Ratio Mathematica Volume 44, 2022 Fuzzy Translation in Fuzzy d-Ideals and Fuzzy d-Subalgebra R. G. Keerthana1 K. R. Sobha2 Abstract In this paper, we discuss about some properties such as fuzzy translation in fuzzy d- ideals and fuzzy d-subalgebra. Keywords: d - algebra, d - subalgebra, d - ideal, fuzzy d - ideal, fuzzy – 𝛼 – translation, fuzzy d - subalgebra. 2010 AMS Subject Classification: 94D05, 08A723. 1Research Scholar, Reg.No.20213182092001, Sree Ayyappa College for Women, Chunkankadai, Nagercoil-62900. [Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, Tamilnadu, India.]. keerthanarajagopal.rg@gmail.com 2Assistant Professor, Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai, Nagercoil. [Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, Tamilnadu, India.] vijayakumar.sobha9@gmail.com. 3Received on June 18th, 2022. Accepted on Aug 10th, 2022. Published on Nov 30th, 2022. doi: 10.23755/rm.v44i0.885. ISSN: 1592 -7415. eISSN: 2282 – 8214. Β©The Authors. This paper is published under the CC - BY licence agreement. 24 mailto:keerthanarajagopal.rg@gmail.com mailto:vijayakumar.sobha9@gmail.com R. G. Keerthana, K. R. Sobha 1. Introduction Fuzzy set theory was introduced by Zadeh in 1965 [6]. The study of fuzzy subsets and its applications to various mathematical contexts has given rise to what is now commonly called fuzzy mathematics. It forms a branch of mathematics including fuzzy set theory and fuzzy logic. Fuzzy set theory was guided by the assumption that the classical sets were not natural appropriate or useful notions in describing the real-life problems because every object encountered in the real physical world carries some degree of fuzziness. Hence fuzzy set has become strong area of research in engineering, medical science, graph theory etc. Algebraic structures play an important role in mathematics with wide range of application in many disciplines such as computer sciences, control engineering, theoretical physics, information systems and topological spaces. Since these ideas have been applied to other algebraic structures such as group, semigroup, ring, modules, vector spaces and topologies. It gives enthusiasm to the researchers to view various concepts and results from the area of abstract algebra in the broader frame work of fuzzy setting. Fuzzy algebra is an important branch of fuzzy mathematics. In 1996, J. Negger and H.S. Kim [3] introduced the class of d-algebra which is a generalization of BCK- algebras and investigated relation between d-algebra and BCK-algebra. M. Akram and K.H. Dar [1] introduced the concepts fuzzy d-algebra, fuzzy subalgebra and fuzzy d- ideals of d-algebra. 2. Preliminaries Definition:2.1 A d-algebra is a non-empty set 𝑋 with a constant 0 and a binary operation βˆ— satisfies the following axioms: i.π‘₯ βˆ— π‘₯ = 0 ii.0 βˆ— π‘₯ = 0 iii.π‘₯ βˆ— 𝑦 = 0 and 𝑦 βˆ— π‘₯ = 0 β‡’ π‘₯ = 𝑦, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯, 𝑦 ∈ 𝑋. Definition:2.2 A non-empty subset of a d-algebra 𝑋 is called d-subalgebra of 𝑋 if π‘₯ βˆ— 𝑦 ∈ 𝑋, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯, 𝑦 ∈ 𝑋. Definition: 2.3 Let (𝑋,βˆ— ,0) be a d-algebra and π‘Ž ∈ 𝑋. Define π‘Ž βˆ— 𝑋 = {π‘Ž βˆ— π‘₯/π‘₯ ∈ 𝑋}. Then 𝑋 is said to be edge if π‘Ž βˆ— 𝑋 = {0, π‘Ž } for all π‘Ž ∈ 𝑋. 25 Fuzzy Translation in Fuzzy d-Ideals and Fuzzy d-Subalgebra Definition: 2.4 Let 𝑋 be a d-algebra and 𝐼 be a subset of 𝑋, then 𝐼 is called d-ideal of 𝑋 if it satisfies the following conditions: i.0 ∈ 𝐼 ii.π‘₯ βˆ— 𝑦 ∈ 𝐼 π‘Žπ‘›π‘‘ 𝑦 ∈ 𝐼 β‡’ π‘₯ ∈ 𝐼 iii.x ∈ I and y ∈ X β‡’ x βˆ— y ∈ I. Definition: 2.5 A fuzzy subset πœ‡π΄ of 𝑋 is called a fuzzy d-ideal of 𝑋 if it satisfies the following condition: i.πœ‡π΄(0) β‰₯ πœ‡π΄(π‘₯) ii.πœ‡π΄(π‘₯) β‰₯ π‘šπ‘–π‘›{πœ‡π΄(π‘₯ βˆ— 𝑦), πœ‡π΄(𝑦)} iii.πœ‡π΄(π‘₯ βˆ— 𝑦) β‰₯ π‘šπ‘–π‘›{πœ‡π΄(π‘₯), πœ‡π΄(𝑦)} π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯, 𝑦 ∈ 𝑋. 3. Fuzzy Translation in Fuzzy d - Ideals Definition: 3.1 Let πœ‡π΄ be a fuzzy subset of 𝑋 and 𝛼 ∈ [0, 𝑇]. A mapping (πœ‡π΄)𝛼 𝑇 : 𝑋 β†’ [0,1] is said to be a fuzzy-𝛼-translation of πœ‡π΄ if it satisfies (πœ‡π΄)𝛼 𝑇 (π‘₯) = πœ‡π΄(π‘₯) + 𝛼, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑋. Theorem: 3.2 If πœ‡π΄ is a fuzzy d-ideal of 𝑋, then the fuzzy-𝛼-translation (πœ‡π΄)𝛼 𝑇 of πœ‡π΄ is a fuzzy d-ideal of X, for all 𝛼 ∈ [0,1]. Proof: Let πœ‡π΄ be a fuzzy d-ideal of 𝑋 and let 𝛼 ∈ [0,1] Then (πœ‡π΄)𝛼 𝑇 (0) = πœ‡π΄(0) + 𝛼 β‰₯ πœ‡π΄(π‘₯) + 𝛼 = (πœ‡π΄)𝛼 𝑇 (π‘₯) (πœ‡π΄)𝛼 𝑇 (0) β‰₯ (πœ‡π΄)𝛼 𝑇 (π‘₯) (πœ‡π΄)𝛼 𝑇 (π‘₯) = πœ‡π΄(π‘₯) + 𝛼 β‰₯ π‘šπ‘–π‘›{πœ‡π΄(π‘₯ βˆ— 𝑦), πœ‡π΄(𝑦)} + 𝛼 = π‘šπ‘–π‘›{πœ‡π΄(π‘₯ βˆ— 𝑦) + 𝛼, πœ‡π΄(𝑦) + 𝛼} = π‘šπ‘–π‘›{(πœ‡π΄)𝛼 𝑇 (π‘₯ βˆ— 𝑦), (πœ‡π΄)𝛼 𝑇 (𝑦)} (πœ‡π΄)𝛼 𝑇 (π‘₯) β‰₯ π‘šπ‘–π‘›{(πœ‡π΄)𝛼 𝑇 (π‘₯ βˆ— 𝑦), (πœ‡π΄)𝛼 𝑇 (𝑦)} (πœ‡π΄)𝛼 𝑇 (π‘₯ βˆ— 𝑦) = πœ‡π΄(π‘₯ βˆ— 𝑦) + 𝛼 β‰₯ π‘šπ‘–π‘›{πœ‡π΄(π‘₯), πœ‡π΄(𝑦)} + 𝛼 = π‘šπ‘–π‘›{πœ‡π΄(π‘₯) + 𝛼, πœ‡π΄(𝑦) + 𝛼} = π‘šπ‘–π‘›{(πœ‡π΄)𝛼 𝑇 (π‘₯), (πœ‡π΄)𝛼 𝑇 (𝑦)} (πœ‡π΄)𝛼 𝑇 (π‘₯ βˆ— 𝑦) β‰₯ π‘šπ‘–π‘›{(πœ‡π΄)𝛼 𝑇 (π‘₯), (πœ‡π΄)𝛼 𝑇 (𝑦)} Hence(πœ‡π΄)𝛼 𝑇 of πœ‡π΄ is a fuzzy d-ideal of X for all 𝛼 ∈ [0,1]. 26 R. G. Keerthana, K. R. Sobha Theorem: 3.3 Let πœ‡π΄ be a fuzzy subset of X such that the fuzzy-𝛼-translation (πœ‡π΄)𝛼 𝑇 of πœ‡π΄ is a fuzzy d-ideal of 𝑋for some 𝛼 ∈ [0,1], then πœ‡π΄ is a fuzzy d-ideal of 𝑋. Proof: Let (πœ‡π΄)𝛼 𝑇 is a fuzzy d-ideal of 𝑋 for some 𝛼 ∈ [0,1] Let π‘₯, 𝑦 ∈ 𝑋 πœ‡π΄(0) + 𝛼 = (πœ‡π΄)𝛼 𝑇 (0) β‰₯ (πœ‡π΄)𝛼 𝑇 (π‘₯) = πœ‡π΄(π‘₯) + 𝛼 πœ‡π΄(0) β‰₯ πœ‡π΄(π‘₯) πœ‡π΄(π‘₯) + 𝛼 = (πœ‡π΄)𝛼 𝑇 (π‘₯) β‰₯ π‘šπ‘–π‘›{(πœ‡π΄)𝛼 𝑇 (π‘₯ βˆ— 𝑦), (πœ‡π΄)𝛼 𝑇 (𝑦)} = π‘šπ‘–π‘›{πœ‡π΄(π‘₯ βˆ— 𝑦) + 𝛼, πœ‡π΄(𝑦) + 𝛼} = π‘šπ‘–π‘›{πœ‡π΄(π‘₯ βˆ— 𝑦), πœ‡π΄(𝑦)} + 𝛼 πœ‡π΄(π‘₯) β‰₯ π‘šπ‘–π‘›{πœ‡π΄(π‘₯ βˆ— 𝑦), πœ‡π΄(𝑦)} πœ‡π΄(π‘₯ βˆ— 𝑦) + 𝛼 = (πœ‡π΄)𝛼 𝑇 (π‘₯ βˆ— 𝑦) β‰₯ π‘šπ‘–π‘›{(πœ‡π΄)𝛼 𝑇 (π‘₯), (πœ‡π΄)𝛼 𝑇 (𝑦)} = π‘šπ‘–π‘›{πœ‡π΄(π‘₯) + 𝛼, πœ‡π΄(𝑦) + 𝛼} = π‘šπ‘–π‘›{πœ‡π΄(π‘₯), πœ‡π΄(𝑦)} + 𝛼 πœ‡π΄(π‘₯ βˆ— 𝑦) β‰₯ π‘šπ‘–π‘›{πœ‡π΄(π‘₯), πœ‡π΄(𝑦)} Hence πœ‡π΄ is a fuzzy d-ideal of 𝑋. 4. Fuzzy Translation in Fuzzy d - Subalgebra Definition: 4.1 A fuzzy set πœ‡π΄in d-algebra 𝑋 is called fuzzy d-subalgebra of 𝑋 if it satisfies, πœ‡π΄(π‘₯𝑦) β‰₯ π‘šπ‘–π‘›{πœ‡π΄(π‘₯), πœ‡π΄(𝑦)} π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯, 𝑦 ∈ 𝑋. Theorem: 4.2 If πœ‡π΄ is a fuzzy d-subalgebra of 𝑋, then the fuzzy-𝛼-translation πœ‡π›Ό 𝑇 of πœ‡π΄ is also a fuzzy d-subalgebra of X for all 𝛼 ∈ [0,1]. Proof: Let π‘₯, 𝑦 ∈ 𝑋 and let 𝛼 ∈ [0,1] Let πœ‡π΄ be a fuzzy d-subalgebra of 𝑋 . Then πœ‡π΄(π‘₯𝑦) β‰₯ π‘šπ‘–π‘›{πœ‡π΄(π‘₯), πœ‡π΄(𝑦)} (πœ‡π΄)𝛼 𝑇 (π‘₯𝑦) = πœ‡π΄(π‘₯𝑦) + 𝛼 β‰₯ π‘šπ‘–π‘›{πœ‡π΄(π‘₯), πœ‡π΄(𝑦)} + 𝛼 = π‘šπ‘–π‘›{πœ‡π΄(π‘₯) + 𝛼, πœ‡π΄(𝑦) + 𝛼} = π‘šπ‘–π‘›{(πœ‡π΄)𝛼 𝑇 (π‘₯), (πœ‡π΄)𝛼 𝑇 (𝑦)} (πœ‡π΄)𝛼 𝑇 (π‘₯𝑦) β‰₯ π‘šπ‘–π‘›{(πœ‡π΄)𝛼 𝑇 (π‘₯), (πœ‡π΄)𝛼 𝑇 (𝑦)} Hence (πœ‡π΄)𝛼 𝑇 of πœ‡π΄ is a fuzzy d-subalgebra of X for all 𝛼 ∈ [0,1]. 27 Fuzzy Translation in Fuzzy d-Ideals and Fuzzy d-Subalgebra Theorem: 4.3 Let πœ‡π΄ be a fuzzy subset of X such that the fuzzy-𝛼-translation (πœ‡π΄)𝛼 𝑇 of πœ‡ is a fuzzy d-subalgebra of 𝑋 for some 𝛼 ∈ [0,1], then πœ‡π΄ is a fuzzy d-subalgebra of 𝑋. Proof: Let (πœ‡π΄)𝛼 𝑇 is a fuzzy d-subalgebra of 𝑋 for some 𝛼 ∈ [0,1]. Let π‘₯, 𝑦 ∈ 𝑋. πœ‡π΄(π‘₯𝑦) + 𝛼 = (πœ‡π΄)𝛼 𝑇 (π‘₯𝑦) β‰₯ π‘šπ‘–π‘›{(πœ‡π΄)𝛼 𝑇 (π‘₯), (πœ‡π΄)𝛼 𝑇 (𝑦)} = π‘šπ‘–π‘›{πœ‡π΄(π‘₯) + 𝛼, πœ‡π΄(𝑦) + 𝛼} = π‘šπ‘–π‘›{πœ‡π΄(π‘₯), πœ‡π΄(𝑦)} + 𝛼 πœ‡π΄(π‘₯𝑦) β‰₯ π‘šπ‘–π‘›{πœ‡π΄(π‘₯), πœ‡π΄(𝑦)} Hence πœ‡π΄ is a fuzzy d-subalgebra of 𝑋. 5. Conclusions In this paper, we have given some ideas on fuzzy translation in fuzzy d-ideals and fuzzy d-subalgebras. Our further research will be focus on dot product and level set. References [1] M. Akram and K.H. Dar, On fuzzy d-algebra, Punjab University Journal of Math, 37 (2005), 61-76. [2] J. Neggers; Y.B. Jun; H.S. Kim, β€œOn d – Ideals in d – algebras”, Mathematica Slovaca.49 (1999), No.3, 243-251 [3] J. Neggers and H.S. Kim, β€œOn d – algebra”, Math. Slovaca 49 (1999) no.1, 19 – 26. [4] T. Priya and T. Ramachandran, Homomorphism and Cartesian Product of fuzzy Ps- algebra, Applied Mathematical Sciences, 8, Vol (67) (2014) 3321 – 3330. [5] T. Priya and T. Ramachandran, Homomorphism and Cartesian Product on Fuzzy translation and fuzzy multiplication of Ps-algebras, Annals of Pure and mathematics, Vol.8, No.1, 2014, 93 – 104. [6] L.A. Zadeh,” Fuzzy set”, Inform and Control.8 (1965), 338 – 353. 28