Ratio Mathematica Volume 42, 2022 The AHPSort II to evaluate the High-level instruction performances Gerarda Fattoruso* Paola Mancini† Gabriella Marcarelli‡ Abstract This paper proposes a model for ranking Italian high schools based on sev- eral performance outputs. To analyze the performance of Italian public High Schools we consider the students’ school performance and their academic achievements; also the school characteristics may influence the performance evaluation of high schools, although the importance of these aspects is cer- tainly less than the results achieved by students. Data are from Eduscopio and ScuolaInChiaro portals and refers to the 2019/20 school year. We an- alyze a sample of 263 high schools (HS) in all Italian Regions. For each school we consider nine outputs related to students’ school and academic performance, and school characteristics. We assess the performance of high schools using a multi-criteria approach. Our analysis involves a high number of schools, so we apply the AHPSort II method which in addition to defining the ranking of schools also defines their classification. Our results show that scientific lyceums are all in the first class regardless of the geographic area. Keywords: school ranking; academic performance; students’ achievements; AHPSort II. 2020 AMS subject classifications: 90 Operations research, mathematical programming. 1 *Corresponding author: University of Sannio, Benevento, Italy and NEOMA BS, Rouen, France; fattoruso@unisannio.it. †University of Sannio, Benevento, Italy; paola.mancini@unisannio.it ‡University of Sannio, Benevento, Italy; gabriella.marcarelli@unisannio.it 1Received on May 3rd, 2022. Accepted on June 12nd, 2022. Published on June 30th, 2022. doi: 10.23755/rm.v41i0.809. ISSN: 1592-7415. eISSN: 2282-8214. ©Fattoruso et al. This paper is published under the CC-BY licence agreement. 283 G. Fattoruso, P. Mancini, G. Marcarelli 1 Introduction This paper focuses on the evaluation of Italian high schools’ performance. In Italy, Eduscopio (Giovanni Agnelli Foundation) and ScuolaInChiaro (Ministry of Education) represent important sources of information for such an evaluation; they provide annually, for each school, data on students’ school careers, their aca- demic achievements and school characteristics. In particular, Eduscopio provides students’ and their families with a ranking of high school in the area of residence based on university performance of school leavers; ScuolaInChiaro makes avail- able to the community all the information relating to Italian schools of all levels, in an organic and structured form. This paper aims to provide the ranking of Italian high schools, taking into ac- count the school and academic careers of students as well as the characteristics of the school. The multi-criteria approach may be a useful tool to assess the per- formance of high schools. By considering the above datasets, [Mancini and Mar- carelli, 2019] derived the ranking among the typologies of schools; more recently, [Mancini and Marcarelli, 2022] provide a ranking among the school types both at a national level and within each geographic area. Furthermore, applying the AHP method and comparing the results with those obtained by a further MCDM method, PROMETHEE, they found significant differences between HS according to criteria related to school and academic performance both within and between geographic areas. Many studies have dealt with the application of multi-criteria methods in the field of education [Giannoulis and Ishizaka, 2010, Goztepe, 2020, Mancini and Marcarelli, 2022, Stamenkovic et al., 2016]. By taking into account some performance indicators used by Eduscopio and Scuo- laInChiaro and according to the approach proposed by [Mancini and Marcarelli, 2022, 2019], this study analyzes nine performance outputs for a sample of 263 Italian high schools. However, unlike [Mancini and Marcarelli, 2022, 2019] in which the schools were grouped into 6 different types of schools and 3 geographic areas, we provide the ranking among all the schools. Due to the characteristics of the problem (e.g., independence among the elements, the high number of alter- natives) and the output required, among multi-criteria methods proposed in the literature, this paper focuses on the Analytic Hierarchy Process Sort II (AHPSort II) method. The available data allows us to avoid some disadvantages of the AHP. There is no inconsistency in the judgment matrices because entries of matrices are ratios between performance indices. Furthermore, the AHPSort II allows to an- alyze a sorting decision problem through a feasible interaction with the decision makers precisely because it foresees a limited number of interactions. The goal of this paper is to obtain a ranking of high schools in Italy (we consider 251 schools in our study) by sorting them into ordered classes. Finally, in order to verify the impact (role) of the geographical and/or the school 284 The AHPSort II to evaluate the High-level instruction performances typology factors on the performance of a school, we compare our results with those obtained by [Mancini and Marcarelli, 2022, 2019]. The paper is organized as follows: Section 2 reports a literature overview on the topic; Section 3 defines the methodology; Section 4 reports the case study and the main results; Sections 5 and 6 provide a discussion and some concluding remarks, respectively. 2 Literature overview The literature on school ranking is vast. Past studies have mainly focused on the school quality and its student achievements [Eide and Showalter, 1998], some other on school’s contribution to student academic performance [Jamelske, 2009, Kelly and Downey, 2010] or on the question of “school accountability” affecting the school choice [Burgess et al., 2013, Hart and Figlio, 2015, Nunes et al., 2018]. Many factors may influence students’ achievements, such as their socioeconomic status, family background, geographical area of residence and the type of school attended [Agasisti and Murtinu, 2012, Lauer, 2003] as far as school and class size, students’ features and school management and resources [Giambona and Porcu, 2018, Masci et al., 2018]. As regards the impact of secondary school on academic performance, recently, Aina et al. [2011] and Aina et al. [2021] have demonstrated that differences in university students’ achievements across high schools cannot be limited to the first-year and have to consider the geographic differences. In recent study, several authors used multi-criteria methods for analysed school ranking and their performance. Bana e Costa and Oliveira [2012] use the Measuring Attrac- tiveness by a Categorical Based Evaluation Technique (MACBETH) which allows a multi-criteria evaluation of the different scientific areas within high schools in order to offer an accurate evaluation for each range of activities proposed by the school. Blasco-Blasco et al. [2021] analyze the performance of high schools with a particular focus on student achievement indicators. The authors analyze the student support policies of the schools with the use of Technique for Others Pref- erence by Similarity to Ideal Solution (TOPSIS). Yendra et al. [2018] also use TOPSIS integrated with AHP for the analysis of the quality of the training offer of the high school and higher level. Recently, Mancini and Marcarelli [2019] an- alyzed the performance of Italian high schools, and derived a ranking among dif- ferent typologies of schools based on the students’ academic achievements, their school performance and the school characteristics. Then, Mancini and Marcarelli [2022] made an in-deep analysis taking into account the geographic areas. Using AHP and Promethee methods they derive a ranking among the school typologies both at a national level and within each geographic area. 285 G. Fattoruso, P. Mancini, G. Marcarelli 3 Methodology AHPSort II is a Multi-Criteria Decision Analysis (MCDA) method for solving sorting problems. This method allows you to use several criteria and a very large number of alternatives [Ishizaka et al., 2012]. Furthermore, it is a method that provides for a limited interaction with the decision maker [Fattoruso et al., 2022]. The procedure can be repeated or easily automated. The AHPSort II method is described below. We consider a set of alternatives A=(a1, . . . , ai) evaluated respect a set of criteria G=(g1, . . . , gj); therefore, gj(ai) represents the evaluation of alternative ai on criterion gj. Moreover, we consider a set of classes C=(C1, . . . , Co); the construction of the classes requires the definition by the Decision Maker (DM) of the limiting profiles lpij or of the central profiles cpij for each considered gj criterion [Ishizaka et al., 2020]. The lpij are defined by the DM when he is able to clearly separate the classes from each other, therefore they represent thresholds that separate the classes from each other; alternatively, when this is not possible, the DM opts to define the cpij which represent the centroids of each class for all the considered criteria. The AHPSort II allows you to analyze a large number of alternatives by using representative profiles rpsj = (rp1j, . . . , rpsj). The rp are points homogeneously distributed in the observed data for each gj criterion. Once all the elements that constitute the decision problem have been defined, AHPSort II foresees the evaluation of local priorities: wj for gj; psj for rpsj; and, poj alternatively for lpij or cpij. The local priorities are determined using Pairwise Comparison Matrices (PCMs) with the eigenvalue method [Ishizaka et al., 2020]. The determination of the local priority of the alternatives pij is instead defined through the following linear interpolation formula: pij = psj + ps+1j − psj rps+1j − rpsj · (gj(ai) − rpsj). (1) The global priority of the alternative ai is defined as follow: pi = J∑ j=1 pij · wj. (2) while the global priority pk of lpij or cpij is defined as: pk = J∑ j=1 poj · wj (3) The sorting of ai to a C class takes place considering the final global priority; therefore, considering the proximity of pi to pk. 286 The AHPSort II to evaluate the High-level instruction performances 4 Case study 4.1 Data Our case study concerns the evaluation of the performance of schools in Italy. In particular, our reference sample is composed of 56 scientific lyceums (SL), 38 classical high schools (CL), 39 linguistic high schools (LL), 26 high schools of human sciences (HSL), 43 commercial technical high schools (CTHS), 49 High School Technological Technician (TTHS). Figure 1 shows the percentage of schools considered in this study divided by typology. Figure 1: Typologies of high schools in Italy Each school is evaluated against criteria that determine the performance of the school among these are: Maturity score (g1) defined as the weighted average score between the high school graduation score of enrolled students e non-enrolled stu- dents; INVALSI test score (g2) defined as the average of each student’s math, reading and foreign language test scores; Percentage of graduates in good stand- ing (without failures) (g3); Students enrolled in the academic year (g4). In addition to the school performance criteria, schools are evaluated for the academic perfor- mance of their students; this type of criteria include: the percentage of students who pass the first year (g5); percentage of academic credits achieved at the end of the first year (g6); average exam score (g7). Finally, the evaluation of schools also takes into account criteria that consider the characteristics of each school, including the average number of students per class (g8) and the percentage of teachers employed part-time (g9). The data was collected by the Eduscopio and ScuolaInChiaro portals for the 2019-2020 academic year. 287 G. Fattoruso, P. Mancini, G. Marcarelli 4.2 Results In our paper we consider a set of alternatives A = (a1, . . . , a251) evaluated respect the criteria set G = (g1, . . . , g9); the evaluation table of gj(ai) is reported in Appendix A. The decision-makers involved in the construction of our study are school man- agers of the different typology of schools considered which from here on we will generically call DMs. We report in Table 1 the weights wj of criteria defined with the eigenvalue method. g1 g2 g3 g4 g5 g6 g7 g8 g9 wj 0,10 0,15 0,10 0,10 0,15 0,15 0,15 0,05 0,05 Table 1: Criteria weights wj For each gj criterion considered, we have defined three priority classes C1, C2 and C3 to which we have associated for simplicity the labels of LOW (C1), MEDIUM (C2), and HIGH (C3). Classes define the performance of high schools. Therefore in the High (C3) the schools with the best performances will be sorted, in the Low class (C1) those with the worst performances. In Table 2, we report the central profiles cpij defined by the DMs, for each class C and each criterion gj. g1 g2 g3 g4 g5 g6 g7 g8 g9 Low (C1) 65,79 1 17,4 0,33 0,2 21,26 20 10 1 Medium (C2) 75,71 4 53,8 0,64 0,55 54,4 24,44 19 26,14 High (C3) 80 6 80 0,8 0,8 80 28 26 50 Table 2: Central profiles cpij for each criterion gj As suggested by Abastante et al. [2019], we have built the reference profiles rpsj = (rp1j, . . . , rp6j). We report in Table 3 the rpsj for each criterion gj. g1 g2 g3 g4 g5 g6 g7 g8 g9 rp1j 0 0 0 0 0 0 0 0 0 rp2j 17,12 1,4 18,04 0,192 0,18 17,50 4 5,6 10,25 rp3j 34,25 2,8 36,08 0,384 0,36 35,01 8 11,2 20,51 rp4j 51,38 4,2 54,12 0,576 0,54 52,52 12 16,8 30,77 rp5j 68,50 5,6 72,16 0,768 0,72 70,03 16 22,4 41,03 rp6j 85,63 7 90,2 0,96 0,9 87,54 20 28 51,29 Table 3: Reference profiles rpsj for each criterion gj 288 The AHPSort II to evaluate the High-level instruction performances Moreover, we have defined in Table 4 the local priorities psj and in Table 5 the local priorities poj. ps1 ps2 ps3 ps4 ps5 ps6 ps7 ps8 ps9 rp1j 0,020 0,032 0,030 0,025 0,023 0,022 0,027 0,023 0,030 rp2j 0,031 0,045 0,043 0,038 0,034 0,034 0,038 0,034 0,042 rp3j 0,041 0,058 0,054 0,067 0,063 0,059 0,051 0,062 0,055 rp4j 0,069 0,090 0,092 0,088 0,089 0,087 0,065 0,085 0,090 rp5j 0,104 0,197 0,187 0,155 0,147 0,156 0,086 0,150 0,154 rp6j 0,280 0,234 0,259 0,267 0,297 0,298 0,128 0,300 0,261 Table 4: Local priorities psj po1 po2 po3 po4 po5 po6 po7 po8 po9 C1 0,084 0,036 0,033 0,046 0,045 0,042 0,128 0,042 0,032 C2 0,174 0,091 0,083 0,108 0,104 0,102 0,193 0,103 0,084 C3 0,196 0,217 0,218 0,205 0,198 0,198 0,282 0,200 0,252 Table 5: Local priorities poj After, define the local priority pij with the use of (1), we calculate the global priority pi. In Figure 2, in Appendix, we report the ranking of the high school. Finally, we obtained the classification of the high schools in terms of perfor- mance; the results are shown in Table 6. North Center South Italy High 27 26 23 76 Medium 57 52 60 169 Low 2 3 1 6 Table 6: Schools performance sorted in geographical areas In Figure 3, in Appendix, it’s shown how the different typologies of high schools have been sorted into the different performance classes. 5 Discussion As shown by the results obtained, it emerges that the schools that obtain the best performance throughout Italy are the SLs and the CLs with the best positions for those in the south follow. A portion of CL is positioned in medium-sized per- formances mainly in northern and central Italy. In the medium classes the LL, 289 G. Fattoruso, P. Mancini, G. Marcarelli HSL, CTHS and TTHS converge in order. A few CL from the north, south and center are included in the performance of the lower class. SL have the best perfor- mance regardless of the geographical area. Moving from North to South the first class is almost exclusively composed by SL, in the North, by a great number of SL and a few CL, in the Center, and fifty-fifty by SL and CL, in the South. Comparing the results with those obtained by Mancini and Marcarelli [2019] and Mancini and Marcarelli [2022], an inversion of ordering emerges in the first positions between SL and CL. The other positions are confirmed. It should be noted that in the works of Mancini and Marcarelli [2019] and Mancini and Marcarelli [2022] the initial data are represented by the average performance values by type of school for each criterion considered. In this paper, however, the performances are evaluated for individual schools. In this sense, the difference in the overall results may be due to the influence of anomalous values in the calculation of the average values by type of school. For a more detailed comparison, we also checked the ranking of schools for each criterion. Figure 4, in Appendix, shows in particular the ranking of the SL and CL for each criterion, geographical area and class considered. As can be seen in the Figure 4, SLs obtain higher performances for all the criteria except for the g3 criterion for the CLs of northern Italy. 6 Conclusions This paper investigates the performance of Italian high schools in order to de- rive a ranking considering the typology and the geographic area. Using AHPSort II, we obtain a classification of Italian high schools into different categories. The results show that the ranking among the types of schools does not vary moving from North to South: scientific lyceums are all in the first class regardless the geographic area. However, the limit of this work is the lack of a model valida- tion. The model may assist students in selecting the type of school to attend; the information makes it possible to make an appropriate choice according to their academic perspectives. Our future works will address a comparative analysis to test the model pro- posed: ELECTRE TRI [Corrente et al., 2016] may provide a classification of high schools into different categories such as ‘over-performing schools’, ‘average- performing schools’ and ‘weak-performing schools’; then we may compare re- sults with those obtained by our model. Furthermore, if the decision makers are not sure about the correct level of reference profiles, it could be interesting to per- form a sensitivity analysis with several limiting profiles to test the robustness of the process. Finally, when applied to small territorial districts, our model may be a useful tool to help public administrations distribute additional financial resources to public schools based on their performance rank. 290 The AHPSort II to evaluate the High-level instruction performances Declarations Conflict of interest . The authors declare that they have no conflict of interest. References F. Abastante, S. Corrente, S. Greco, A. Ishizaka, and I. M. Lami. A new parsi- monious ahp methodology: assigning priorities to many objects by comparing pairwise few reference objects. Expert Systems with Applications, 127:109– 120, 2019. T. Agasisti and S. Murtinu. Perceived competition and performance in italian secondary school: new evidence from oecd-pisa 2006. British Educational Research Journal, 38(5):841–858, 2012. C. Aina, E. Baici, and G. Casalone. Time to degree: Students’ abilities, university characteristics or something else? evidence from italy. Education Economics, 19(3):311–325, 2011. C. Aina, M. Bratti, and E. Lippo. Ranking high schools using university student performance in italy. Economia Politica, 38:293–321, 2021. C. A. Bana e Costa and M. D. Oliveira. A multicriteria decision analysis model for faculty evaluation. Omega, 40(4):424–436, 2012. O. Blasco-Blasco, M. Liern-Garcı́a, A. López-Garcı́a, and S. E. Parada-Rico. An academic performance indicator using flexible multi-criteria methods. Mathe- matics, 9(19):2396, 2021. S. Burgess, D. Wilson, and J. Worth. A natural experiment in school accountabil- ity: the impact of school performance information on pupil progress. Journal of Public Economics, 106(C):57–67, 2013. Salvatore Corrente, Salvatore Greco, and Roman Słowiński. Multiple criteria hierarchy process for electre tri methods. European Journal of Operational Research, 252(1):191–203, 2016. E. Eide and M.H. Showalter. The effect of school quality on student performance: A quantile regression approach. Economics Letters, 58:345–350, 1998. G. Fattoruso, M. Barbati, A. Ishizaka, and M. Squillante. A hybrid ahpsort ii and multi-objective portfolio selection method to support quality control in the automotive industry. Journal of the Operational Research Society, pages 1–16, 2022. 291 G. Fattoruso, P. Mancini, G. Marcarelli F. Giambona and M. Porcu. School size and students’ achievement: Empirical evidences from pisa survey data. Socio-Economic Planning Sciences, 64(C): 66–77, 2018. C. Giannoulis and A. Ishizaka. A web-based decision support system with electre iii for a personalised ranking of british universities. Decision Support Systems, 48(3):488–497, 2010. K. Goztepe. Applying choquet integral approach for ranking high school innova- tive education. International Journal of Electrical Communication Engineer- ing, 6(1):27–40, 2020. C.M.D. Hart and D.N. Figlio. School accountability and school choice: effect on student selection across schools. National Tax Journal, 68(35):875–900, 2015. A. Ishizaka, C. Pearman, and P. Nemery. Ahpsort: an ahp-based method for sorting problems. International Journal of Production Research, 50(17):4767– 4784, 2012. A. Ishizaka, M. Tasiou, and L. Martı́nez. Analytic hierarchy process-fuzzy sort- ing: An analytic hierarchy process–based method for fuzzy classification in sorting problems. Journal of the Operational Research Society, 71(6):928–947, 2020. E. Jamelske. Measuring the impact of a university first-year experience program on student gpa and retention. Higher Education, 57(3):373–391, 2009. A. Kelly and C. Downey. Value-added measures for schools in england: Looking inside the ‘black box’ of complex metrics. Educational Assessment, Evaluation and Accountability, 22(3):181–198, 2010. C. Lauer. Family background, cohort and education: A french-german compar- ison based on a multivariate ordered probit model of educational attainment. Labour Economics, 10:231–251, 2003. P. Mancini and G. Marcarelli. High school choice: how do parents make a choice. International Journal of the Analytic Hierarchy Process, 11(1):91–109, 2019. P. Mancini and G. Marcarelli. School and academic performance for ranking high schools: some evidence from italy. International Journal of the Analytic Hierarchy Process, 14(2), 2022. C. Masci, K. D. Witte, and T. Agasisti. The influence of school size, principal characteristics and school management practices on educational performance: 292 The AHPSort II to evaluate the High-level instruction performances An efficiency analysis of italian students attending middle schools. Socio- Economic Planning Sciences, 61:52–69, 2018. L. Nunes, A. Reis, and C. Seabra. The publication of school rankings: A step toward increased accountability? Economics of Education Review, 49(C):15– 23, 2018. M. Stamenkovic, I. Anic, M. Petrovic, and N. Bojkovic. An electre approach for evaluating secondary education profiles: evidence from pisa survey in serbia. Annals of Operational Research, 245:337–358, 2016. R. Yendra, K. Anwar, M. N. Muhaijir, A. N. Rahma, A. Fudholi, et al. Analysis of the best high school ranking determination with technique methods or oth- ers preference by similarity to ideal solution (topsis). International Journal of Mechanical Engineering and Technology (IJMET), 9(13):650–657, 2018. 293 G. Fattoruso, P. Mancini, G. Marcarelli T S Area g1 g2 g3 g4 g5 g6 g7 g8 g9 SL a1 North 80,20 6 61,9 0,94 0,88 80,2 27,33 27 9,7 SL a2 North 78,61 3 67,9 0,90 0,80 74,6 26,62 21 18,7 SL a3 North 76,47 4 59,2 0,90 0,81 69,1 25,89 23 16,3 SL a4 North 74,87 4 59,2 0,92 0,74 48,2 24,91 24 27,2 SL a5 North 72,85 4 38,0 0,83 0,68 52,4 24,07 24 25,2 SL a6 North 77,94 7 65,6 0,94 0,89 87,2 28,62 26 16,3 SL a7 North 80,68 7 59,3 0,93 0,87 85,6 28,62 23 7,8 SL a8 North 77,29 6 62,8 0,95 0,89 82,0 27,57 26 11,7 SL a9 North 75,02 4 59,1 0,93 0,84 74,2 26,20 22 14,5 SL a10 North 75,70 4 40,7 0,88 0,76 67,1 25,02 21 17,3 SL a11 North 72,22 4 44,0 0,91 0,80 66,5 24,73 22 23,7 SL a12 North 70,66 4 46,9 0,78 0,61 46,3 25,53 21 27,7 SL a13 North 78,54 3 68,2 0,92 0,86 75,8 27,09 22 24,6 SL a14 North 76,10 5 67,6 0,87 0,79 67,6 26,55 21 5,8 SL a15 North 78,91 7 69,1 0,94 0,90 87,5 28,81 22 12,2 SL a16 North 76,66 4 52,1 0,92 0,84 75,8 26,71 24 11,7 SL a17 North 68,76 4 37,7 0,86 0,72 55,7 23,56 22 39,0 SL a18 North 79,52 5 74,6 0,93 0,90 87,2 28,89 24 22,3 SL a19 North 75,18 5 57,4 0,91 0,86 76,1 27,51 19 38,5 SL a20 North 75,54 4 46,3 0,92 0,84 62,6 25,04 23 11,8 SL a21 Center 81,37 5 70,3 0,84 0,80 77,2 27,61 22 14,3 SL a22 Center 78,38 6 62,9 0,93 0,86 72,1 26,81 23 19,8 SL a23 Center 78,03 4 60,0 0,90 0,83 70,7 26,59 21 20,6 SL a24 Center 80,23 6 76,6 0,93 0,87 76,7 27,92 25 6,2 SL a25 Center 81,64 5 72,6 0,92 0,85 71,5 27,57 20 17,9 SL a26 Center 81,01 6 56,3 0,90 0,84 82,7 28,47 25 7,1 SL a27 Center 77,34 5 56,6 0,93 0,86 78,1 27,59 22 7,5 SL a28 Center 77,44 3 65,4 0,90 0,81 76,6 27,51 24 10,6 SL a29 Center 77,35 5 60,2 0,93 0,86 77,4 27,10 24 16,7 SL a30 Center 77,78 2 62,4 0,91 0,82 71,3 26,56 23 15,6 SL a31 Center 78,45 6 65,8 0,91 0,83 73,1 26,27 23 23,0 SL a32 Center 76,15 6 66,1 0,90 0,81 73,5 26,21 22 12,9 SL a33 Center 77,36 5 57,1 0,91 0,85 73,0 26,01 23 7,6 SL a34 Center 77,11 2 49,9 0,90 0,76 71,1 26,15 24 20,5 SL a35 Center 73,94 5 53,1 0,84 0,71 56,1 24,99 24 20,5 SL a36 Center 77,02 3 59,9 0,89 0,76 64,3 25,18 22 9,7 SL a37 Center 75,24 3 53,2 0,80 0,68 55,0 25,33 22 18,2 SL a38 Center 75,8 4 65,1 0,88 0,74 59,9 25,23 23 18,1 SL a39 South 81,32 4 76,9 0,90 0,81 66,7 25,87 22 9,6 SL a40 South 82,01 6 74,6 0,93 0,85 68,4 26,09 22 4,9 Appendix A 294 The AHPSort II to evaluate the High-level instruction performances T S Area g1 g2 g3 g4 g5 g6 g7 g8 g9 SL a41 South 77,97 5 66,1 0,94 0,84 74,9 28,12 18 16,7 SL a42 South 81,79 5 57,1 0,93 0,87 80,0 27,29 24 6,8 SL a43 South 79,05 2 62,4 0,94 0,87 76,3 26,67 23 16,5 SL a44 South 78,65 6 61,1 0,90 0,75 61,6 25,44 21 3,4 SL a45 South 81,41 5 55,7 0,78 0,68 65,8 25,42 18 5,9 SL a46 South 79,16 6 59,2 0,89 0,79 68,3 25,95 22 10,0 SL a47 South 79,86 2 52,6 0,87 0,77 67,9 25,94 21 5,2 SL a48 South 74,06 3 20,6 0,80 0,60 43,3 22,65 14 21,2 SL a49 South 81,07 4 84,6 0,93 0,85 74,9 26,15 27 2,7 SL a50 South 79,60 2 61,7 0,96 0,87 68,9 25,57 23 10,0 SL a51 South 82,32 5 77,9 0,93 0,85 74,1 25,89 21 4,3 SL a52 South 78,27 5 62,3 0,91 0,85 76,5 26,57 24 4,3 SL a53 South 77,21 4 50,5 0,83 0,79 69,4 25,18 21 6,4 SL a54 South 72,66 1 39,8 0,80 0,66 53,3 23,32 21 0,0 SL a55 South 78,94 4 51,3 0,91 0,84 74,5 26,88 20 9,9 SL a56 South 74,99 4 50,3 0,84 0,72 58,5 25,38 21 11,9 CL a57 North 78,96 6 66,9 0,95 0,86 75,0 28,31 22 16,9 CL a58 North 79,47 5 67,3 0,86 0,77 67,7 26,48 24 30,8 CL a59 North 79,26 6 61,9 0,93 0,88 80,2 27,89 24 14,0 CL a60 North 79,90 6 68,2 0,94 0,88 78,5 28,41 22 10,1 CL a61 North 74,10 5 55,5 0,91 0,81 64,8 26,41 23 34,4 CL a62 North 65,79 2 73,3 0,86 0,73 55,1 26,08 19 25,0 CL a63 North 75,87 3 74,6 0,88 0,80 66,8 26,88 22 24,6 CL a64 North 80,86 4 65,3 0,87 0,79 68,9 27,76 21 14,7 CL a65 North 80,55 5 72,2 0,95 0,88 72,7 27,73 21 29,6 CL a66 North 78,82 5 68,8 0,92 0,84 64,6 26,63 22 21,2 CL a67 North 79,53 6 72,7 0,93 0,87 71,3 28,29 23 7,7 CL a68 Center 81,30 6 60,1 0,92 0,84 71,4 28,27 21 24,6 CL a69 Center 79,34 5 69,4 0,91 0,82 60,3 26,98 22 14,3 CL a70 Center 83,12 7 75,9 0,92 0,86 67,7 26,80 24 7,0 CL a71 Center 84,57 6 88,5 0,95 0,86 65,8 27,62 23 31,9 CL a72 Center 81,25 6 59,4 0,92 0,85 76,0 28,86 24 13,3 CL a73 Center 78,85 6 62,6 0,90 0,85 73,1 28,23 24 7,0 CL a74 Center 82,45 6 73,9 0,93 0,86 78,5 27,54 23 8,6 CL a75 Center 82,77 3 62,6 0,95 0,82 69,3 27,28 23 8,6 CL a76 Center 82,4 4 64,4 0,87 0,77 68,5 27,19 23 13,1 CL a77 Center 81,29 2 72,4 0,93 0,83 69,5 27,07 23 15,0 CL a78 Center 81,41 2 78,9 0,79 0,74 56,7 25,80 23 15,5 CL a79 Center 80,06 2 66,5 0,90 0,77 55,2 25,09 23 20,8 CL a80 Center 75,70 3 67,5 0,86 0,71 50,7 24,62 23 15,8 295 G. Fattoruso, P. Mancini, G. Marcarelli T S Area g1 g2 g3 g4 g5 g6 g7 g8 g9 CL a81 Center 81,39 4 83,9 0,95 0,90 66,2 27,06 23 5,4 CL a82 South 83,77 5 90,2 0,95 0,88 68,0 26,30 22 8,5 CL a83 South 83,78 5 72,2 0,94 0,87 80,0 27,77 25 9,9 CL a84 South 81,21 6 78,3 0,95 0,89 77,3 27,41 22 6,8 CL a85 South 79,67 6 57,1 0,88 0,74 68,7 26,36 21 3,4 CL a86 South 74,90 3 73,0 0,83 0,68 55,9 25,83 19 12,4 CL a87 South 79,90 3 80,5 0,76 0,62 42,3 25,69 23 26,4 CL a88 South 82,55 6 83,4 0,91 0,83 67,4 26,12 23 0,0 CL a89 South 85,2 4 80,0 0,96 0,82 60,5 26,23 14 3,7 CL a90 South 84,13 5 86,7 0,93 0,84 63,0 24,70 20 3,2 CL a91 South 80,54 5 71,3 0,88 0,80 69,4 26,63 22 3,4 CL a92 South 79,32 5 63,30 0,75 0,62 53,0 24,78 17 23,0 CL a93 South 81,20 3 67,5 0,88 0,79 64,4 26,71 19 2,7 CL a94 South 77,03 3 45,6 0,84 0,73 46,8 23,38 19 14,4 LL a95 North 80,33 5 50,8 0,86 0,77 66,3 26,31 23 0,0 LL a96 North 77,98 4 55,4 0,78 0,72 58,6 25,08 19 11,1 LL a97 North 73,42 6 63,7 0,7 0,56 41,0 24,09 22 37,2 LL a98 North 75,23 4 59,5 0,83 0,76 69,9 26,06 23 10,8 LL a99 North 76,91 7 75,4 0,78 0,74 64,0 25,46 23 11,6 LL a100 North 73,4 4 40,6 0,75 0,65 40,6 24,12 21 27,7 LL a101 North 78,8 3 53,5 0,78 0,63 48,2 24,04 21 33,8 LL a102 North 78,78 4 67,6 0,76 0,70 65,0 24,15 24 20,8 LL a103 North 79,1 4 64,8 0,8 0,71 61,4 26,39 21 14,7 LL a104 North 80,05 4 70,3 0,73 0,61 51,3 24,05 24 7,4 LL a105 North 82,81 4 77,9 0,78 0,74 73,6 26,19 24 21,1 LL a106 North 78,27 3 54,4 0,75 0,64 50,8 24,96 23 17,2 LL a107 Center 81,49 5 66,4 0,79 0,71 64,9 26,87 22 14,3 LL a108 Center 78,25 5 44,3 0,74 0,66 54,9 25,73 22 12,5 LL a109 Center 75,69 3 35,3 0,63 0,50 43,5 25,54 20 25,8 LL a110 Center 80,3 4 63,5 0,72 0,64 59,0 25,22 23 4,5 LL a111 Center 78,86 5 60,0 0,74 0,65 55,2 24,93 20 17,9 LL a112 Center 80,25 3 56,0 0,79 0,71 62,2 26,00 23 15,8 LL a113 Center 76,92 6 52,5 0,72 0,66 64,6 25,49 23 14,66 LL a114 Center 76,42 4 56,1 0,73 0,65 67,9 24,78 21 13,01 LL a115 Center 82,52 4 66,7 0,8 0,62 53,3 25,33 24 20,95 LL a116 Center 76,91 4 70,8 0,76 0,63 52,7 24,63 23 16,13 LL a117 Center 78,09 6 63,0 0,67 0,56 54,2 25,27 24 26,35 LL a118 Center 75,51 4 47,3 0,71 0,60 44,9 23,91 22 28,24 LL a119 Center 73,76 3 55,2 0,7 0,55 37,1 24,55 21 23,36 LL a120 Center 74,28 3 41,8 0,64 0,51 41,4 23,01 20 26,32 296 The AHPSort II to evaluate the High-level instruction performances T S Area g1 g2 g3 g4 g5 g6 g7 g8 g9 LL a121 Center 79,18 4 69,4 0,72 0,64 53,9 24,88 23 5,41 LL a122 South 80,26 5 67,8 0,77 0,75 74,8 25,95 22 9,17 LL a123 South 79,24 4 74,5 0,86 0,78 64,3 26,10 21 13,73 LL a124 South 80,25 3 39,6 0,72 0,67 67,6 25,53 22 7,95 LL a125 South 78,5 4 54,6 0,8 0,66 51,3 25,82 28 3,97 LL a126 South 79,12 3 60,0 0,7 0,58 56,8 24,71 22 13,43 LL a127 South 72,71 4 30,0 0,52 0,41 37,8 24,12 20 2,70 LL a128 South 81,31 5 40,0 0,56 0,44 40,5 23,43 18 5,94 LL a129 South 76,84 4 54,7 0,49 0,35 43,0 25,21 16 4,23 LL a130 South 78,93 5 62,9 0,83 0,72 53,4 24,27 20 6,67 LL a131 South 85,63 6 71,3 0,76 0,72 61,1 24,97 20 7,29 LL a132 South 78,32 3 67,3 0,52 0,49 69,8 24,12 21 19,72 LL a133 South 74,38 4 41,3 0,56 0,47 40,9 23,39 18 29,89 HSL a134 North 78,25 5 63,9 0,76 0,65 55,8 24,11 19 18,62 HSL a135 North 76,15 4 65,0 0,76 0,59 39,8 23,62 23 27,2 HSL a136 North 75,85 4 46,7 0,75 0,65 62,2 25,74 23 24,81 HSL a137 North 75,31 4 68,0 0,84 0,64 37,4 23,04 21 28,57 HSL a138 North 72,69 4 59,5 0,61 0,52 53,3 24,46 24 20,8 HSL a139 North 73,27 3 46,2 0,71 0,56 46,7 24,60 19 26,94 HSL a140 North 76,43 4 51,7 0,73 0,69 59,6 24,48 23 11,8 HSL a141 North 73,01 2 47,0 0,76 0,65 46,5 24,43 22 36,80 HSL a142 Center 74,40 5 58,8 0,77 0,71 54,7 24,65 22 14,29 HSL a143 Center 77,24 4 59,5 0,77 0,67 50,9 24,37 23 4,5 HSL a144 Center 79,55 6 65,7 0,77 0,65 45,1 24,67 23 31,9 HSL a145 Center 75,58 4 64,2 0,8 0,68 52,2 24,70 23 16,13 HSL a146 Center 78,21 4 42,8 0,67 0,58 50,3 23,55 23 13,1 HSL a147 Center 73,24 4 56,6 0,69 0,59 52,1 23,40 22 28,24 HSL a148 Center 75,46 3 61,8 0,55 0,43 45,2 23,12 23 21,43 HSL a149 South 76,32 6 81,6 0,64 0,57 43,0 23,88 19 16,43 HSL a150 South 75,13 4 70,3 0,83 0,66 34,3 24,25 23 5,41 HSL a151 South 73,61 3 56,3 0,55 0,47 54,4 25,53 22 13,43 HSL a152 South 77,02 4 61,8 0,80 0,65 44,9 23,58 21 13,73 HSL a153 South 78,46 5 55,1 0,49 0,35 51,6 22,87 18 5,94 HSL a154 South 73,78 3 34,3 0,44 0,33 33,7 23,59 18 13,6 HSL a155 South 77,18 4 66,9 0,52 0,44 53,9 24,67 20 4,82 HSL a156 South 78,76 3 65,9 0,80 0,70 56,1 24,42 22 0,00 HSL a157 South 80,11 6 70,0 0,69 0,61 54,7 23,84 20 7,29 HSL a158 South 74,91 4 52,9 0,67 0,54 47,7 24,02 20 16,45 HSL a159 South 78,07 4 32,4 0,57 0,43 22,1 21,22 18 29,89 CTHS a160 North 72,22 5 42,4 0,51 0,41 43,6 24,14 19 18,62 297 G. Fattoruso, P. Mancini, G. Marcarelli T S Area g1 g2 g3 g4 g5 g6 g7 g8 g9 CTHS a161 North 73,57 5 38,9 0,56 0,44 42,1 24,18 18 27,41 CTHS a162 North 73,75 3 32,1 0,50 0,42 44,1 22,47 19 23,97 CTHS a163 North 75,78 6 54,4 0,48 0,37 32,0 23,52 21 13,50 CTHS a164 North 74,27 3 27,2 0,42 0,36 61,0 24,47 21 22,92 CTHS a165 North 74,13 4 34,7 0,47 0,42 57,0 24,33 21 28,57 CTHS a166 North 74,98 4 37,0 0,45 0,34 52,0 23,41 21 27,71 CTHS a167 North 73,82 4 53,5 0,51 0,37 41,4 24,28 19 26,39 CTHS a168 North 71,55 2 35,0 0,52 0,40 35,2 22,30 21 22,22 CTHS a169 North 70,75 4 36,6 0,38 0,27 23,7 22,98 25 20,69 CTHS a170 North 76,60 2 60,1 0,39 0,33 47,9 24,13 20 12,96 CTHS a171 North 74,22 3 34,5 0,47 0,38 47,5 24,33 18 0,00 CTHS a172 North 74,99 4 58,3 0,61 0,50 54,5 23,94 24 7,41 CTHS a173 North 72,10 3 35,1 0,47 0,27 24,1 23,29 17 50,29 CTHS a174 North 74,51 5 55,1 0,55 0,45 58,5 24,02 21 38,5 CTHS a175 North 74,55 4 49,6 0,64 0,54 46,8 23,47 22 26,00 CTHS a176 Center 75,49 3 42,9 0,63 0,53 51,3 25,73 22 37,14 CTHS a177 Center 74,04 4 44,8 0,56 0,42 34,5 23,27 21 25,81 CTHS a178 Center 74,71 5 49,6 0,54 0,49 60,7 24,57 20 24,24 CTHS a179 Center 78,75 5 52,6 0,64 0,61 56,4 25,03 20 17,86 CTHS a180 Center 73,78 3 47,0 0,36 0,30 57,3 24,67 21 24,66 CTHS a181 Center 75,37 4 32,6 0,45 0,36 52,5 24,72 21 20,39 CTHS a182 Center 75,27 2 49,4 0,42 0,28 47,2 24,57 19 9,93 CTHS a183 Center 72,25 4 57,4 0,50 0,30 34,3 24,37 15 25,30 CTHS a184 Center 73,75 2 57,7 0,43 0,38 53,0 21,91 22 13,16 CTHS a185 Center 75,93 5 37,9 0,35 0,22 32,0 22,22 20 27,97 CTHS a186 Center 71,22 3 58,3 0,36 0,23 30,2 21,72 21 34,52 CTHS a187 Center 71,99 5 53,8 0,53 0,40 32,6 20,95 26 20,55 CTHS a188 Center 80,18 4 75,8 0,67 0,50 35,1 24,75 19 17,47 CTHS a189 South 73,81 3 61,5 0,47 0,42 53,8 24,17 20 11,82 CTHS a190 South 76,48 2 43,2 0,43 0,34 50,7 24,35 20 15,38 CTHS a191 South 74,61 4 27,2 0,43 0,33 44,5 23,95 20 16,67 CTHS a192 South 73,44 3 36,1 0,40 0,31 42,0 22,98 20 21,58 CTHS a193 South 75,22 3 50,4 0,38 0,29 36,8 23,24 22 10,58 CTHS a194 South 76,45 4 38,4 0,36 0,26 25,7 23,32 17 9,70 CTHS a195 South 69,12 2 33,8 0,38 0,26 31,0 20,00 15 0,00 CTHS a196 South 73,76 5 59,5 0,48 0,39 52,8 24,27 22 6,40 CTHS a197 South 76,97 4 49,9 0,53 0,43 52,7 23,90 20 9,40 CTHS a198 South 73,45 5 49,9 0,58 0,48 49,6 22,36 16 6,67 CTHS a199 South 76,37 5 62,0 0,49 0,42 47,4 22,60 18 17,20 CTHS a200 South 74,49 5 36,0 0,56 0,50 60,5 22,89 16 0,00 298 The AHPSort II to evaluate the High-level instruction performances T S Area g1 g2 g3 g4 g5 g6 g7 g8 g9 CTHS a201 South 73,75 4 21,8 0,35 0,29 44,4 22,77 17 5,00 CTHS a202 South 74,72 4 31,3 0,49 0,37 36,1 23,14 17 4,39 TTHS a203 South 71,06 3 31,6 0,52 0,37 50,6 25,04 19 23,97 TTHS a204 North 71,6 4 32,0 0,45 0,36 55,0 24,15 23 27,23 TTHS a205 North 73,32 4 39,9 0,70 0,58 49,4 24,52 20 11,11 TTHS a206 North 73,78 4 37,1 0,36 0,27 35,7 22,47 22 29,81 TTHS a207 North 74,79 6 39,4 0,37 0,26 43,7 22,99 21 22,40 TTHS a208 North 74,99 4 36,5 0,77 0,67 68,8 25,97 21 27,69 TTHS a209 North 69,93 5 38,8 0,37 0,27 46,2 26,39 21 3,64 TTHS a210 North 67,97 4 30,3 0,41 0,35 58,4 24,64 19 28,28 TTHS a211 North 72,2 4 43,9 0,50 0,37 41,9 24,59 20 35,00 TTHS a212 North 70,51 5 26,8 0,48 0,35 51,3 23,42 21 17,65 TTHS a213 North 69,62 4 34,7 0,35 0,24 39,5 23,62 20 24,81 TTHS a214 North 70,55 4 52,4 0,36 0,20 30,4 25,26 19 26,39 TTHS a215 North 73,92 4 28,3 0,40 0,28 39,6 23,93 21 15,61 TTHS a216 North 76,79 6 48,4 0,65 0,57 64,6 26,16 23 23,26 TTHS a217 North 74,27 3 48,6 0,33 0,25 46,7 24,91 18 36,46 TTHS a218 North 79,65 6 73,2 0,37 0,24 42,4 24,86 10 40,38 TTHS a219 North 72,53 4 32,1 0,61 0,49 53,0 25,41 23 32,82 TTHS a220 North 73,00 3 55,6 0,45 0,32 39,3 25,17 18 23,40 TTHS a221 North 73,55 4 43,0 0,51 0,43 56,6 26,87 22 26,00 TTHS a222 North 74,49 4 39,5 0,44 0,37 60,1 25,41 22 29,72 TTHS a223 Center 71,38 4 30,2 0,43 0,37 62,1 25,65 21 21,71 TTHS a224 Center 73,81 3 33,8 0,49 0,38 47,4 24,36 21 25,84 TTHS a225 Center 73,48 6 39,4 0,44 0,30 39,9 23,52 20 10,29 TTHS a226 Center 77,89 3 41,9 0,68 0,59 53,5 24,47 19 20,00 TTHS a227 Center 75,76 4 54,8 0,58 0,47 52,7 25,36 18 28,42 TTHS a228 Center 71,09 3 46,0 0,33 0,23 48,9 26,39 19 8,85 TTHS a229 Center 72,35 4 45,8 0,50 0,38 52,4 25,59 16 19,53 TTHS a230 Center 73,03 3 28,3 0,45 0,33 54,7 24,67 22 24,66 TTHS a231 Center 70,88 3 47,9 0,53 0,36 33,7 24,48 20 36,36 TTHS a232 Center 72,64 3 30,7 0,41 0,29 38,4 23,84 20 20,35 TTHS a233 Center 71,8 5 46,1 0,50 0,32 40,4 23,50 20 11,67 TTHS a234 Center 68,81 5 31,8 0,33 0,21 36,9 23,11 21 18,60 TTHS a235 Center 73,21 5 50,5 0,42 0,24 26,1 22,66 19 25,81 TTHS a236 Center 70,51 3 23,8 0,37 0,31 49,5 23,32 18 8,48 TTHS a237 South 71,06 3 70,8 0,35 0,32 65,0 25,87 20 11,82 TTHS a238 South 79,55 3 46,7 0,51 0,44 70,8 24,43 20 21,58 TTHS a239 South 77,18 3 42,3 0,40 0,24 39,9 25,48 17 21,70 TTHS a240 South 77,84 5 48,4 0,36 0,23 43,3 24,63 19 14,86 299 G. Fattoruso, P. Mancini, G. Marcarelli T S Area g1 g2 g3 g4 g5 g6 g7 g8 g9 TTHS a241 South 76,68 4 26,0 0,34 0,26 48,7 24,03 22 16,17 TTHS a242 South 74,62 3 31,7 0,63 0,47 48,5 23,42 16 6,06 TTHS a243 South 74,07 4 35,9 0,39 0,26 37,3 23,39 20 6,09 TTHS a244 South 80,27 3 24,5 0,47 0,27 41,5 21,07 18 21,24 TTHS a245 South 74,97 3 35,2 0,38 0,29 50,5 24,48 19 9,65 TTHS a246 South 72,50 4 40,8 0,48 0,39 54,3 24,08 17 0,73 TTHS a247 South 76,93 4 48,2 0,53 0,40 48,2 23,44 18 8,33 TTHS a248 South 71,41 3 25,8 0,34 0,29 49,8 26,01 19 9,33 TTHS a249 South 72,75 4 17,4 0,50 0,42 43,0 22,34 17 5,00 TTHS a250 South 75,08 5 24,7 0,36 0,30 58,6 23,12 16 27,91 TTHS a251 South 76,04 4 31,7 0,52 0,26 21,3 22,60 17 29,89 Table 7: Evaluation table of gj(ai). Legend: T=Type; S=School; Area=Geo-position. 300 The AHPSort II to evaluate the High-level instruction performances Figure 2: Ranking of school defined by pi 301 G. Fattoruso, P. Mancini, G. Marcarelli Figure 3: Performance of School sorted for typology and geographical areas 302 The AHPSort II to evaluate the High-level instruction performances Figure 4: Performance of SLs and CLs sorted for criteria and geographical areas 303