Ratio Mathematica Volume 47, 2023 Fixed point theorems in uniformly convex Banach spaces Jahir Hussain Rasheed* Manoj Karuppasamy† Abstract In this article, we establish a concept of fixed point result in Uni- formly convex Banach space. Our main finding uses the Ishikawa iteration technique in uniformly convex Banach space to demonstrate strong convergence. Additionally, we use our primary result to demon- strate some corollaries. Keywords: Fixed point; Mann iteration; Ishikawa iteration. 2020 AMS subject classifications: 55M20, 46B80, 52A21.1 *Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapplli-620020, Tamilnadu India ; hssn jhr@yahoo.com. †Jamal Mohamed College(Autonomous), Affiliated to Bharathidasan University, Tiruchirapplli-620020, Tamilnadu India ; manojguru542@gmail.com. 1Received on August 25, 2023. Accepted on February 27, 2023. Published on April 4, 2023. doi: 10.23755/rm.v39i0.835. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement. 198 R. Jahir Hussain, K. Manoj 1 Introduction Mann [Mann [1953]] defined mean value methods in an iterative scheme in 1953, and Ishikawa [Ishikawa [1974]] established fixed points using a new it- eration method technique in 1954. Takahashi [Takahashi [1970] ] introduced the idea of convexity in metric spaces and non-expansive mappings in 1970. Then Machado [Machado [1973]] went on to discuss about a classification of convex subsets of normed spaces. After that, Luis Bernal-Gonzalez [Bernal-Gonzalez [1996]] discussed convex domain in uniformly Banach spaces. Berinde [Berinde [2004]] investigates iterative scheme to finding fixed points using quasi contrac- tive mappings in uniformly convex Banach spaces(stands for CBS), extended to uniformly convex Banach spaces(CBS). Throughout this paper, we use strong convergence of ishikawa iterations to prove such fixed point results in uniformly CBS using different type of contrac- tions. 2 Preliminaries Definition 2.1. Let (X, d) be a metric space and I = [0, 1]. A mapping W : X × X ×I → X is said to be a convex structure on X if for each (x, y, λ) ∈ X ×X ×I and u ∈ X d (u, W(x, y, λ)) ≤ λd(u, x) + (1 − λ)d(u, y). A metric space (X, d) together with a convex structure W is called a convex metric space,which is denoted by (X, d, W). Definition 2.2. Let (X, d, W) be a convex metric space. A nonempty subset C of X is said to be convex if W(x, y, λ) ∈ C whenever (x, y, λ) ∈ C × C × I. Definition 2.3. Let f : X → X. A point x ∈ X is called a fixed point of f if f(x) = x. Definition 2.4. Let E be a uniformly Banach space and T : E → E a map for which there is a real constant k1 ∈ (0, 1/5) such that each pair u, v ∈ X, ∥Tu − Tv∥ ≤ k1{∥u − v∥ + ∥u − Tu∥ + ∥v − Tv∥ + ∥u − Tv∥ + ∥v − Tu∥}. Then, T has a fixed point by the approximation of Picard. Definition 2.5. Let E be a uniformly Banach space and T : E → E a map for which there is a real constant k2 ∈ (0, 1/3) such that for each pair u, v ∈ X, ∥Tu − Tv∥ ≤ k2{∥u − v∥ + ∥u − Tu∥ + ∥v − Tv∥ 2 + ∥u − Tv∥ + ∥v − Tu∥ 2 }. Then, T has a fixed point by the approximation of Picard. 199 Fixed point theorems in uniformly convex Banach spaces Definition 2.6. Let E be a uniformly Banach space and T : E → E a given operator. Let u0 ∈ E be arbitrary and {αn} ⊂ [0, 1] a sequence of real numbers. The sequence { un} ⊂ E defined by un+1 = (1 − αn)un + αnTun, n = 0, 1, 2, · · · (1) is called the Mann iteration. Definition 2.7. Let E be a uniformly Banach space and T : E → E a given operator. Let u0 ∈ E be arbitrary, {αn} and {βn} ⊂ [0, 1] a sequence of real numbers. The sequence { un} ⊂ E defined by un+1 = (1 − αn)un + αnTvn, n = 0, 1, 2, · · · (2) vn = (1 − βn)un + βnTun, n = 0, 1, 2, · · · . (3) Then {un} is called Ishikawa iteration. Result 2.1. Berinde [2004] The condition of Mann and Ishikawa iteration for strong convergence are given below (a) Let K be a closed convex subset of a uniformly Banach space E and T : K → K as an operator satisfying contraction. Let {un} be defined by Definition 2.6 and x0 ∈ K, with {αn} ∈ [0, 1] satisfying ∞∑ n=0 αn = ∞. (4) Then, {un} converges strongly to a fixed point. (b) Let K be a closed convex subset of a uniformly Banach space E and T : K → K as an operator satisfying the contraction. Let {un} be defined by Definition 2.7 and u0 ∈ K, with {αn}, {βn} ∈ [0, 1] satisfying ∞∑ n=0 αn(1 − αn) = ∞. (5) Then, {un} strongly converges to a fixed point.2 3 Main Results Theorem 3.1. Let K be a closed convex subset of a uniformly Banach space E and T : K → K an operator satisfying equation ∥Tu−Tv∥ ≤ k1{∥u−v∥+∥u−Tu∥+∥v −Tv∥+∥u−Tv∥+∥v −Tu∥}. (6) 200 R. Jahir Hussain, K. Manoj Let {un} be the Ishikawa iteration and u0 ∈ K, where {αn}, {βn} ⊂ [0, 1] with {αn} satisfying equation ∑∞ n=0 αn = ∞. Then {un} converges strongly to a fixed point of T . Proof. Suppose T has a fixed point p in K. Consider u, v ∈ K and T is an operator satisfies above equation, ∥Tu − Tv∥ ≤ k1{∥u − v∥ + ∥u − Tu∥ + ∥v − Tv∥ + ∥u − Tv∥ + ∥v − Tu∥} = k1{2∥u − v∥ + 2∥u − Tv∥ + ∥u − Tu∥ + ∥v − Tu∥} ≤ k1{2∥u − v∥ + 2[∥u − Tu∥ + ∥Tu − Tv∥] + ∥u − Tu∥ + ∥v − Tu∥} (1 − 2k1)∥Tu − Tv∥ ≤ 2k1∥u − v∥ + 3k1∥u − Tu∥ + k1∥v − Tu∥ ∥Tu − Tv∥ ≤ 2k1 1 − 2k1 ∥u − v∥ + 3k1 1 − 2k1 ∥u − Tu∥ + k1 1 − 2k1 ∥v − Tu∥. Take δ = k1 1−2k1 , then we have δ ∈ [0, 1), it result that the inequality ∥Tu − Tv∥ ≤ 2δ∥u − v∥ + 3δ∥u − Tu∥ + δ∥v − Tu∥∀u, v ∈ K. (7) Now let {un}∞n=0 be Ishikawa iteration defined on Definition 2.7 and u0 ∈ K arbitrary then ∥un+1 − p∥ = ∥(1 − αn)un + αnTvn − (1 − αn + αn)p∥ = ∥(1 − αn)(un − p) + αn(Tvn − p)∥ ∥un+1 − p∥ ≤ (1 − αn)∥un − p∥ + αn∥Tvn − p∥. (8) In equation (7), put u = p and v = vn, we have ∥Tvn − p∥ ≤ 2δ∥p − vn∥ + 3δ∥p − Tp∥ + δ∥vn − Tp∥ = 2δ∥p − vn∥ + δ∥vn − p∥ ∥Tvn − p∥ ≤ 3δ∥vn − p∥. (9) Furthermore, ∥vn − p∥ = ∥(1 − βn)un + βnTun − (1 − βn + βn)p∥ = ∥(1 − βn)(un − p) + βn(Tun − p)∥ ∥vn − p∥ ≤ (1 − βn)∥un − p∥ + βn∥Tun − p∥. (10) Again in equation (7), put u = p and v = un, we get ∥Tun − p∥ ≤ 2δ∥p − un∥ + 3δ∥p − Tp∥ + δ∥un − p∥ = (2δ + δ)∥un − p∥ 201 Fixed point theorems in uniformly convex Banach spaces ∥Tun − p∥ ≤ 3δ∥un − p∥. (11) Using equation (9),(10),(11) in equation (8), we get ∥un+1 − p∥ ≤ (1 − αn)∥un − p∥ + αn∥Tvn − p∥ ≤ (1 − αn)∥un − p∥ + 3αnδ∥vn − p∥ ≤ (1 − αn)∥un − p∥ + 3αnδ[(1 − βn)∥un − p∥ + βn∥Tun − p∥] = (1 − αn)∥un − p∥ + 3αnδ(1 − βn)∥un − p∥ + 3αnδβn∥Tun − p∥ ≤ (1 − αn)∥un − p∥ + 3αnδ(1 − βn)∥un − p∥ + 9αnδ2βn∥un − p∥ = [1 − αn + 3αnδ − 3αnβnδ + 9αnδ2βn]∥un − p∥ = 1 − αn(1 − 3δ) − 3αnβnδ(1 − 3δ)]∥un − p∥ = [1 − (1 − 3δ)αn(1 + 3δβn)]∥un − p∥ which by the inequality, 1 − (1 − 3δ)αn(1 + 3δβn) ≤ 1 − (1 − 3δ)2αn ⇒ ∥un+1 − p∥ ≤ [1 − (1 − 3δ)2αn]∥un − p∥, n = 0, 1, 2, ... (12) by equation (8), we obtain ∥un+1 − p∥ ≤ n∏ k=0 [1 − (1 − 3δ)2αk]∥u0 − p∥. (13) Where, δ ∈ (0, 1), αk, βn ∈ [0, 1] and ∞∑ n=0 αn = ∞ by result (a), we get limn→∞ n∏ k=0 [1 − (1 − 3δ)2αk] = 0. By equation (13) which implies limn→∞ ∥un+1 − p∥ = 0. Therefore, {un}∞n=0 converges strongly to p. 2 Theorem 3.2. Let K be a closed convex subset of a uniformly Banach space E and T : K → K an operator satisfying equation ∥Tu − Tv∥ ≤ k2{∥u − v∥ + ∥u − Tu∥ + ∥v − Tv∥ 2 + ∥u − Tv∥ + ∥v − Tu∥ 2 }. Let {un} be the Ishikawa iteration and u0 ∈ K, where {αn} and {βn} are se- quences in [0, 1] with {αn} satisfying equation ∑∞ n=0 αn = ∞. Then {un} con- verges strongly to a fixed point of T . Proof. Consider T has a fixed point p in K. Consider u, v ∈ K and T is an operator satisfies equation ∥Tu − Tv∥ ≤ k2{∥u − v∥ + ∥u−Tu∥+∥v−Tv∥ 2 + ∥u−Tv∥+∥v−Tu∥ 2 } ≤ k2{∥u − v∥ + ∥u−v∥+∥v−Tu∥+∥v−Tv∥ 2 + ∥u−Tv∥+∥v−Tu∥ 2 } = k2{32∥u − v∥ + ∥v − Tu∥ + 1 2 ∥v − Tv∥ + ∥u−Tv∥ 2 } (1 − k2)∥Tu − Tv∥ ≤ 32k2{∥u − v∥ + ∥v − Tv∥} + k2 2 ∥u − Tv∥ ∥Tu − Tv∥ ≤ 3k2 2(1−k2) {∥u − v∥ + ∥v − Tv∥} + k2 2(1−k2) ∥u − Tv∥ 202 R. Jahir Hussain, K. Manoj Take δ = k2 1 − k2 ∈ [0, 1).∥Tu−Tv∥ ≤ 3 2 δ{∥u−v∥+∥v −Tv∥}+ δ 2 ∥u−Tv∥. (14) Now, let {un} be Ishikawa iteration defined on Definition 2.7 and u0 ∈ K then, ∥un+1 − p∥ = ∥(1 − αn)un + αnTvn − (1 − αn + αn)p∥ ∥un+1 − p∥ ≤ (1 − αn)∥un − p∥ + αn∥Tvn − p∥ (15) In equation (14), put v = p and u = un, ∥Tun − p∥ ≤ 3δ2 ∥un − p∥ + δ 2 ∥un − p∥ ∥Tun − p∥ ≤ 2δ∥un − p∥ (16) In equation (14), put u = vn and v = p, ∥Tvn − p∥ ≤ 3δ2 ∥vn − p∥ + δ 2 ∥vn − p∥ ∥Tvn − p∥ ≤ 2δ∥vn − p∥ (17) ∥vn − p∥ = ∥(1 − βn)un + βnTun − (1 − βn + βn)p∥ ∥vn − p∥ ≤ (1 − βn)∥un − p∥ + βn∥Tun − p∥ (18) Using equation (16), (17), (18) in equation (15), we get ∥un+1 − p∥ ≤ (1 − αn) + 2αnδ∥vn − p∥ ≤ (1 − αn) + 2δαn[(1 − βn)∥un − p∥ + βn∥Tun − p∥] ≤ (1 − αn) + 2δαn(1 − βn)∥un − p∥ + 4δ2αnβn∥un − p∥ = [1 − αn(1 + 2δβn)(1 − 2δ)]∥un − p∥ Which by inequality, 1 − αn(1 + 2δβn)(1 − 2δ) ≤ 1 − (1 − 2δ)2αn ⇒ ∥un+1 − p∥ ≤ [1 − (1 − 2δ)2αn]∥un − p∥ (19) By equation (19), we obtain ∥un+1 − p∥ ≤ n∏ k=0 [1 − (1 − 2δ)2αk]∥u0 − p∥ (20) where δ ∈ (0, 1), αk, βn ∈ [0, 1] and ∞∑ n=0 αn = ∞ by result (a), we get, limn→∞ n∏ k=0 [1 − (1 − 2δ)2αk] = 0. By equation (20), ⇒ limn→∞ ∥un+1 − p∥ = 0. Therefore {un}∞n=0 converges strongly to p.2 Corolary 3.1. Let K be a closed convex subset of a uniformly Banach space E and T : K → K an operator satisfying equation ∥Tu − Tv∥ ≤ k 4 {∥u − Tu∥ + ∥v − Tv∥ + ∥u − Tv∥ + ∥v − Tu∥}. Let {un} be the Ishikawa iteration and u0 ∈ K, where {αn} and {βn} are se- quences of positive numbers in [0, 1] with {αn} satisfying equation ∑∞ n=0 αn = ∞. Then {un} converges strongly to a fixed point of T . 203 Fixed point theorems in uniformly convex Banach spaces Corolary 3.2. Let E be an uniformly Banach space, K is a closed convex subset of E and T : K → K an operator satisfying equation ∥Tu − Tv∥ ≤ k∥u − v∥ (21) Let {un}∞n=0 be the Ishikawa iteration and u0 ∈ K, where {αn}∞n=0 and {βn}∞n=0 are sequences of positive numbers in [0, 1] with {αn}∞n=0 satisfying ∑∞ n=0 αn = ∞. Then {un}∞n=0 converges strongly to a fixed point of T . Corolary 3.3. Let E be an uniformly Banach space, K is a closed convex subset of E and T : K → K an operator satisfying equation ∥Tu − Tv∥ ≤ k 2 {∥u − Tu∥ + ∥v − Tv∥} (22) Let {un}∞n=0 be the Ishikawa iteration and u0 ∈ K, where {αn}∞n=0 and {βn}∞n=0 are sequences of positive numbers in [0, 1] with {αn}∞n=0 satisfying ∑∞ n=0 αn = ∞. Then {un}∞n=0 converges strongly to a fixed point of T . 4 Conclusions In this work, we presented the result on strong convergence of fixed point of T. We developed different kinds of contractive conditions to prove strong con- vergence using Ishikawa iterative method in uniforly convex Banach space. Our main result may be vision for other authors using different contraction to prove several converging fixed point result. Acknowledgements The editors and referees are greatly appreciated by the authors for their in- sightful input, which helped the paper’s presentation. References V. Berinde. On the convergence of the ishikawa iteration in the class of quasi contractive operators. Acta Math. Univ. Comenianae, LXXIII:1–11, 2004. L. Bernal-Gonzalez. A schwarz lemma for convex domains in arbitrary banach spaces. Journal of Mathematical Analysis and Applications, 200:511–517, 1996. 204 R. Jahir Hussain, K. Manoj S. Ishikawa. Fixed points by a new iteration method. Proc. Amer. Math. Soc., 44: 147–150, 1974. H.V. Machado. A chracterization of convex subsets of normed spaces. kodai math-sem.Rep., 25:307–320, 1973. W. R. Mann. Mean value methods in iteration. Proc. Amer. Math. Soc., 44:506– 510, 1953. W. A. Takahashi. convexity in metric space and non-expansive mappings. Kodai math.sem rep., 22:142–149, 1970. 205