y −y∣∣∣ + ∣∣∣z −z∣∣∣], (55) and ∣∣∣h(t,y(t)) −h(t,z(t))∣∣∣ ≤ 3t 45 e−t (2 + t)2 ∣∣∣y −z∣∣∣, (56) where p(t) = 3t 10 , and q(t) = 3t 45 e−t (2 + t)2 . Therefore, we have Q = sup t∈[0,1] {q(t)} = 3 180 = 1 60 . Thus, we the estimate Θ = Ia αp(t) ( 1 + (b−a)Q ) = Ia α 3t 10 ( 1 + 1 60 ) = 3 10 ( 1 + 1 60 ) (Ia α)(t) = 61 200 (Ia α)(t) = 61 200 tα+1 Γ(α + 2) ≤ 1 Γ(α + 2) , (t ≤ 1). (57) Therefore, the condition Θ < 1 is satisfied only if 1 Γ(α + 2) < 1. We define the operator T : B → B by (Ty)(t) = n−1∑ j=0 cj j! tj + 1 Γ(α) ∫ t 0 (t−s)α−1 3s 5 [s− sin(y(s)) 2 + 1 9 ∫ s 0 e−σ (2 + σ)2 y(σ)dσ ] ds, (58) for t ∈ I. Since all conditions of Theorem 3.1 are satisfied and so by its con- clusion, the sequence {yn} associated with the normal S−iterative method (4) for the operator T in (58) converges to a unique solution y ∈ B. Existence and Uniqueness of solution via S-Iteration 6 Conclusions Firstly, we proved the main result, which address the existence and uniqueness of the solution to the IVP (1)-(2) by the method of normal S−iteration. Next, we discussed various properties of solutions like continuous dependence on the initial data, closeness of solutions, and dependence on parameters and functions involve therein. Finally, we provided an appropriate example to support all of the findings. Acknowledgement: The authors are very grateful to the referees for their com- ments and remarks. References [1]. R. Agarwal, D. O’Regan, and D. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. Journal of Nonlinear and Convex Analysis, 8(2007), pp. 61-79. [2]. Y. Atalan and V. Karakaya, Iterative solution of functional Volterra- Fredholm integral equation with deviating argument, Journal of Nonlinear and Convex Analysis, 18(4)(2017), pp. 675-684. [3]. Y. Atalan, and V. Karakaya, Stability of Nonlinear Volterra-Fredholm Integro Differential Equation: A Fixed Point Approach, Creative Mathematics and Informatics 26 (3)(2017), 247-254. [4]. Y. Atalan and V. Karakaya, An example of data dependence result for the class of almost contraction mappings, Sahand Communications in Mathematical Analysis(SCMA)Vol.17, No.1(2020),pp. 139-155. [5]. Yunus Atalan, Faik Gürsoy and Abdul Rahim Khan, Convergence of S- iterative method to a solution of Fredholm integral equation and data dependency, Facta Universitatis, Ser. Math. Inform. Vol. 36, No 4(2021), 685-694. [6]. V. Berinde, and M. Berinde, The fastest Krasnoselskij iteration for ap- proximating fixed points of strictly pseudo-contractive mappings, Carpathian J. Math, 21(1-2)(2005), pp. 13-20. [7]. V. Berinde, Existence and approximation of solutions of some first order iterative differential equations, Miskolc Mathematical Notes, Vol. 11(2010), No. 1, pp. 13-26. [8]. C. E. Chidume, Iterative approximation of fixed points of Lipschitz pseu- docontractivemaps, Proceedings of the American Mathematical Society, vol. 129, no. 8, pp. 2245-2251, 2001. [9]. R. Chugh, V. Kumar and S. Kumar, Strong Convergence of a new three step iterative scheme in Banach spaces, American Journal of Computational Math- ematics 2(2012), pp. 345-357. Haribhau L. Tidke, Gajanan S. Patil and Rupesh T. More [10]. M. B. Dhakne and H. L. Tidke, Existence and uniqueness of solutions of nonlinear mixed integrodifferential equations with nonlocal condition in banach spaces, Electronic Journal of Differential Equations, Vol. 2011, No. 31(2011), pp. 1-10. [11]. M. Dobritoiu, An integral equation with modified argument, Stud. Univ. Babes-Bolyai Math. XLIX (3)2004, pp. 27-33. [12]. M. Dobritoiu, System of integral equations with modified argument, Carpathian J. Math, 24(2008), No. 2, pp. 26-36. [13]. M. Dobritoiu, A nonlinear Fredholm integral equation, TJMM, 1(2009), No. 1-2, pp. 25-32. [14]. M. Dobritoiu, A class of nonlinear integral equations, TJMM, 4(2012), No. 2, pp.117-123. [15]. M. Dobritoiu, The approximate solution of a Fredholm integral equation, International Journal of Mathematical Models and Methods in Applied Sciences, Vol.8(2014), pp. 173-180. [16]. M. Dobritoiu, The existence and uniqueness of the solution of a non- linear fredholmvolterra integral equation with modified argument via geraghty contractions, Mathematics 2020, 9, 29, https://dx.doi.org/ 10.3390/math9010029. [17]. Varsha Daftardar-Gejji, Hossein Jafari, Analysis of a system of nonau- tonomous fractional differential equations involving Caputo derivatives, J. Math. Anal. Appl. 328(2007) 10261033. [18]. F. Gürsoy and V. Karakaya, Some Convergence and Stability Results for Two New Kirk Type Hybrid Fixed Point Iterative Algorithms. Journal of Function Spaces doi:10.1155/2014/684191, 2014. [19]. F. Gürsoy, V. Karakaya and B. E. Rhoades, Some Convergence and Sta- bility Results for the Kirk Multistep and Kirk-SP Fixed Point Iterative Algorithms. Abstract and Applied Analysis doi:10.1155/2014/806537, 2014. [20]. E. Hacioglu, F. Grsoy, S. Maldar, Y. Atalan, and G.V. Milovanovic, It- erative approximation of fixed points and applications to two-point second-order boundary value problems and to machine learning, Applied Numerical Mathemat- ics, 167(2021), 143-172. [21]. N. Hussain, A. Rafiq, Damjanović, B. and R. Lazović, On rate of conver- gence of various iterative schemes. Fixed Point Theory and Applications 2011(1), 1-6. [22]. S. Ishikawa, Fixed points by a new iteration method, Proceedings of the American Mathematical Society, vol. 4491974), pp. 147-150. [23]. S. M. Kang, A. Rafiq and Y. C. Kwun, Strong convergence for hybrid S− iteration scheme, Journal of Applied Mathematics, Vol. 2013, Article ID 705814, 4 Pages, http://dx.doi.org/10.1155/2013/705814. [24]. S. H. Khan, A Picard-Mann hybrid iterative process. Fixed Point Theory and Applications (1)2013, pp. 1-10. Existence and Uniqueness of solution via S-Iteration [25]. Kilbas, A. A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, Vol 204, Elsevier, Amsterdam, 2006. [26]. S. Maldar, F. Grsoy, Y. Atalan, and M. Abbas, On a three-step itera- tion process for multivalued Reich- Suzuki type a-nonexpansive and contractive mappings, Journal of Applied Mathematics and Computing, (2021), 1-21. [27]. S. Maldar, Iterative algorithms of generalized nonexpansive mappings and monotone operators with application to convex minimization problem, Jour- nal of Applied Mathematics and Computing, (2021), 1-28. [28]. Podlubny, I.: Fractional Differential Equations, Academic Press, New York, 1999. [29]. B. G. Pachpatte, On Fredholm type integrodifferential equation, Amkang Journal of Mathematics, Vol.39, No. 1(2008), pp. 85-94. [30]. B. G. Pachpatte, On higher order Volterra-Fredholm integrodifferential equation, Fasciculi Mathematici, No. 47(2007), pp. 35-48. [31]. D. R. Sahu, Applications of the S-iteration process to constrained mini- mization problems and split feasibility problems, Fixed Point Theory, vol. 12, no. 1(2011), pp. 187-204. [32]. D. R. Sahu and A. Petrusel, Strong convergence of iterative meth- ods by strictly pseudocontractive mappings in Banach spaces, NonlinearAnaly- sis.Theory,Methods & Applications, vol. 74, no. 17(2011), pp. 6012-6023. [33]. S. Soltuz and T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive-like operators, Fixed Point Theory Appl, 2008, 242916 (2008). https://doi.org/10.1155/2008/242916.