Ratio Mathematica Volume 44, 2022 Further Diversification of Nano Binary Open Sets J. Jasmine Elizabeth1 G. Hari Siva Annam2 Abstract The purpose of this paper is to introduce and study the nano binary exterior, nano binary border and nano binary derived in nano binary topological spaces. Also studied their characterizations. Keywords: 𝑁𝐡- Derived, 𝑁𝐡- Exterior, 𝑁𝐡- Border. 2010 AMS Subject Classification: 54A05, 54A993. 1Assistant Professor, Kamaraj College, Thoothukudi, (Part Time Research Scholar [Reg no. 19122102092008], Manonmaniam Sundaranar University, Tirunelveli-627012) Tamil Nadu, India. jasmineelizabeth89@gmail.com 2Assistant Professor, PG and Research Department of Mathematics, Kamaraj College, Thoothukudi- 628003, Tamil Nadu, India. hsannam@yahoo.com. Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627012, Tamil Nadu, India. 3Received on June 4th, 2022. Accepted on Sep 1st, 2022. Published on Nov 30th, 2022. doi: 10.23755/rm.v44i0.884. ISSN: 1592-7415. eISSN: 2282-8214. Β©The Authors. This paper is published under the CC-BY licence agreement 15 mailto:hsannam@yahoo.com J. Jasmine Elizabeth, G. Hari Siva Annam 1. Introduction M. Lellis Thivagar [1] introduced the concept of nano topological space with respect to a subset X of a universe U. S. Nithyanantha Jothi and P. Thangavelu [2] introduced the concept of binary topological spaces. By combining these two concepts Dr. G. Hari Siva Annam and J. Jasmine Elizabeth [3] introduced nano binary topological spaces. In this paper we have introduced the nano binary border, nano binary derived and nano binary exterior in nano binary topological spaces. Also studied their properties and characterizations with suitable examples. 2. Preliminaries Definition 2.1: [3] Let (π‘ˆ1, π‘ˆ2) be a non-empty finite set of objects called the universe and R be an equivalence relation on (π‘ˆ1, π‘ˆ2)named as the indiscernibility relation. Elements belonging to the same equivalence class are said to be indiscernible with one another. The pair (π‘ˆ1, π‘ˆ2, 𝑅)is said to be the approximation space. Let (𝑋1, 𝑋2) βŠ† (π‘ˆ1, π‘ˆ2). 1. The lower approximation of (𝑋1, 𝑋2) with respect to R is the set of all objects, which can be for certain classified as (𝑋1, 𝑋2)with respect to R and it is denoted by 𝐿𝑅 (𝑋1, 𝑋2). That is,𝐿𝑅 (𝑋1, 𝑋2) = ⋃ {𝑅(π‘₯1, π‘₯2)πœ–(π‘ˆ1,π‘ˆ2) (π‘₯1, π‘₯2): 𝑅(π‘₯1, π‘₯2) βŠ† (𝑋1, 𝑋2)} Where 𝑅(π‘₯1, π‘₯2)denotes the equivalence class determined by (π‘₯1, π‘₯2). 2. The upper approximation of (𝑋1, 𝑋2) with respect to R is the set of all objects, which can be possibly classified as (𝑋1, 𝑋2)with respect to R and it is denoted by π‘ˆπ‘… (𝑋1, 𝑋2). That is,π‘ˆπ‘… (𝑋1, 𝑋2) = ⋃ {𝑅(π‘₯1,π‘₯2)πœ–(π‘ˆ1,π‘ˆ2) (π‘₯1, π‘₯2): 𝑅(π‘₯1, π‘₯2)β‹‚(𝑋1, 𝑋2) β‰  Ο•}. 3. The boundary region of (𝑋1, 𝑋2) with respect to R is the set of all objects, which can be classified neither as (𝑋1, 𝑋2) nor as not βˆ’(𝑋1, 𝑋2) with respect to R and it is denoted by 𝐡𝑅 (𝑋1, 𝑋2). That is, 𝐡𝑅 (𝑋1, 𝑋2) = π‘ˆπ‘… (𝑋1, 𝑋2) βˆ’ 𝐿𝑅 (𝑋1, 𝑋2). Definition 2.2: [3] Let (π‘ˆ1, π‘ˆ2) be the universe, R be an equivalence on (π‘ˆ1, π‘ˆ2) and πœπ‘… (𝑋1, 𝑋2) = {(π‘ˆ1, π‘ˆ2), (πœ™, πœ™), 𝐿𝑅 (𝑋1, 𝑋2), π‘ˆπ‘… (𝑋1, 𝑋2), 𝐡𝑅 (𝑋1, 𝑋2)} where (𝑋1, 𝑋2) βŠ† (π‘ˆ1, π‘ˆ2). Then by the property R(𝑋1, 𝑋2)satisfies the following axioms 1. (π‘ˆ1, π‘ˆ2)and (πœ™, πœ™) πœ– πœπ‘… (𝑋1, 𝑋2). 2. The union of the elements of any sub collection of πœπ‘… (𝑋1, 𝑋2) is in πœπ‘… (𝑋1, 𝑋2). 3. The intersection of the elements of any finite sub collection of πœπ‘… (𝑋1, 𝑋2) is in πœπ‘… (𝑋1, 𝑋2). That is,πœπ‘… (𝑋1, 𝑋2) is a topology on (π‘ˆ1, π‘ˆ2) called the nano binary topology on (π‘ˆ1, π‘ˆ2) with respect to(𝑋1, 𝑋2). 16 Further Diversification of Nano Binary Open Sets We call (π‘ˆ1, π‘ˆ2, πœπ‘… (𝑋1, 𝑋2))as the nano binary topological spaces. The elements of πœπ‘… (𝑋1, 𝑋2)are called as nano binary open sets and it is denoted by 𝑁𝐡 open sets. Their complement is called 𝑁𝐡 closed sets. Definition 2.3: [3] If (π‘ˆ1, π‘ˆ2, πœπ‘… (𝑋1, 𝑋2))is a nano binary topological spaces with respect to (𝑋1, 𝑋2) and if (𝐻1, 𝐻2) βŠ† (π‘ˆ1, π‘ˆ2), then the nano binary interior of (𝐻1, 𝐻2) is defined as the union of all 𝑁𝐡open subsets of (𝐴1, 𝐴2) and it is defined by 𝑁𝐡 ∘(𝐻1, 𝐻2). That is, 𝑁𝐡 ∘(𝐻1, 𝐻2) is the largest 𝑁𝐡open subset of(𝐻1, 𝐻2). The nano binary closure of (𝐻1, 𝐻2) is defined as the intersection of all 𝑁𝐡closed sets containing (𝐻1, 𝐻2) and it is denoted by 𝑁𝐡 (𝐻1, 𝐻2). That is, 𝑁𝐡 (𝐻1, 𝐻2) is the smallest 𝑁𝐡closed set containing(𝐻1, 𝐻2). 3. Nano Binary Derived Definition 3.1: A point (π‘₯1, π‘₯2) ∈ (π‘ˆ1, π‘ˆ2) is said to be a 𝑁𝐡 limit point of (𝐴1, 𝐴2) if for each 𝑁𝐡-open set (𝐾1, 𝐾2) containing (π‘₯1, π‘₯2) satisfies (𝐾1, 𝐾2) ∩ ((𝐴1, 𝐴2) βˆ’ (π‘₯1, π‘₯2)) β‰  (βˆ…, βˆ…). Definition 3.2: The set of all 𝑁𝐡 limit points of (𝐴1, 𝐴2) is said to be nano binary derived set and is denoted by 𝑁𝐡 _𝐷(𝐴1, 𝐴2). Theorem 3.3: In (π‘ˆ1, π‘ˆ2, πœπ‘… (𝑋1, 𝑋2)), let (𝐴1, 𝐴2) and (𝐡1, 𝐡2) be two subsets of (π‘ˆ1, π‘ˆ2). Then the following holds: 1) 𝑁𝐡 _𝐷(βˆ…, βˆ…) = (βˆ…, βˆ…). 2) If (π‘₯1, π‘₯2) ∈ 𝑁𝐡 _𝐷(𝐴1, 𝐴2) then (π‘₯1, π‘₯2) ∈ 𝑁𝐡 _𝐷((𝐴1, 𝐴2) βˆ’ (π‘₯1, π‘₯2)). 3) If (𝐴1, 𝐴2) βŠ† (𝐡1, 𝐡2), then 𝑁𝐡 _𝐷(𝐴1, 𝐴2) βŠ† 𝑁𝐡 _𝐷(𝐡1, 𝐡2). 4) 𝑁𝐡 _𝐷(𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐷(𝐡1, 𝐡2) = 𝑁𝐡 _𝐷((𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2)). Proof: 1) Let (π‘₯1, π‘₯2) ∈ (π‘ˆ1, π‘ˆ2) and (𝐺1, 𝐺2) be a 𝑁𝐡-open set containing (π‘₯1, π‘₯2). Then ((𝐺1, 𝐺2) βˆ’ (π‘₯1, π‘₯2)) ∩ (βˆ…, βˆ…) = (βˆ…, βˆ…) β‡’ (π‘₯1, π‘₯2) βˆ‰ 𝑁𝐡 _𝐷(βˆ…, βˆ…). Therefore, for any (π‘₯1, π‘₯2) ∈ (π‘ˆ1, π‘ˆ2), (π‘₯1, π‘₯2) is not a𝑁𝐡 limit point of (βˆ…, βˆ…). Hence 𝑁𝐡 _𝐷(βˆ…, βˆ…) = (βˆ…, βˆ…). 2)Let (π‘₯1, π‘₯2) ∈ 𝑁𝐡 _𝐷(𝐴1, 𝐴2). Then (𝐺1, 𝐺2) ∩ ((𝐴1, 𝐴2) βˆ’ (π‘₯1, π‘₯2)) β‰  (βˆ…, βˆ…), for every 𝑁𝐡-open set (𝐺1, 𝐺2) containing (π‘₯1, π‘₯2) implies every 𝑁𝐡-open set (𝐺1, 𝐺2) of (π‘₯1, π‘₯2), contains at least one point other than (π‘₯1, π‘₯2) of (𝐴1, 𝐴2). Therefore (π‘₯1, π‘₯2) ∈ 𝑁𝐡 _𝐷((𝐴1, 𝐴2) βˆ’ (π‘₯1, π‘₯2)). 3)Let (π‘₯1, π‘₯2) ∈ 𝑁𝐡 _𝐷(𝐴1, 𝐴2). Then (𝐺1, 𝐺2) ∩ ((𝐴1, 𝐴2) βˆ’ (π‘₯1, π‘₯2)) β‰  (βˆ…, βˆ…), for every 𝑁𝐡-open set (𝐺1, 𝐺2) containing (π‘₯1, π‘₯2). Since (𝐴1, 𝐴2) βŠ† (𝐡1, 𝐡2) implies (𝐺1, 𝐺2) ∩ ((𝐡1, 𝐡2) βˆ’ (π‘₯1, π‘₯2)) β‰  (βˆ…, βˆ…) β‡’ (π‘₯1, π‘₯2) ∈ 𝑁𝐡 _𝐷(𝐡1, 𝐡2). Thus (π‘₯1, π‘₯2) ∈ 𝑁𝐡 _𝐷(𝐴1, 𝐴2) β‡’ (π‘₯1, π‘₯2) ∈ 𝑁𝐡 _𝐷(𝐡1, 𝐡2). Therefore 𝑁𝐡 _𝐷(𝐴1, 𝐴2) βŠ† 𝑁𝐡 _𝐷(𝐡1, 𝐡2). 4)Since (𝐴1, 𝐴2) βŠ† (𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2) and (𝐡1, 𝐡2) βŠ† (𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2). By (3), 𝑁𝐡 _𝐷(𝐴1, 𝐴2) βŠ† 𝑁𝐡 _𝐷((𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2)) and 𝑁𝐡 _𝐷(𝐡1, 𝐡2) βŠ† 𝑁𝐡 _𝐷((𝐴1, 𝐴2) βˆͺ 17 J. Jasmine Elizabeth, G. Hari Siva Annam (𝐡1, 𝐡2)). Therefore, 𝑁𝐡 _𝐷(𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐷(𝐡1, 𝐡2) βŠ† 𝑁𝐡 _𝐷((𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2)).… (1). Let (π‘₯1, π‘₯2) βˆ‰ 𝑁𝐡 _𝐷(𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐷(𝐡1, 𝐡2). Then (π‘₯1, π‘₯2) βˆ‰ 𝑁𝐡 𝐷(𝐴1,𝐴2) and (π‘₯1, π‘₯2) βˆ‰ 𝑁𝐡 _𝐷(𝐡1, 𝐡2). Therefore, there exists 𝑁𝐡-open sets (𝐺1, 𝐺2) and (𝐻1, 𝐻2) containing (π‘₯1, π‘₯2) such that (𝐺1, 𝐺2) ∩ ((𝐴1, 𝐴2) βˆ’ (π‘₯1, π‘₯2)) = (βˆ…, βˆ…) and (𝐻1, 𝐻2) ∩ ((𝐡1, 𝐡2) βˆ’ (π‘₯1, π‘₯2)) = (βˆ…, βˆ…). Since (𝐺1, 𝐺2) ∩ (𝐻1, 𝐻2) βŠ† (𝐺1, 𝐺2) and (𝐻1, 𝐻2), ((𝐺1, 𝐺2) ∩ (𝐻1, 𝐻2)) ∩ ((𝐴1, 𝐴2) βˆ’ (π‘₯1, π‘₯2)) = (βˆ…, βˆ…) and ((𝐺1, 𝐺2) ∩ (𝐻1, 𝐻2)) ∩ ((𝐡1, 𝐡2) βˆ’ (π‘₯1, π‘₯2)) = (βˆ…, βˆ…). Also (𝐺1, 𝐺2) ∩ (𝐻1, 𝐻2) is a 𝑁𝐡-open set containing(π‘₯1, π‘₯2). Therefore, ((𝐺1, 𝐺2) ∩ (𝐻1, 𝐻2)) ∩ (((𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2)) βˆ’ (π‘₯1, π‘₯2)) = (βˆ…, βˆ…). That is, (π‘₯1, π‘₯2) is not a 𝑁𝐡 limit point of (𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2). Hence (π‘₯1, π‘₯2) βˆ‰ 𝑁𝐡 _𝐷((𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2)). Therefore, 𝑁𝐡 _𝐷((𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2)) βŠ† 𝑁𝐡 _𝐷(𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐷(𝐡1, 𝐡2)…. (2). From (1) and (2),𝑁𝐡 _𝐷(𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐷(𝐡1, 𝐡2) = 𝑁𝐡 _𝐷((𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2)). Theorem 3.4: Let (𝐴1, 𝐴2)and (𝐡1, 𝐡2) be two subsets of 𝑁𝐡 topological space (π‘ˆ1, π‘ˆ2, πœπ‘… (𝑋1, 𝑋2)).Then 𝑁𝐡 _𝐷((𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2)) βŠ† 𝑁𝐡 _𝐷(𝐴1, 𝐴2) ∩ 𝑁𝐡 _𝐷(𝐡1, 𝐡2). Proof: Since (𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2) βŠ† (𝐴1, 𝐴2)and (𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2) βŠ† (𝐡1, 𝐡2). By the previous theorem,𝑁𝐡 _𝐷((𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2)) βŠ† 𝑁𝐡 _𝐷(𝐴1, 𝐴2)and 𝑁𝐡 _𝐷((𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2)) βŠ† 𝑁𝐡 _𝐷(𝐡1, 𝐡2). Therefore,𝑁𝐡 _𝐷((𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2)) βŠ† 𝑁𝐡 _𝐷(𝐴1, 𝐴2) ∩ 𝑁𝐡 _𝐷(𝐡1, 𝐡2). Remark 3.5: The reverse inclusion may not true as shown in the following example. Example 3.6: U1 = {π‘Ž, 𝑏, 𝑐}, U2 = {1, 2} with (U1, U2) R ⁄ = {({a, b}, {2}), ({c}, {1})}. Let (X1, X2) =({b}, {2}). Then Ο„R(X1, X2) ={(Ξ¦, Ξ¦), (U1, U2), ({a, b}, {2})}. Here (𝐴1, 𝐴2) = ({a, b}, {1})and (𝐡1, 𝐡2) = ({b, c}, {1,2}), (𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2)=({b}, {1}) and hence 𝑁𝐡 _𝐷((𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2))={({a}, {1}), ({a}, {2}), ({b}, {2}), ({c}, {1}), ({c}, {2})}. Also 𝑁𝐡 _𝐷(𝐴1, 𝐴2)={({a}, {1}), ({a}, {2}), ({b}, {1}), ({b}, {2}), ({c}, {1}), ({c}, {2})} and 𝑁𝐡 _𝐷(𝐡1, 𝐡2)={({a}, {1}), ({a}, {2}), ({b}, {1}), ({c}, {1}), ({c}, {2})}. But 𝑁𝐡 _𝐷(𝐴1, 𝐴2) ∩ 𝑁𝐡 _𝐷(𝐡1, 𝐡2)={({a}, {1}), ({a}, {2}), ({b}, {1}), ({c}, {1}), ({c}, {2})}. Thus, 𝑁𝐡 _𝐷(𝐴1, 𝐴2) ∩ 𝑁𝐡 _𝐷(𝐡1, 𝐡2)βŠˆπ‘π΅ _𝐷((𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2)). Theorem 3.7: 𝑁𝐡 (𝐴1, 𝐴2) = (𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐷(𝐴1, 𝐴2), where (𝐴1, 𝐴2) βŠ† (U1, U2). Proof: If (π‘₯1, π‘₯2) ∈ (𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐷(𝐴1, 𝐴2), Then (π‘₯1, π‘₯2) ∈ (𝐴1, 𝐴2) or (π‘₯1, π‘₯2) ∈ 𝑁𝐡 _𝐷(𝐴1, 𝐴2). Let (π‘₯1, π‘₯2) βˆ‰ (𝐴1, 𝐴2). Then (π‘₯1, π‘₯2) ∈ 𝑁𝐡 _𝐷(𝐴1, 𝐴2). Therefore, for every 𝑁𝐡-open set (𝐺1, 𝐺2)containing (π‘₯1, π‘₯2), (𝐺1, 𝐺2) ∩ ((𝐴1, 𝐴2) βˆ’ (π‘₯1, π‘₯2)) β‰  (βˆ…, βˆ…). Since (π‘₯1, π‘₯2) βˆ‰ (𝐴1, 𝐴2), (𝐺1, 𝐺2) ∩ (𝐴1, 𝐴2) β‰  (βˆ…, βˆ…). Therefore, (π‘₯1, π‘₯2) ∈ 𝑁𝐡 (𝐴1, 𝐴2). Therefore, (𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐷(𝐴1, 𝐴2) βŠ† 𝑁𝐡 (𝐴1, 𝐴2)…. (1). Let (π‘₯1, π‘₯2) ∈ 𝑁𝐡 (𝐴1, 𝐴2)and (π‘₯1, π‘₯2) ∈ (𝐴1, 𝐴2). Then the result is obvious. If (π‘₯1, π‘₯2) ∈ 𝑁𝐡 (𝐴1, 𝐴2)and (π‘₯1, π‘₯2) βˆ‰ (𝐴1, 𝐴2). Therefore, (𝐺1, 𝐺2) ∩ (𝐴1, 𝐴2) β‰  (βˆ…, βˆ…) for every 𝑁𝐡-open set (𝐺1, 𝐺2) containing (π‘₯1, π‘₯2) and hence (𝐺1, 𝐺2) ∩ ((𝐴1, 𝐴2) βˆ’ (π‘₯1, π‘₯2)) β‰  18 Further Diversification of Nano Binary Open Sets (βˆ…, βˆ…). Therefore, (π‘₯1, π‘₯2) ∈ 𝑁𝐡 _𝐷(𝐴1, 𝐴2) and hence (π‘₯1, π‘₯2) ∈ (𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐷(𝐴1, 𝐴2). Therefore, 𝑁𝐡 (𝐴1, 𝐴2) βŠ† (𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐷(𝐴1, 𝐴2)… (2). From (1) and (2), 𝑁𝐡 (𝐴1, 𝐴2) = (𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐷(𝐴1, 𝐴2). Result 3.8: 𝑁𝐡 π‘œ (𝐴1, 𝐴2) = (𝐴1, 𝐴2) βˆ’ 𝑁𝐡 _𝐷[(U1, U2) βˆ’ (𝐴1, 𝐴2)], where (𝐴1, 𝐴2) βŠ† (U1, U2). Proof: By the previous theorem, 𝑁𝐡 (𝐴1, 𝐴2) = (𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐷(𝐴1, 𝐴2)β‡’(U1, U2) βˆ’ 𝑁𝐡 (𝐴1, 𝐴2) = ((U1, U2) βˆ’ (𝐴1, 𝐴2)) ∩ ((U1, U2) βˆ’ 𝑁𝐡 _𝐷(𝐴1, 𝐴2)) β‡’ (U1, U2) βˆ’ 𝑁𝐡 (𝐴1, 𝐴2) = ((U1, U2) βˆ’ (𝐴1, 𝐴2)) βˆ’ 𝑁𝐡 _𝐷(𝐴1, 𝐴2) β‡’ 𝑁𝐡 π‘œ ((U1, U2) βˆ’ (𝐴1, 𝐴2)) = ((U1, U2) βˆ’ (𝐴1, 𝐴2)) βˆ’ 𝑁𝐡 _𝐷(𝐴1, 𝐴2). By replacing (U1, U2) βˆ’ (𝐴1, 𝐴2) by (𝐴1, 𝐴2) and (𝐴1, 𝐴2)by (U1, U2) βˆ’ (𝐴1, 𝐴2), 𝑁𝐡 π‘œ (𝐴1, 𝐴2) = (𝐴1, 𝐴2) βˆ’ 𝑁𝐡 _𝐷[(U1, U2) βˆ’ (𝐴1, 𝐴2)]. 4. Nano Binary Exterior Definition 4.1: For a subset(𝐴1, 𝐴2) βŠ† (π‘ˆ1, π‘ˆ2), the nano binary exterior of (𝐴1, 𝐴2) is defined as𝑁𝐡 π‘œ ((π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2)). It is denoted by 𝑁𝐡 _𝐸(𝐴1, 𝐴2). Definition 4.2: For a subset(𝐴1, 𝐴2) βŠ† (π‘ˆ1, π‘ˆ2), the nano binary border of (𝐴1, 𝐴2) is defined as (𝐴1, 𝐴2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2). It is denoted by 𝑁𝐡 _𝐡(𝐴1, 𝐴2). Theorem 4.3: Let (𝐴1, 𝐴2)and (𝐡1, 𝐡2) be two subsets of 𝑁𝐡 topological space (π‘ˆ1, π‘ˆ2, πœπ‘… (𝑋1, 𝑋2)). Then the following holds: 1) If (𝐴1, 𝐴2) βŠ† (𝐡1, 𝐡2), then 𝑁𝐡 _𝐸(𝐡1, 𝐡2) βŠ† 𝑁𝐡 _𝐸(𝐴1, 𝐴2). 2) 𝑁𝐡 _𝐸((𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2)) βŠ† 𝑁𝐡 _𝐸(𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐸(𝐡1, 𝐡2). 3) 𝑁𝐡 _𝐸(𝐴1, 𝐴2) ∩ 𝑁𝐡 _𝐸(𝐡1, 𝐡2) βŠ† 𝑁𝐡 _𝐸((𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2)). Proof: 1) If (𝐴1, 𝐴2) βŠ† (𝐡1, 𝐡2)then (π‘ˆ1, π‘ˆ2) βˆ’ (𝐡1, 𝐡2) βŠ† (π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2) β‡’ 𝑁𝐡 π‘œ ((π‘ˆ1, π‘ˆ2) βˆ’ (𝐡1, 𝐡2)) βŠ† 𝑁𝐡 π‘œ ((π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2)) β‡’ 𝑁𝐡 _𝐸(𝐡1, 𝐡2) βŠ† 𝑁𝐡 _𝐸(𝐴1, 𝐴2). 2) Since (𝐴1, 𝐴2) βŠ† (𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2)and (𝐡1, 𝐡2) βŠ† (𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2). By (1), 𝑁𝐡 _𝐸((𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2)) βŠ† 𝑁𝐡 _𝐸(𝐴1, 𝐴2)and 𝑁𝐡 _𝐸((𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2)) βŠ† 𝑁𝐡 _𝐸(𝐡1, 𝐡2). Therefore, 𝑁𝐡 _𝐸((𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2)) βŠ† 𝑁𝐡 _𝐸(𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐸(𝐡1, 𝐡2). 3) Since (𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2) βŠ† (𝐴1, 𝐴2)and (𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2) βŠ† (𝐡1, 𝐡2). By (1) 𝑁𝐡 _𝐸(𝐴1, 𝐴2) βŠ† 𝑁𝐡 _𝐸((𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2))and 𝑁𝐡 _𝐸(𝐡1, 𝐡2) βŠ† 𝑁𝐡 _𝐸((𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2)). Therefore, 𝑁𝐡 _𝐸(𝐴1, 𝐴2) ∩ 𝑁𝐡 _𝐸(𝐡1, 𝐡2) βŠ† 𝑁𝐡 _𝐸((𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2)). Remark 4.4: The inclusion may be strict. We can see in the following example. Example 4.5: Let U1 = {π‘Ž, 𝑏, 𝑐}, U2 = {1, 2} with (U1, U2) R ⁄ {({a, b}, {2}), ({c}, {1})}. Let (X1, X2) =({b}, {2}). Then Ο„R(X1, X2) ={(Ξ¦, Ξ¦), (U1, U2), ({a, b}, {2})}. 2) Take (𝐴1, 𝐴2) = ({π‘Ž, 𝑏}, {2}) π‘Žπ‘›π‘‘ (𝐡1, 𝐡2) = ({c}, {1}). 𝑁𝐡 _𝐸({π‘Ž, 𝑏}, {2}) βˆͺ 𝑁𝐡 _𝐸({c}, {1}) = 𝑁𝐡 π‘œ ({c}, {1}) βˆ’ 𝑁𝐡 π‘œ ({π‘Ž, 𝑏}, {2}) = (Ξ¦, Ξ¦) βˆ’ ({π‘Ž, 𝑏}, {2}) = ({π‘Ž, 𝑏}, {2}). Also, 𝑁𝐡 _𝐸(({π‘Ž, 𝑏}, {2}) βˆͺ ({c}, {1})) = 𝑁𝐡 _𝐸(U1, U2) = 𝑁𝐡 π‘œ (Ξ¦, Ξ¦) = 19 J. Jasmine Elizabeth, G. Hari Siva Annam (Ξ¦, Ξ¦). Therefore, ({a, b}, {2}) ⊈ (Ξ¦, Ξ¦) and hence 𝑁𝐡 _𝐸((𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2)) βŠ‚ 𝑁𝐡 _𝐸(𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐸(𝐡1, 𝐡2). 3) Take (𝐴1, 𝐴2) = ({𝑐}, {1,2}) π‘Žπ‘›π‘‘ (𝐡1, 𝐡2) = ({a, c}, {1}). 𝑁𝐡 _𝐸(({𝑐}, {1,2}) ∩ ({a, c}, {1})) = 𝑁𝐡 _𝐸({c}, {1}) = 𝑁𝐡 π‘œ ({π‘Ž, 𝑏}, {2}) = ({π‘Ž, 𝑏}, {2})and 𝑁𝐡 _𝐸({𝑐}, {1,2}) ∩ 𝑁𝐡 _𝐸({a, c}, {1}) = 𝑁𝐡 π‘œ ({a, b}, {βˆ…}) ∩ 𝑁𝐡 π‘œ ({b}, {2}) = (Ξ¦, Ξ¦) ∩ (Ξ¦, Ξ¦) = (Ξ¦, Ξ¦). Therefore, ({a, b}, {2}) ⊈ (Ξ¦, Ξ¦) and hence 𝑁𝐡 _𝐸(𝐴1, 𝐴2) ∩ 𝑁𝐡 _𝐸(𝐡1, 𝐡2) βŠ‚ 𝑁𝐡 _𝐸((𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2)). Theorem 4.6: Let (𝐴1, 𝐴2) and (𝐡1, 𝐡2) be two subsets of 𝑁𝐡 topological space (π‘ˆ1, π‘ˆ2, πœπ‘… (𝑋1, 𝑋2)). Then the following holds: 1) 𝑁𝐡 _𝐸(𝐴1, 𝐴2) = (π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 (𝐴1, 𝐴2) 2)𝑁𝐡 _𝐸(𝑁𝐡 _𝐸(𝐴1, 𝐴2)) = 𝑁𝐡 π‘œ (𝑁𝐡 (𝐴1, 𝐴2)) 3) 𝑁𝐡 _𝐸(π‘ˆ1, π‘ˆ2) = (βˆ…, βˆ…)and𝑁𝐡 _𝐸(βˆ…, βˆ…) = (π‘ˆ1, π‘ˆ2) 4) 𝑁𝐡 _𝐸(𝐴1, 𝐴2) = 𝑁𝐡 _𝐸[(π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 _𝐸(𝐴1, 𝐴2)] 5) 𝑁𝐡 π‘œ (𝐴1, 𝐴2) βŠ† 𝑁𝐡 _𝐸(𝑁𝐡 _𝐸(𝐴1, 𝐴2) 6) 𝑁𝐡 π‘œ (𝐴1, 𝐴2), 𝑁𝐡 _𝐸(𝐴1, 𝐴2), 𝑁𝐡 _𝐹(𝐴1, 𝐴2) are mutually disjoint and (π‘ˆ1, π‘ˆ2) = 𝑁𝐡 π‘œ (𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐸(𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐹(𝐴1, 𝐴2). 7) (𝐴1, 𝐴2) ∩ 𝑁𝐡 _𝐸(𝐴1, 𝐴2) = (βˆ…, βˆ…) 8) 𝑁𝐡 _𝐸(𝐴1, 𝐴2) βŠ† (π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2) Proof: 1)𝑁𝐡 _𝐸(𝐴1, 𝐴2) = 𝑁𝐡 π‘œ ((π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2)) = (π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 (𝐴1, 𝐴2). Hence (1) is proved. 2)𝑁𝐡 _𝐸(𝑁𝐡 _𝐸(𝐴1, 𝐴2)) = 𝑁𝐡 _𝐸[𝑁𝐡 π‘œ ((π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2))] = 𝑁𝐡 _𝐸[(π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 (𝐴1, 𝐴2)] = 𝑁𝐡 π‘œ ((π‘ˆ1, π‘ˆ2) βˆ’ [(π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 (𝐴1, 𝐴2)]) = 𝑁𝐡 π‘œ (𝑁𝐡 (𝐴1, 𝐴2)).Therefore, 𝑁𝐡 _𝐸(𝑁𝐡 _𝐸(𝐴1, 𝐴2)) = 𝑁𝐡 π‘œ (𝑁𝐡 (𝐴1, 𝐴2)). 3)𝑁𝐡 _𝐸(π‘ˆ1, π‘ˆ2) = 𝑁𝐡 π‘œ ((π‘ˆ1, π‘ˆ2) βˆ’ (π‘ˆ1, π‘ˆ2)) = 𝑁𝐡 π‘œ (βˆ…, βˆ…) = (βˆ…, βˆ…)and 𝑁𝐡 _𝐸(βˆ…, βˆ…) = 𝑁𝐡 π‘œ ((π‘ˆ1, π‘ˆ2) βˆ’ (βˆ…, βˆ…)) = 𝑁𝐡 π‘œ (π‘ˆ1, π‘ˆ2) = (π‘ˆ1, π‘ˆ2). Therefore, 𝑁𝐡 _𝐸(π‘ˆ1, π‘ˆ2) = (βˆ…, βˆ…)and 𝑁𝐡 _𝐸(βˆ…, βˆ…) = (π‘ˆ1, π‘ˆ2). 4)𝑁𝐡 _𝐸[(π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 _𝐸(𝐴1, 𝐴2)] = 𝑁𝐡 π‘œ ((π‘ˆ1, π‘ˆ2) βˆ’ [(π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 _𝐸(𝐴1, 𝐴2)]) = 𝑁𝐡 π‘œ (𝑁𝐡 _𝐸(𝐴1, 𝐴2)) = 𝑁𝐡 π‘œ [𝑁𝐡 π‘œ ((π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2))] = 𝑁𝐡 π‘œ ((π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2)) = 𝑁𝐡 _𝐸(𝐴1, 𝐴2). Therefore, 𝑁𝐡 _𝐸(𝐴1, 𝐴2) = 𝑁𝐡 _𝐸[(π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 _𝐸(𝐴1, 𝐴2)]. 5)Since (𝐴1, 𝐴2) βŠ† 𝑁𝐡 (𝐴1, 𝐴2) β‡’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2) βŠ† 𝑁𝐡 π‘œ (𝑁𝐡 (𝐴1, 𝐴2)) = 𝑁𝐡 π‘œ ((π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 π‘œ [(π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2)]) = 𝑁𝐡 _𝐸(𝑁𝐡 π‘œ [(π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2)]) = 𝑁𝐡 _𝐸(𝑁𝐡 _𝐸(𝐴1, 𝐴2)). Therefore, 𝑁𝐡 π‘œ (𝐴1, 𝐴2) βŠ† 𝑁𝐡 _𝐸(𝑁𝐡 _𝐸(𝐴1, 𝐴2)). 6)Assume that 𝑁𝐡 _𝐸(𝐴1, 𝐴2) ∩ 𝑁𝐡 π‘œ (𝐴1, 𝐴2) β‰  (βˆ…, βˆ…). Then there exists (π‘₯1, π‘₯2) ∈ 𝑁𝐡 _𝐸(𝐴1, 𝐴2) ∩ 𝑁𝐡 π‘œ (𝐴1, 𝐴2) β‡’ (π‘₯1, π‘₯2) ∈ 𝑁𝐡 _𝐸(𝐴1, 𝐴2) and (π‘₯1, π‘₯2) ∈ 𝑁𝐡 π‘œ (𝐴1, 𝐴2) β‡’ (π‘₯1, π‘₯2) ∈ (π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2)and (π‘₯1, π‘₯2) ∈ (𝐴1, 𝐴2), which is not possible. Hence our 20 Further Diversification of Nano Binary Open Sets assumption is wrong. Therefore, 𝑁𝐡 _𝐸(𝐴1, 𝐴2) ∩ 𝑁𝐡 π‘œ (𝐴1, 𝐴2) = (βˆ…, βˆ…). In the same way we can prove the others. 𝑁𝐡 _𝐸(𝐴1, 𝐴2) = (π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 (𝐴1, 𝐴2) = (π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 (𝐴1, 𝐴2) = (π‘ˆ1, π‘ˆ2) βˆ’ [𝑁𝐡 π‘œ (𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐹(𝐴1, 𝐴2)]. Therefore, (π‘ˆ1, π‘ˆ2) = 𝑁𝐡 _𝐸(𝐴1, 𝐴2) βˆͺ 𝑁𝐡 π‘œ (𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐹(𝐴1, 𝐴2). 7)(𝐴1, 𝐴2) ∩ 𝑁𝐡 _𝐸(𝐴1, 𝐴2) = (𝐴1, 𝐴2) ∩ 𝑁𝐡 π‘œ ((π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2)) βŠ† (𝐴1, 𝐴2) ∩ ((π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2)) = (βˆ…, βˆ…). Therefore, (𝐴1, 𝐴2) ∩ 𝑁𝐡 _𝐸(𝐴1, 𝐴2) = (βˆ…, βˆ…). 8)𝑁𝐡 _𝐸(𝐴1, 𝐴2) = 𝑁𝐡 π‘œ ((π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2)) βŠ† (π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2). Note 4.7: If (𝐴1, 𝐴2) is 𝑁𝐡 closed, then equality holds in (5). Theorem 4.8: In (π‘ˆ1, π‘ˆ2, πœπ‘… (𝑋1, 𝑋2)), (𝐴1, 𝐴2)and (𝐡1, 𝐡2) be two subsets of (π‘ˆ1, π‘ˆ2). Then the following holds: 1) 𝑁𝐡 π‘œ (𝐴1, 𝐴2) ∩ 𝑁𝐡 _𝐡(𝐴1, 𝐴2) = (βˆ…, βˆ…) 2) (𝐴1, 𝐴2) is 𝑁𝐡-open if and only if 𝑁𝐡 _𝐡(𝐴1, 𝐴2) = (βˆ…, βˆ…) 3) 𝑁𝐡 π‘œ (𝑁𝐡 _𝐡(𝐴1, 𝐴2)) = (βˆ…, βˆ…) 4) 𝑁𝐡 _𝐡(𝑁𝐡 π‘œ (𝐴1, 𝐴2)) = (βˆ…, βˆ…) 5) 𝑁𝐡 _𝐡(𝑁𝐡 _𝐡(𝐴1, 𝐴2)) = 𝑁𝐡 _𝐡(𝐴1, 𝐴2) 6) 𝑁𝐡 _𝐡(𝐴1, 𝐴2) = (𝐴1, 𝐴2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2) = (𝐴1, 𝐴2) ∩ 𝑁𝐡 ((π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2)). 7) If (𝐴1, 𝐴2) βŠ† (𝐡1, 𝐡2), then 𝑁𝐡 _𝐡(𝐡1, 𝐡2) βŠ† 𝑁𝐡 _𝐡(𝐴1, 𝐴2). 8) 𝑁𝐡 _𝐡((𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2)) βŠ† 𝑁𝐡 _𝐡(𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐡(𝐡1, 𝐡2). 9) 𝑁𝐡 _𝐡(𝐴1, 𝐴2) ∩ 𝑁𝐡 _𝐡(𝐡1, 𝐡2) βŠ† 𝑁𝐡 _𝐡((𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2)). 10) 𝑁𝐡 _𝐡(𝐴1, 𝐴2) = 𝑁𝐡 _𝐷((π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2))and 𝑁𝐡 _𝐷(𝐴1, 𝐴2) = 𝑁𝐡 _𝐡((π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2)). 11) (𝐴1, 𝐴2) = 𝑁𝐡 π‘œ (𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐡(𝐴1, 𝐴2). Proof: 1) 𝑁𝐡 π‘œ (𝐴1, 𝐴2) ∩ 𝑁𝐡 _𝐡(𝐴1, 𝐴2) = 𝑁𝐡 π‘œ (𝐴1, 𝐴2) ∩ [(𝐴1, 𝐴2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2)] = 𝑁𝐡 π‘œ (𝐴1, 𝐴2) ∩ [(𝐴1, 𝐴2) ∩ ((π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2))] = 𝑁𝐡 π‘œ (𝐴1, 𝐴2) ∩ ((π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2)) ∩ (𝐴1, 𝐴2) = (βˆ…, βˆ…) ∩ (𝐴1, 𝐴2) = (βˆ…, βˆ…).Therefore, 𝑁𝐡 π‘œ (𝐴1, 𝐴2) ∩ 𝑁𝐡 _𝐡(𝐴1, 𝐴2) = (βˆ…, βˆ…) 2)Any subset (𝐴1, 𝐴2) of 𝑁𝐡 topological space (π‘ˆ1, π‘ˆ2, πœπ‘… (𝑋1, 𝑋2)) is 𝑁𝐡-open ⇔(𝐴1, 𝐴2) = 𝑁𝐡 π‘œ (𝐴1, 𝐴2) ⇔ (𝐴1, 𝐴2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2) = (βˆ…, βˆ…) ⇔ 𝑁𝐡 _𝐡(𝐴1, 𝐴2) = (βˆ…, βˆ…). 3)𝑁𝐡 π‘œ (𝑁𝐡 _𝐡(𝐴1, 𝐴2)) = 𝑁𝐡 π‘œ ((𝐴1, 𝐴2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2)) = 𝑁𝐡 π‘œ [(𝐴1, 𝐴2) ∩ ((π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2))] βŠ† 𝑁𝐡 π‘œ (𝐴1, 𝐴2) ∩ 𝑁𝐡 π‘œ ((π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2)) βŠ† 𝑁𝐡 π‘œ (𝐴1, 𝐴2) ∩ ((π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2)) = (βˆ…, βˆ…). Therefore, 𝑁𝐡 π‘œ (𝑁𝐡 _𝐡(𝐴1, 𝐴2)) = (βˆ…, βˆ…). 4)𝑁𝐡 _𝐡(𝑁𝐡 π‘œ (𝐴1, 𝐴2)) = 𝑁𝐡 π‘œ (𝐴1, 𝐴2) βˆ’ 𝑁𝐡 π‘œ (𝑁𝐡 π‘œ(𝐴1, 𝐴2)) = 𝑁𝐡 π‘œ (𝐴1, 𝐴2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2) = (βˆ…, βˆ…). Therefore, 𝑁𝐡 _𝐡(𝑁𝐡 π‘œ (𝐴1, 𝐴2)) = (βˆ…, βˆ…). 5)𝑁𝐡 _𝐡(𝑁𝐡 _𝐡(𝐴1, 𝐴2)) = 𝑁𝐡 _𝐡(𝐴1, 𝐴2) βˆ’ 𝑁𝐡 π‘œ (𝑁𝐡 _𝐡(𝐴1, 𝐴2)) = 𝑁𝐡 _𝐡(𝐴1, 𝐴2) βˆ’ (βˆ…, βˆ…) (By (3)) = 𝑁𝐡 _𝐡(𝐴1, 𝐴2). Therefore, 𝑁𝐡 _𝐡(𝑁𝐡 _𝐡(𝐴1, 𝐴2)) = 𝑁𝐡 _𝐡(𝐴1, 𝐴2). 21 J. Jasmine Elizabeth, G. Hari Siva Annam 6)𝑁𝐡 _𝐡(𝐴1, 𝐴2) = (𝐴1, 𝐴2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2) = (𝐴1, 𝐴2) ∩ ((π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2)) = (𝐴1, 𝐴2) ∩ 𝑁𝐡 ((π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2)). Therefore, 𝑁𝐡 _𝐡(𝐴1, 𝐴2) = (𝐴1, 𝐴2) ∩ 𝑁𝐡 ((π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2)). 7)If (𝐴1, 𝐴2) βŠ† (𝐡1, 𝐡2), then 𝑁𝐡 π‘œ (𝐴1, 𝐴2) βŠ† 𝑁𝐡 π‘œ (𝐡1, 𝐡2) β‡’ (π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 π‘œ (𝐡1, 𝐡2) βŠ† (π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2) β‡’ (𝐴1, 𝐴2) ∩ ((π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 π‘œ (𝐡1, 𝐡2)) βŠ† (𝐴1, 𝐴2) ∩ ((π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2)) β‡’ (𝐴1, 𝐴2) βˆ’ 𝑁𝐡 π‘œ (𝐡1, 𝐡2) βŠ† (𝐴1, 𝐴2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2) β‡’ 𝑁𝐡 _𝐡(𝐡1, 𝐡2) βŠ† 𝑁𝐡 _𝐡(𝐴1, 𝐴2) (By (6)) 8)Since (𝐴1, 𝐴2) βŠ† (𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2)and (𝐡1, 𝐡2) βŠ† (𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2). By (4) 𝑁𝐡 _𝐡((𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2)) βŠ† 𝑁𝐡 _𝐡(𝐴1, 𝐴2)and 𝑁𝐡 _𝐡((𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2)) βŠ† 𝑁𝐡 _𝐡(𝐡1, 𝐡2). Therefore, 𝑁𝐡 _𝐡((𝐴1, 𝐴2) βˆͺ (𝐡1, 𝐡2)) βŠ† 𝑁𝐡 _𝐡(𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐡(𝐡1, 𝐡2). 9)Since (𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2) βŠ† (𝐴1, 𝐴2)and (𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2) βŠ† (𝐡1, 𝐡2). By (4), 𝑁𝐡 _𝐡(𝐴1, 𝐴2) βŠ† 𝑁𝐡 _𝐡((𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2))and 𝑁𝐡 _𝐡(𝐡1, 𝐡2) βŠ† 𝑁𝐡 _𝐡((𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2)). Therefore, 𝑁𝐡 _𝐡(𝐴1, 𝐴2) ∩ 𝑁𝐡 _𝐡(𝐡1, 𝐡2) βŠ† 𝑁𝐡 _𝐡((𝐴1, 𝐴2) ∩ (𝐡1, 𝐡2)). 10)𝑁𝐡 _𝐡(𝐴1, 𝐴2) = (𝐴1, 𝐴2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2). By result 3.8, (𝐴1, 𝐴2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2) = (𝐴1, 𝐴2) βˆ’ [(𝐴1, 𝐴2) βˆ’ 𝑁𝐡 _𝐷((π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2))] = 𝑁𝐡 _𝐷((π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2))By replacing (𝐴1, 𝐴2)by (π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2), 𝑁𝐡 _𝐷(𝐴1, 𝐴2) = 𝑁𝐡 _𝐡((π‘ˆ1, π‘ˆ2) βˆ’ (𝐴1, 𝐴2)). 11)𝑁𝐡 π‘œ (𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐡(𝐴1, 𝐴2) = 𝑁𝐡 π‘œ (𝐴1, 𝐴2) βˆͺ ((𝐴1, 𝐴2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2)) = 𝑁𝐡 π‘œ (𝐴1, 𝐴2) βˆͺ ((𝐴1, 𝐴2) ∩ ((π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2))) = (𝑁𝐡 π‘œ(𝐴1, 𝐴2) βˆͺ (𝐴1, 𝐴2)) ∩ (𝑁𝐡 π‘œ (𝐴1, 𝐴2) βˆͺ ((π‘ˆ1, π‘ˆ2) βˆ’ 𝑁𝐡 π‘œ (𝐴1, 𝐴2))) = (𝐴1, 𝐴2) ∩ (π‘ˆ1, π‘ˆ2) = (𝐴1, 𝐴2). Therefore, (𝐴1, 𝐴2) = 𝑁𝐡 π‘œ (𝐴1, 𝐴2) βˆͺ 𝑁𝐡 _𝐡(𝐴1, 𝐴2). 5. Conclusion Nano binary derived, nano binary border and nano binary exterior in nano binary topological spaces were introduced and their properties were discussed. In future we will discuss generalized closed sets in nano binary topological spaces. References [1] Lellis Thivagar. M and Carmel Richard, On Nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention, 1(1) 2013, 31-37. [2] Nithyanantha Jothi. S and P. Thangavelu, On Binary Topological Spaces, Pacific- Asian Journal of Mathematics. [3] Hari Siva Annam. G and J. Jasmine Elizabeth, Cognition of Nano Binary Topological Spaces, Global Journal of Pure and Applied Mathematics, 6(2019), 1045- 1054. 22 Further Diversification of Nano Binary Open Sets [4] Jasmine Elizabeth. J and G. Hari Siva Annam, Some notions on nano binary continuous, Malaya Journal of Matematik, Vol. 9, N0. 1,592-597, 2021. [5] Jasmine Elizabeth. J and G. Hari Siva Annam, Nano binary contra continuous functions in nano binary topological spaces, J. Math. Comput. Sci. 11 (2021), No. 4, 4994-5011. [6] Lellis Thivagar. M and Sutha Devi. V, On Multi-granular Nano Topology, Accepted (2015), South East Asian Bulletin of Mathematics, Springer Verlag. [7] C. Janaki and A. Jeyalakshmi, A new form of generalized closed sets via regular local function in ideal topological spaces, Malaya Journal of Matematik, S (1) (2015), 1-9. [8] O. Njastad, On some classes of nearly open sets, Pacific J. Math.,15 (1965), 961- 970. [9] E. F. Lashin and T. Medhat, Topological reduction of information systems, Chaos, Solitions and Fractals, 25 (2015), 277-286. [10] C. Richard, Studies on nano topological spaces, Ph.D. Thesis, Madurai Kamaraj University, India (2013). 23