Ratio Mathematica Volume 44, 2022 Connected Hub Sets and Connected Hub Polynomials of the Lollipop Graph 𝑳𝒑,𝟏 T. Angelinshiny1 T. Anitha Baby2 Abstract Let 𝐺 be a graph with vertex set 𝑉(𝐺). The number of vertices in 𝐺 is the order of 𝐺 and is denoted by |𝑉(𝐺)|. The connected hub polynomial of G denoted by 𝐻𝑐 (𝐺, 𝑦) is defined as 𝐻𝑐 (𝐺, 𝑦) = βˆ‘ β„Žπ‘ (𝐺, π‘˜)𝑦 π‘˜|𝑉(𝐺)| π‘˜=𝒽𝑐(𝐺) where β„Žπ‘ (𝐺, π‘˜) denotes the number of connected hub sets of 𝐺 of cardinality π‘˜ and 𝒽𝑐 (𝐺) denotes the connected hub number of 𝐺. Let 𝐿𝑝,1 denotes the Lollipop graph with 𝑝 + 1 vertices. The connected hub polynomial of 𝐿𝑝,1 denoted by 𝐻𝑐 (𝐿𝑝,1, 𝑦) is defined as,𝐻𝑐 (𝐿𝑝,1, 𝑦) = βˆ‘ β„Žπ‘ (𝐿𝑝,1, π‘˜) |𝑉(𝐿𝑝,1)| π‘˜=𝒽𝑐(𝐿𝑝,1) π‘¦π‘˜where β„Žπ‘ (𝐿𝑝,1, π‘˜) denotes the number of connected hub sets of 𝐿𝑝,1 of cardinality π‘˜, and 𝒽𝑐 (𝐿𝑝,1) denotes the connected hub number of 𝐿𝑝,1.In this paper, we derive a recursive formula for hc(Lp,1, k). From this recursive formula, we construct the connected hub polynomial of Lp,1 as,Hc(Lp,1, y) = βˆ‘ hc(Lp,1, k) p+1 k=1 ykAlso we study some properties of this polynomial. Keywords: Lollipop Graph, connected hub set, connected hub number, Connected hub polynomial. Mathematics Subject Classification Code: 05C31, 05C993 1Research Scholar (Reg. No. 20213282092009), Department of Mathematics, Women’s Christian College, Nagercoil, Tamil Nadu, India. Affiliated by Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012. Mail Id: angelinshinyt@gmail.com 2 Assistant Professor, Department of Mathematics, Women’s Christian College, Nagercoil, Tamil Nadu, India. Affiliated by Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012. Mail Id: anithasteve@gmail.com 3Received on June 19th, 2022. Accepted on Sep 1st, 2022. Published on Nov 30th, 2022. doi: 10.23755/rm.v44i0.886. ISSN: 1592-7415. eISSN: 2282-8214. Β©The Authors. This paper is published under the CC-BY license agreement. 29 mailto:angelinshinyt@gmail.com mailto:anithasteve@gmail.com T. Angelinshiny and T. Anitha Baby 1. Introduction If any two distinct vertices of a graph 𝐺 are adjacent, then 𝐺 is a complete graph. If a tree has two nodes of vertex degree 1 and other nodes of vertex degree 2, then it is a path graph. A complete graph of order 𝑝 is denoted by 𝐾𝑝 and a path graph of order π‘ž is denoted by π‘ƒπ‘ž . Join a complete graph 𝐾𝑝 to a path graph π‘ƒπ‘ž with a bridge. The resulting graph is a Lollipop graph 𝐿𝑝,π‘ž. 2. Connected Hub Sets of the Lollipop Graph 𝐋𝐩,𝟏 In this section, we give the connected hub number of the Lollipop graph 𝐿𝑝,1 and some of the properties of the connected hub sets of the Lollipop graph 𝐿𝑝,1. Definition 2.1 Join a complete graph 𝐾𝑝 to a path graph 𝑃1 with a bridge. The resulting graph is a Lollipop graph 𝐿𝑝,1. Definition 2.2 Let 𝐺 = (𝑉, 𝐸) be a connected graph. A subset 𝐻 of 𝑉 is called a hub set of 𝐺 if for any two distinct vertices 𝑒, 𝑣 ∈ 𝑉 βˆ’ 𝐻, there exists a 𝑒 βˆ’ 𝑣 path 𝑃 in 𝐺, such that all the internal vertices of 𝑃 are in 𝐻. The minimum cardinality of a hub set of 𝐺 is called the hub number of 𝐺 and is denoted by 𝒽(𝐺). Definition 2.3 A hub set 𝐻 of 𝐺 is called a connected hub set if the induced subgraph < 𝐻 > is connected. The minimum cardinality of a connected hub set of 𝐺 is called connected hub number of 𝐺 and is denoted by 𝒽𝑐 (𝐺). Theorem 2.4 β„Žπ‘ (𝐿𝑝,1,π‘˜) = { ( 𝑝 + 1 π‘˜ ) βˆ’ ( 𝑝 π‘˜ ) + 1 π‘€β„Žπ‘’π‘› π‘˜ = 1 π‘Žπ‘›π‘‘ 𝑝 βˆ’ 1 ( 𝑝 + 1 π‘˜ ) βˆ’ ( 𝑝 π‘˜ ) 𝑖𝑓 2 ≀ π‘˜ ≀ 𝑝 + 1 π‘Žπ‘›π‘‘ π‘˜ β‰  𝑝 βˆ’ 1 Proof. Let 𝐿𝑝,1 be the Lollipop graph with 𝑝 + 1 vertices and 𝑝 β‰₯ 4. Let 𝑣1, 𝑣2, 𝑣3 … 𝑣𝑝, 𝑣𝑝+1 be the vertices of 𝐿𝑝,1, in which the degree of the vertices 𝑣1, 𝑣2, 𝑣3, … , π‘£π‘βˆ’1 is 𝑝 βˆ’ 1, the degree of the vertex 𝑣𝑝 is 𝑝 and the degree of the vertex 𝑣𝑝+1 is 1. Since, 𝐿𝑝,1 contains 𝑝 + 1 vertices, the number of subsets of 𝐿𝑝,1 with cardinality π‘˜ is ( 𝑝 + 1 π‘˜ ). Also, Since, the subgraph with vertex set {𝑣1, 𝑣2, 𝑣3 … π‘£π‘βˆ’1} is not adjacent to 𝑣𝑝+1 every hub set must contain the vertices 𝑣𝑝 or 𝑣𝑝+1. Therefore, every time ( 𝑝 π‘˜ ) number of subsets of 𝐿𝑝,1 of cardinality π‘˜ are not connected hub sets. Thus, 𝐿𝑝,1 have ( 𝑝 + 1 π‘˜ ) βˆ’ ( 𝑝 π‘˜ ) number of connected hubs sets of cardinalities π‘˜. When the cardinality is 𝑝 βˆ’ 1, the set which contains π‘£π‘βˆ’1 is also a connected hub set. When the cardinality is 1, {𝑣𝑝} and {𝑣𝑝+1} are the only connected hub sets. 30 Connected Hub Sets and Connected Hub Polynomials of the Lollipop Graph 𝐿𝑝,1 Hence, β„Žπ‘ (𝐿𝑝,1,π‘˜) = { ( 𝑝 + 1 π‘˜ ) βˆ’ ( 𝑝 π‘˜ ) + 1 π‘€β„Žπ‘’π‘› π‘˜ = 1, 𝑝 βˆ’ 1 ( 𝑝 + 1 π‘˜ ) βˆ’ ( 𝑝 π‘˜ ) 𝑖𝑓 2 ≀ π‘˜ ≀ 𝑝 + 1 π‘Žπ‘›π‘‘ π‘˜ β‰  𝑝 βˆ’ 1 Theorem 2.5 Let 𝐿𝑝,1 be the Lollipop graph with 𝑝 β‰₯ 4.Then (i) β„Žπ‘ (𝐿𝑝,1,π‘˜) = ( 𝑝 π‘˜ βˆ’ 1 ) for all 2 ≀ π‘˜ ≀ 𝑝 + 1 π‘Žπ‘›π‘‘ π‘˜ β‰  𝑝 βˆ’ 1 (ii) β„Žπ‘ (𝐿𝑝,1,π‘˜) = ( 𝑝 π‘˜ βˆ’ 1 ) + 1 when π‘˜ = 1 π‘Žπ‘›π‘‘ 𝑝 βˆ’ 1. (iii) β„Žπ‘ (𝐿𝑝,1,π‘˜) = { β„Žπ‘ (πΏπ‘βˆ’1,1, π‘˜) + β„Žπ‘ (πΏπ‘βˆ’1,1,π‘˜ βˆ’ 1) 𝑖𝑓 1 ≀ π‘˜ ≀ 𝑝 + 1 π‘Žπ‘›π‘‘ π‘˜ β‰  2 , 𝑝 βˆ’ 2 β„Žπ‘ (πΏπ‘βˆ’1,1, π‘˜) + β„Žπ‘ (πΏπ‘βˆ’1,1,π‘˜ βˆ’ 1) βˆ’ 1 𝑖𝑓 π‘˜ = 2 π‘Žπ‘›π‘‘ 𝑝 βˆ’ 2 Proof: (i) From Theorem 2.4, we have β„Žπ‘ (𝐿𝑝,1,π‘˜) = ( 𝑝 + 1 π‘˜ ) βˆ’ ( 𝑝 π‘˜ ) We know that, ( 𝑝 + 1 π‘˜ ) βˆ’ ( 𝑝 π‘˜ ) = ( 𝑝 π‘˜ βˆ’ 1 ) Therefore, β„Žπ‘ (𝐿𝑝,1,π‘˜) = ( 𝑝 π‘˜ βˆ’ 1 ) for all 2 ≀ π‘˜ ≀ 𝑝 + 1 and π‘˜ β‰  𝑝 βˆ’ 1. (ii) From Theorem 2.4, we have β„Žπ‘ (𝐿𝑝,1, π‘˜) = ( 𝑝 + 1 π‘˜ ) βˆ’ ( 𝑝 π‘˜ ) + 1 π‘€β„Žπ‘’π‘› π‘˜ = 1 π‘Žπ‘›π‘‘ 𝑝 βˆ’ 1. We know that, ( 𝑝 + 1 π‘˜ ) βˆ’ ( 𝑝 π‘˜ ) = ( 𝑝 π‘˜ βˆ’ 1 ) Therefore, β„Žπ‘ (𝐿𝑝,1,π‘˜) = ( 𝑝 π‘˜ βˆ’ 1 ) + 1 π‘€β„Žπ‘’π‘› π‘˜ = 1 π‘Žπ‘›π‘‘ 𝑝 βˆ’ 1. (iii) From (i) β„Žπ‘ (𝐿𝑝,1,π‘˜) = ( 𝑝 π‘˜ βˆ’ 1 ) for all 2 ≀ π‘˜ ≀ 𝑝 + 1 and π‘˜ β‰  𝑝 βˆ’ 1. β„Žπ‘ (πΏπ‘βˆ’1,1, π‘˜) = ( 𝑝 βˆ’ 1 π‘˜ βˆ’ 1 ) and β„Žπ‘ (πΏπ‘βˆ’,1,π‘˜ βˆ’ 1) = ( 𝑝 βˆ’ 1 π‘˜ βˆ’ 2 ) Consider, β„Žπ‘ (πΏπ‘βˆ’1,1, π‘˜) + β„Žπ‘ (πΏπ‘βˆ’,1,π‘˜ βˆ’ 1) = ( 𝑝 βˆ’ 1 π‘˜ βˆ’ 1 ) + ( 𝑝 βˆ’ 1 π‘˜ βˆ’ 2 ) = ( 𝑝 π‘˜ βˆ’ 1 ) = β„Žπ‘ (𝐿𝑝,1,π‘˜) Therefore, β„Žπ‘ (𝐿𝑝,1,π‘˜) = β„Žπ‘ (πΏπ‘βˆ’1,1, π‘˜) + β„Žπ‘ (πΏπ‘βˆ’,1,π‘˜ βˆ’ 1) for 1 ≀ π‘˜ ≀ 𝑝 + 1 π‘Žπ‘›π‘‘ π‘˜ β‰  2, 𝑝 βˆ’ 2 When π‘˜ = 2, β„Žπ‘ (𝐿𝑝,1, 2) = ( 𝑝 1 ) β„Žπ‘ (πΏπ‘βˆ’1,1, 2) = ( 𝑝 βˆ’ 1 1 ) and β„Žπ‘ (πΏπ‘βˆ’1,1, 1) = ( 𝑝 βˆ’ 1 0 ) + 1, by (ii) Consider, β„Žπ‘ (πΏπ‘βˆ’1,1, 2) + β„Žπ‘ (πΏπ‘βˆ’1,1, 1) = ( 𝑝 βˆ’ 1 1 ) + ( 𝑝 βˆ’ 1 0 ) + 1 = ( 𝑝 1 ) + 1 31 T. Angelinshiny and T. Anitha Baby = β„Žπ‘ (𝐿𝑝,1, 2) + 1 That is, β„Žπ‘ (𝐿𝑝,1, 2) = β„Žπ‘ (πΏπ‘βˆ’1,1, 2) + β„Žπ‘ (πΏπ‘βˆ’1,1, 1) βˆ’ 1. Therefore, β„Žπ‘ (𝐿𝑝,1,π‘˜) = β„Žπ‘ (πΏπ‘βˆ’1,1, π‘˜) + β„Žπ‘ (πΏπ‘βˆ’,1,π‘˜ βˆ’ 1) βˆ’ 1 when π‘˜ = 2. When π‘˜ = 𝑝 βˆ’ 2, β„Žπ‘ (𝐿𝑝,1, 𝑝 βˆ’ 2) = ( 𝑝 𝑝 βˆ’ 3 ) β„Žπ‘ (πΏπ‘βˆ’1,1, 𝑝 βˆ’ 2) = ( 𝑝 βˆ’ 1 𝑝 βˆ’ 3 ) and β„Žπ‘ (πΏπ‘βˆ’1,1, 𝑝 βˆ’ 3) = ( 𝑝 βˆ’ 1 𝑝 βˆ’ 4 ) + 1, by (ii) Consider, β„Žπ‘ (πΏπ‘βˆ’1,1, 𝑝 βˆ’ 2) + β„Žπ‘ (πΏπ‘βˆ’1,1, 𝑝 βˆ’ 3) = ( 𝑝 βˆ’ 1 𝑝 βˆ’ 3 ) + ( 𝑝 βˆ’ 1 𝑝 βˆ’ 4 ) + 1 = ( 𝑝 𝑝 βˆ’ 3) + 1 = β„Žπ‘ (𝐿𝑝,1, 𝑝 βˆ’ 2) + 1 That is, β„Žπ‘ (𝐿𝑝,1, 𝑝 βˆ’ 2) = β„Žπ‘ (πΏπ‘βˆ’1,1, 𝑝 βˆ’ 2) + β„Žπ‘ (πΏπ‘βˆ’1,1, 𝑝 βˆ’ 3) βˆ’ 1. Therefore, β„Žπ‘ (𝐿𝑝,1,π‘˜) = β„Žπ‘ (πΏπ‘βˆ’1,1, π‘˜) + β„Žπ‘ (πΏπ‘βˆ’,1,π‘˜ βˆ’ 1) βˆ’ 1 when π‘˜ = 𝑝 βˆ’ 2. Hence, β„Žπ‘ (𝐿𝑝,1,π‘˜) = { β„Žπ‘ (πΏπ‘βˆ’1,1, π‘˜) + β„Žπ‘ (πΏπ‘βˆ’1,1,π‘˜ βˆ’ 1) 𝑖𝑓 1 ≀ π‘˜ ≀ 𝑝 + 1 π‘Žπ‘›π‘‘ π‘˜ β‰  2 , 𝑝 βˆ’ 2 β„Žπ‘ (πΏπ‘βˆ’1,1, π‘˜) + β„Žπ‘ (πΏπ‘βˆ’1,1,π‘˜ βˆ’ 1) βˆ’ 1 𝑖𝑓 π‘˜ = 2 π‘Žπ‘›π‘‘ 𝑝 βˆ’ 2 3. Connected Hub Polynomials of the Lollipop Graph 𝑳𝒑,𝟏. Definition 3.1 Let 𝐻𝑐 (𝐿𝑝,1,, π‘˜) denotes the family of connected hub sets of the Lollipop graph 𝐿𝑝,1, of cardinality π‘˜ and β„Žπ‘ (𝐿𝑝,1,, π‘˜) = |𝐻𝑐 (𝐿𝑝,1,, π‘˜)|. Then, the connected hub polynomial of 𝐿𝑝,1 denoted by 𝐻𝑐 (𝐿𝑝,1,, 𝑦) is defined as 𝐻𝑐 (𝐿𝑝,1,, 𝑦) = βˆ‘ β„Žπ‘ (𝐿𝑝,1,, π‘˜) 𝑝+1 π‘˜=𝒽𝑐(𝐿𝑝,1,) π‘¦π‘˜ where 𝒽𝑐 (𝐿𝑝,1,) is connected hub number of 𝐿𝑝,1,. Remark 3.2 𝒽𝑐 (𝐿𝑝,1,) = 1. Proof: Label the vertices of 𝐿𝑝,1 by 𝑣1, 𝑣2,𝑣3, … , 𝑣𝑝, 𝑣𝑝+1 in which the degree of the vertices 𝑣1, 𝑣2, 𝑣3, … , π‘£π‘βˆ’1 is 𝑝 βˆ’ 1, the degree of the vertex 𝑣𝑝 is 𝑝 and the degree of the vertex 𝑣𝑝+1 is 1. Since, any two vertices of 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑝 are adjacent there is a path between any two vertices of 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑝. Also, 𝑣𝑝 is the internal vertex for all the path between the vertices of {𝑣1, 𝑣2,𝑣3, … , π‘£π‘βˆ’1} and 𝑣𝑝+1. Hence {𝑣𝑝} and {𝑣𝑝+1} are two connected hub sets of cardinalities 1. Hence, 𝒽𝑐 (𝐿𝑝,1) = 1. 32 Connected Hub Sets and Connected Hub Polynomials of the Lollipop Graph 𝐿𝑝,1 Theorem 3.3 𝐻𝑐 (𝐿𝑝,1,𝑦) = (1 + 𝑦)𝐻𝑐 (πΏπ‘βˆ’1,1, 𝑦) βˆ’ 𝑦 2 βˆ’ π‘¦π‘βˆ’2 with initial value 𝐻𝑐 (𝐿4,1,𝑦) = 2𝑦 + 4𝑦 2 + 7𝑦3 + 4𝑦4 + 𝑦5. Proof. We have, 𝐻𝑐 (𝐿𝑝,1,𝑦) = βˆ‘ β„Žπ‘ (𝐿𝑝,1, π‘˜)𝑦 π‘˜π‘+1 π‘˜=1 𝐻𝑐 (𝐿𝑝,1,𝑦) = βˆ‘ β„Žπ‘ (𝐿𝑝,1, π‘˜)𝑦 π‘˜ + 𝑝+1 π‘˜=1 π‘˜β‰ 2,π‘βˆ’2 β„Žπ‘ (𝐿𝑝,1, 2)𝑦 2 + β„Žπ‘ (𝐿𝑝,1, 𝑝 βˆ’ 2)𝑦 π‘βˆ’2 = βˆ‘ [β„Žπ‘ (πΏπ‘βˆ’1,1, π‘˜) + β„Žπ‘ (πΏπ‘βˆ’1,1, π‘˜ βˆ’ 1)]𝑦 π‘˜ + 𝑝+1 π‘˜=1 π‘˜β‰ 2,π‘βˆ’2 [β„Žπ‘ (πΏπ‘βˆ’1,1, 2) + β„Žπ‘ (πΏπ‘βˆ’1,1, 1) βˆ’ 1]𝑦2 + [β„Žπ‘ (πΏπ‘βˆ’1,1, 𝑝 βˆ’ 2) + β„Žπ‘ (πΏπ‘βˆ’1,1, 𝑝 βˆ’ 3) βˆ’ 1]𝑦 π‘βˆ’2 = βˆ‘ [β„Žπ‘ (πΏπ‘βˆ’1,1, π‘˜) + β„Žπ‘ (πΏπ‘βˆ’1,1, π‘˜ βˆ’ 1)]𝑦 π‘˜ βˆ’ 𝑦2 βˆ’ π‘¦π‘βˆ’2 𝑝+1 π‘˜=1 = βˆ‘ β„Žπ‘ (πΏπ‘βˆ’1,1, π‘˜)𝑦 π‘˜ + βˆ‘ β„Žπ‘ (πΏπ‘βˆ’1,1, π‘˜ βˆ’ 1) 𝑝+1 π‘˜=1 𝑦 π‘˜ βˆ’ 𝑦2 βˆ’ π‘¦π‘βˆ’2 𝑝+1 π‘˜=1 = βˆ‘ β„Žπ‘ (πΏπ‘βˆ’1,1, π‘˜)𝑦 π‘˜ + 𝑦 βˆ‘ β„Žπ‘ (πΏπ‘βˆ’1,1, π‘˜ βˆ’ 1) 𝑝+1 π‘˜=1 𝑦 π‘˜βˆ’1 βˆ’ 𝑦2 βˆ’ π‘¦π‘βˆ’2 𝑝+1 π‘˜=1 = 𝐻𝑐 (πΏπ‘βˆ’1,1, 𝑦) + 𝑦𝐻𝑐 (πΏπ‘βˆ’1,1, 𝑦) βˆ’ 𝑦 2 βˆ’ π‘¦π‘βˆ’2 = (1 + 𝑦)𝐻𝑐 (πΏπ‘βˆ’1,1, 𝑦) βˆ’ 𝑦 2 βˆ’ π‘¦π‘βˆ’2 Hence, 𝐻𝑐 (𝐿𝑝,1,𝑦) = (1 + 𝑦)𝐻𝑐 (πΏπ‘βˆ’1,1, 𝑦) βˆ’ 𝑦 2 βˆ’ π‘¦π‘βˆ’2 with initial value 𝐻𝑐 (𝐿4,1,π‘₯) = 2𝑦 + 4𝑦 2 + 7𝑦3 + 4𝑦4 + 𝑦5. Example 3.4 Consider the Lollipop graph 𝐿5,1 be with order 6 given in Figure 1. Figure 1 𝐻𝑐 (𝐿5,1,𝑦) = 2𝑦 + 5𝑦 2 + 10𝑦3 + 11𝑦4 + 5𝑦5 + 𝑦6 By Theorem 3.3, we have, 𝐻𝑐 (𝐿5,1,𝑦) = (1 + 𝑦)𝐻𝑐 (𝐿4,1, 𝑦) βˆ’ 𝑦 2 βˆ’ 𝑦3 = (1 + 𝑦)(2𝑦 + 4𝑦2 + 7𝑦3 + 4𝑦4 + 𝑦5) βˆ’π‘¦2 βˆ’ 𝑦3 = 2𝑦 + 5𝑦2 + 10𝑦3 + 11𝑦4 + 5𝑦5 + 𝑦6 Theorem 3.5 Let 𝐿𝑝,1 be the Lollipop graph with 𝑝 β‰₯ 4.Then (𝑖) 𝐻𝑐 (𝐿𝑝,1,𝑦) = βˆ‘ ( 𝑝 + 1 π‘˜ ) 𝑝+1 π‘˜=1 𝑦 π‘˜ βˆ’ βˆ‘ ( 𝑝 π‘˜ ) 𝑝+1 π‘˜=1 𝑦 π‘˜ βˆ’ 𝑦2 βˆ’ π‘¦π‘βˆ’2. 33 T. Angelinshiny and T. Anitha Baby (ii) 𝐻𝑐 (𝐿𝑝,1, 𝑦) = βˆ‘ ( 𝑝 π‘˜ βˆ’ 1 ) 𝑝+1 π‘˜=1 𝑦 π‘˜ βˆ’ 𝑦2 βˆ’ π‘¦π‘βˆ’2. Proof. Proof is obvious. β„Žπ‘ (𝐿𝑝,1, π‘˜) for 4 ≀ 𝑝 ≀ 14 and 1 ≀ π‘˜ ≀ 15. π‘˜ 𝑝 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 4 2 4 7 4 1 5 2 5 10 11 5 1 6 2 6 15 20 16 6 1 7 2 7 21 35 35 22 7 1 8 2 8 28 56 70 56 29 8 1 9 2 9 36 84 126 126 84 37 9 1 10 2 10 45 120 210 252 210 120 46 10 1 11 2 11 55 165 330 462 462 330 165 56 11 1 12 2 12 66 220 495 792 924 792 495 220 67 12 1 13 2 13 78 286 715 1287 1716 1716 1287 715 286 79 13 1 14 2 14 91 364 100 2002 3003 3432 3003 2002 1001 364 92 14 1 Table 1 Theorem 3.6 The coefficients of 𝐻𝑐 (𝐿𝑝,1, 𝑦) satisfy the following properties. (i) β„Žπ‘ (𝐿𝑝,1, 𝑝 + 1) = 1, for every 𝑝 β‰₯ 4. (ii) β„Žπ‘ (𝐿𝑝,1, 𝑝) = 𝑝, for every 𝑝 β‰₯ 4. (iii) β„Žπ‘ (𝐿𝑝,1, 𝑝 βˆ’ 1) = 1 2 (𝑝2 βˆ’ 𝑝 + 2), for every 𝑝 β‰₯ 4. (iv) β„Žπ‘ (𝐿𝑝,1, 𝑝 βˆ’ 2) = 1 6 (𝑝3 βˆ’ 3𝑝2 + 2𝑝), for every 𝑝 β‰₯ 4. (v) β„Žπ‘ (𝐿𝑝,1, 𝑝 βˆ’ 3) = 1 24 (𝑝4 βˆ’ 6𝑝3 + 11𝑝2 βˆ’ 6𝑝), for every 𝑝 β‰₯ 6. (vi) β„Žπ‘ (𝐿𝑝,1, 1) = 2, for every 𝑝 β‰₯ 4. (vii) β„Žπ‘ (𝐿𝑝,1, 2) = 𝑝, for every 𝑝 β‰₯ 4. 4. Conclusion In this paper, we identified the connected hub sets of 𝐿𝑝,1 and using the connected hub sets we derived the connected hub polynomial of 𝐿𝑝,1. We can generalize this study to derive the connected hub polynomial of any Lollipop graph 𝐿𝑝,π‘ž . 34 Connected Hub Sets and Connected Hub Polynomials of the Lollipop Graph 𝐿𝑝,1 References [1] Walsh, Matthew, "The Hub Number Of A Graph", Int. J. Math. Comput. Sci 1, No. 1 (2006): 117-124. [2] Veettil, Ragi Puthan, And T. V. Ramakrishnan, "Introduction To Hub Polynomial Of Graphs", Malaya Journal Of Matematik (Mjm) 8, No. 4, 2020 (2020): 1592-1596. [3] S. Alikhani And Y.h. Peng, "Dominating Sets And Domination Polynomials Of Paths", International Journal Of Mathematics And Mathematical Sciences, 2009. [4] S. Alikhani And Y.h. Peng, "Introduction To Domination Polynomial Of A Graph ", Arxiv Preprint Arxiv:0905.2251, 2009. [5] Sahib.sh. Kahat, Abdul Jalil Khalaf And Roslan Hasni, "Dominating Sets And Domination Polynomials Of Wheels", Asian Journal Of Applied Sciences (Issn:2321- 0893), Volume 02- Issue 03, June 2014. [6] Sahib.sh. Kahat, Abdul Jalil M. Khalaf And Roslan Hasni, "Dominating Sets And Domination Polynomials Of Stars", Australian Journal Of Basics And Applied Science,8(6) June 2014, 383-386. [7] A. Vijayan, T. Anitha Baby, G. Edwin, "Connected Total Dominating Sets And Connected Total Domination Polynomials Of Stars And Wheels", Iosr Journal Of Mathematics, Volume II, 112-121. 35