Ratio Mathematica Volume 44, 2022 Connected 𝟐 βˆ’ Dominating Sets and Connected 𝟐 βˆ’ Domination Polynomials of the Complete Bipartite Graph π’ŒπŸ,π’Ž. Y. A. Shiny1 T. Anithababy2 Abstract Let 𝐺 = (𝑉, 𝐸) be a simple graph. Let 𝐷𝑐2 (𝐺, 𝑗) be the family of connected 2βˆ’dominating sets in 𝐺 with cardinality 𝑗 and 𝑑𝑐2 (𝐺, 𝑗) = |𝐷𝑐2 (𝐺, 𝑗)|. Then the polynomial 𝐷𝑐2 (𝐺, π‘₯) = βˆ‘ 𝑑𝑐2 (𝐺, 𝑗)π‘₯ 𝑗 , |𝑉(𝐺)| 𝑗=𝛾𝑐2 (𝐺) is called the 2βˆ’domination polynomial of 𝐺 where 𝛾𝑐2 (𝐺) is the connected 2βˆ’ domination number of 𝐺.Let 𝐷𝑐2 (π‘˜2,π‘š,𝑗) be the family of connected 2βˆ’dominating sets of the Complete bipartite graph π‘˜2,π‘š with cardinality 𝑗 and let 𝑑𝑐2 (π‘˜2,π‘š,𝑗) = |𝐷𝑐2 (π‘˜2,π‘š,𝑗) |. Then the connected 2βˆ’ domination polynomial 𝐷𝑐2 (π‘˜2,π‘š,π‘₯) of π‘˜2,π‘š is defined as 𝐷𝑐2 (π‘˜2,π‘š,π‘₯) = βˆ‘ 𝑑𝑐2 (π‘˜2,π‘š,𝑗)π‘₯ 𝑗 , |𝑉(π‘˜2,π‘š)| 𝑗=𝛾𝑐2 (π‘˜2,π‘š) where 𝛾𝑐2 (π‘˜2,π‘š,𝑗) is the connected 2 – domination number of π‘˜2,π‘š,. In this paper, we obtain a recursive formula for 𝑑𝑐2 (π‘˜2,π‘š,𝑗).Using this recursive formula, we construct the connected 2βˆ’domination polynomial 𝐷𝑐2 (π‘˜2,π‘š,π‘₯) = βˆ‘ 𝑑𝑐2 (π‘˜2,π‘š,𝑗)π‘₯ 𝑗 , whereπ‘š+2𝑗=3 𝑑𝑐2 (π‘˜2,π‘š,𝑗) is the number of connected 2βˆ’dominating sets of π‘˜2,π‘š of cardinality 𝑗 and some properties of this polynomial have been studied. Keywords: Dominating, Connected and cardinality 2010 Mathematical classification number: 05C69, 54D053. 1Reg. No.: 19213042092006, Research Scholar (Full time), Research Department of Mathematics, Women’s Christian College, Nagercoil. Affiliated by Manonmaniam Sundaranar University, Tamil Nadu, India, shinyjebalin@gmail.com 2Assistant Professor, Research Department of Mathematics, Women’s Christian College, Nagercoil. Affiliated by Manonmaniam Sundaranar University, Tamil Nadu, India. anithasteve@gmail.com 3Received on June 7th, 2022. Accepted on Aug 10th, 2022. Published on Nov 30th, 2022. doi: 10.23755/rm.v44i0.889. ISSN: 1592-7415. eISSN: 2282-8214. Β©The Authors. This paper is published under the CC-BY licence agreement. 51 mailto:anithasteve@gmail.com Y. A. Shiny and T. Anithababy 1. Introduction Let G = (V, E) be a simple graph of order, |V| = m. For any vertex vΟ΅V, the open neighbourhood of v is the set N(v) = {uΟ΅V/uvΟ΅E} and the closed neighbourhood of V is the set 𝑁[𝑣] = 𝑁(𝑣) βˆͺ {𝑣}. For a set 𝑆 βŠ† 𝑉, the open neighbourhood of 𝑆 is 𝑁(𝑆) = π‘ˆπ‘£πœ–π‘ π‘(𝑣) and the closed neighbourhood of S is 𝑁(𝑆) βˆͺ 𝑆.A set 𝐷 βŠ† 𝑉 is a dominating set of 𝐺, if 𝑁[𝐷] = 𝑉 or equivalently, every vertex in 𝑉 βˆ’ 𝐷 is adjacent to atleast one vertex in 𝐷.The domination number of a graph 𝐺 is defined as the cardinality of a minimum dominating set 𝐷 of vertices in 𝐺 and is denoted by 𝛾(𝐺). A dominating set 𝐷 of 𝐺 is called a connected dominating set if the induced sub-graph < 𝐷 > is connected. The connected domination number of a graph 𝐺 is defined as the cardinality of a minimum connected dominating set 𝐷 of vertices in 𝐺 and is denoted by 𝛾𝑐 (𝐺). A graph 𝐺 = (𝑉, 𝐸)is called a bipartite graph if its vertices 𝑉 can be partitioned into two subsets 𝑉1 and 𝑉2 such that each edge of 𝐺 connects a vertex of 𝑉 1to a vertex of 𝑉2. If 𝐺 contains every edge joining a vertex of 𝑉1 and a vertex of 𝑉2 then 𝐺 is called a complete bipartite graph. It is denoted by π‘˜π‘š,𝑛, where π‘š and 𝑛 are the numbers of vertices in 𝑉1 and 𝑉2 respectively. Let π‘˜2,π‘š be the Complete bipartite graph with π‘š + 2 vertices. Throughout this paper let us take 𝑉(π‘˜2,π‘š) = {𝑣1,𝑣2,𝑣3,...,π‘£π‘š+1,π‘£π‘š+2} and 𝐸(π‘˜2,π‘š) = {(𝑣1, 𝑣3),( 𝑣1, 𝑣4), (𝑣1,𝑣5),…, (𝑣1, π‘£π‘š+1), (𝑣1, π‘£π‘š+2), (𝑣2, 𝑣3),( 𝑣2, 𝑣4), ( 𝑣2, 𝑣5),…, (𝑣2, π‘£π‘š+1), (𝑣2, π‘£π‘š+2). As usual we use ( π‘š 𝑗 ) for the combination π‘š to 𝑗. Also, we denote the set {1, 2, … … … ,2π‘š βˆ’ 1, 2π‘š} by [2π‘š], throughout this paper. 2. Connected 2 – Dominating Sets of the Complete Bipartite Graph π’ŒπŸ,π’Ž In this section, we state the connected 2 – domination number of the complete bipartite graph k2,m and some of its properties. Definition 2.1. Let 𝐺 be a simple graph of order π‘š with no isolated vertices. A subset 𝐷 βŠ† 𝑉 is a 2βˆ’ dominating set of the graph 𝐺 if every vertex 𝑣 πœ– 𝑉 βˆ’ 𝐷 is adjacent to atleast two vertices in 𝐷. A 2βˆ’ dominating set is called a connected 2βˆ’ dominating set if the induced subgraph <𝐷> is connected. Definition 2.2. The cardinality of a minimum connected 2 – dominating sets of 𝐺 is called the connected 2 – domination number of 𝐺 and is denoted by 𝛾𝐢2 (𝐺). Lemma 2.3 For all π‘š ∈ 𝑧+, ( π‘š 𝑗 ) = 0 if 𝑗 > π‘š or 𝑗 < 0. Theorem 2.4 𝑑𝑐2(π‘˜2,π‘š, 𝑗) = {( π‘š + 2 𝑗 ) βˆ’ ( π‘š + 1 𝑗 ) βˆ’ ( π‘š 𝑗 βˆ’ 1) for 3 ≀ 𝑗 ≀ π‘š + 2 52 Connected 2 βˆ’ Dominating Sets and Connected 2 βˆ’ Domination Polynomials of the Complete Bipartite Graph π‘˜2,π‘š. Proof: Let the partite sets of π‘˜2,π‘š be 𝑉1 ={𝑣1,𝑣2,} and 𝑉2 = {𝑣3,𝑣4,,...,π‘£π‘š+1,π‘£π‘š+2}. Since the subgraph induced by the vertex set as {𝑣1,𝑣2, } is not connected, every connected 2 βˆ’dominating set of π‘˜2,π‘š must contain the vertex {𝑣1} or {𝑣2} or {𝑣1,𝑣2,}. When 3≀ 𝑗 ≀ π‘š, every connected 2 βˆ’dominating set must contain {𝑣1,𝑣2,}. Since, |𝑉(π‘˜2,π‘š) | = π‘š + 2, π‘˜2,π‘š contains ( π‘š + 2 𝑗 ) number of subsets of cardinality 𝑗. Since, the subgraphs induced by {𝑣1,𝑣2,} and {𝑣3,𝑣4,,...,π‘£π‘š+1,π‘£π‘š+2} are not connected, each time ( π‘š + 1 𝑗 ) number of subsets of π‘˜2,π‘š of cardinality j and ( π‘š 𝑗 βˆ’ 1) number of subsets of π‘˜2,π‘š of cardinality 𝑗 βˆ’ 1 are not connected 2 βˆ’dominating sets. Hence, π‘˜2,π‘š contains ( π‘š + 2 𝑗 ) βˆ’ ( π‘š + 1 𝑗 ) βˆ’ ( π‘š 𝑗 βˆ’ 1) number of subsets of connected 2 βˆ’dominating sets, when 3≀ 𝑗 ≀ π‘š. Therefore, 𝑑𝑐2(π‘˜2,π‘š, 𝑗) = ( π‘š + 2 𝑗 ) βˆ’ ( π‘š + 1 𝑗 ) βˆ’ ( π‘š 𝑗 βˆ’ 1) for all 3≀ 𝑗 ≀ π‘š. When the cardinality is π‘š + 1, every subset of π‘˜2,π‘š containing {𝑣1} or {𝑣2} are connected 2 βˆ’dominating sets. Therefore, two more sets are connected 2 βˆ’dominating sets when the cardinality is π‘š + 1 . Hence, 𝑑𝑐2(π‘˜2,π‘š, 𝑗) = ( π‘š + 2 𝑗 ) βˆ’ ( π‘š + 1 𝑗 ) βˆ’ ( π‘š 𝑗 βˆ’ 1) + 2 , when 𝑗 = π‘š + 1. Since, there is only one subset of π‘˜2,π‘š with cardinality π‘š + 2 and that set is a connected 2 βˆ’dominating set. we get 𝑑𝑐2(π‘˜2,π‘š, 𝑗) = ( π‘š + 2 𝑗 ) when 𝑗 = π‘š + 2. Theorem 2.5. Let π‘˜2,π‘š be the complete bipartite graph with π‘š β‰₯ 3. Then (i) 𝑑𝑐2(π‘˜2,π‘š, 𝑗) = 𝑑𝑐2(π‘˜2,π‘šβˆ’1, 𝑗) + 𝑑𝑐2(π‘˜2,π‘šβˆ’1, 𝑗 βˆ’ 1) (ii) 𝑑𝑐2(π‘˜2,π‘š, 𝑗) = 𝑑𝑐2(π‘˜2,π‘šβˆ’1, 𝑗) + 1 if 𝑗 = 3. (iii) 𝑑𝑐2(π‘˜2,π‘š, 𝑗) = 𝑑𝑐2(π‘˜2,π‘šβˆ’1, 𝑗) + 𝑑𝑐2(π‘˜2,π‘šβˆ’1, 𝑗 βˆ’ 1) βˆ’ 2 if 𝑗 = π‘š. Proof: (i) By Theorem 2.4, we have, 𝑑𝑐2(π‘˜2,π‘š, 𝑗) = ( π‘š + 2 𝑗 ) βˆ’ ( π‘š + 1 𝑗 ) βˆ’ ( π‘š 𝑗 βˆ’ 1) for all 3 ≀ 𝑗 ≀ π‘š + 2. 𝑑𝑐2(π‘˜2,π‘šβˆ’1, 𝑗) = ( π‘š + 1 𝑗 ) βˆ’ ( π‘š 𝑗 ) βˆ’ ( π‘š βˆ’ 1 𝑗 βˆ’ 1 ) 𝑑𝑐2(π‘˜2,π‘šβˆ’1, 𝑗 βˆ’ 1) = ( π‘š + 1 𝑗 βˆ’ 1 ) βˆ’ ( π‘š 𝑗 βˆ’ 1) βˆ’ ( π‘š βˆ’ 1 𝑗 βˆ’ 2 ) . Consider, 𝑑𝑐2(π‘˜2,π‘šβˆ’1, 𝑗) + 𝑑𝑐2(π‘˜2,π‘šβˆ’1, 𝑗 βˆ’ 1) = ( π‘š + 1 𝑗 ) βˆ’ ( π‘š 𝑗 ) βˆ’ ( π‘š βˆ’ 1 𝑗 βˆ’ 1 ) + ( π‘š + 1 𝑗 βˆ’ 1 ) βˆ’ ( π‘š 𝑗 βˆ’ 1) βˆ’ ( π‘š βˆ’ 1 𝑗 βˆ’ 2 ) . = ( π‘š + 1 𝑗 ) + ( π‘š + 1 𝑗 βˆ’ 1 ) βˆ’ [( π‘š 𝑗 ) + ( π‘š 𝑗 βˆ’ 1)] – [( π‘š βˆ’ 1 𝑗 βˆ’ 1 ) + ( π‘š βˆ’ 1 𝑗 βˆ’ 2 )] 53 Y. A. Shiny and T. Anithababy = ( π‘š + 2 𝑗 ) βˆ’ ( π‘š + 1 𝑗 ) βˆ’ ( π‘š 𝑗 βˆ’ 1). = 𝑑𝑐2(π‘˜2,π‘š, 𝑗) . Therefore, 𝑑𝑐2(π‘˜2,π‘š, 𝑗) = 𝑑𝑐2(π‘˜2,π‘šβˆ’1, 𝑗) + 𝑑𝑐2(π‘˜2,π‘šβˆ’1, 𝑗 βˆ’ 1) for all 4≀ 𝑗 ≀ π‘š + 2 and 𝑗 β‰  π‘š. (i) When 𝑗 = 3, 𝑑𝑐2(π‘˜2,π‘š, 3) = ( π‘š + 2 3 ) βˆ’ ( π‘š + 1 3 ) βˆ’ ( π‘š 2 ) by Theorem 2.4 = ( π‘š + 1 2 ) βˆ’ ( π‘š 2 ) = ( π‘š 1 ) Consider, 𝑑𝑐2(π‘˜2,π‘šβˆ’1, 3) = ( π‘š + 1 3 ) βˆ’ ( π‘š 3 ) βˆ’ ( π‘š βˆ’ 1 2 ) = ( π‘š 2 ) βˆ’ ( π‘š βˆ’ 1 2 ) = ( π‘š βˆ’ 1 1 ) = π‘š βˆ’ 1. That is, 𝑑𝑐2(π‘˜2,π‘šβˆ’1, 3) = 𝑑𝑐2(π‘˜2,π‘š, 3) βˆ’ 1. Therefore, 𝑑𝑐2(π‘˜2,π‘š , 3) = 𝑑𝑐2(π‘˜2,π‘šβˆ’1, 3) + 1. Hence, 𝑑𝑐2(π‘˜2,π‘š, 𝑗) = 𝑑𝑐2(π‘˜2,π‘šβˆ’1, 𝑗) + 1 𝑖𝑓 𝑗 = 3. (ii) When 𝑗 = π‘š, 𝑑𝑐2(π‘˜2,π‘š, π‘š) = ( π‘š + 2 π‘š ) βˆ’ ( π‘š + 1 π‘š ) βˆ’ ( π‘š π‘š βˆ’ 1 ), by Theorem 2.2. = ( π‘š + 1 π‘š βˆ’ 1 ) βˆ’ ( π‘š π‘š βˆ’ 1 ). = ( π‘š π‘š βˆ’ 2 ). Consider, 𝑑𝑐2(π‘˜2,π‘šβˆ’1, π‘š) + 𝑑𝑐2(π‘˜2,π‘šβˆ’1, π‘š βˆ’ 1) = ( π‘š + 1 π‘š ) βˆ’ ( π‘š π‘š ) βˆ’ ( π‘š βˆ’ 1 π‘š βˆ’ 1 ) + 2 + ( π‘š + 1 π‘š βˆ’ 1 ) βˆ’ ( π‘š π‘š βˆ’ 1 ) βˆ’ ( π‘š βˆ’ 1 π‘š βˆ’ 2 ) = ( π‘š + 1 π‘š ) βˆ’ ( π‘š + 1 π‘š βˆ’ 1 ) βˆ’ [( π‘š π‘š ) + ( π‘š π‘š βˆ’ 1 )] – [( π‘š βˆ’ 1 π‘š βˆ’ 1 ) + ( π‘š βˆ’ 1 π‘š βˆ’ 2 )] +2 = ( π‘š + 2 π‘š ) βˆ’ ( π‘š + 1 π‘š ) βˆ’ ( π‘š π‘š βˆ’ 1 ) + 2 = ( π‘š + 1 π‘š βˆ’ 1 ) βˆ’ ( π‘š π‘š βˆ’ 1 ) + 2 = ( π‘š π‘š βˆ’ 2 ) + 2. = 𝑑𝑐2(π‘˜2,π‘š, π‘š) + 2. Therefore, 𝑑𝑐2(π‘˜2,π‘š , π‘š) = 𝑑𝑐2(π‘˜2,π‘šβˆ’1, π‘š) + 𝑑𝑐2(π‘˜2,π‘šβˆ’1, π‘š βˆ’ 1) + 2. Hence, 𝑑𝑐2(π‘˜2,π‘š, 𝑗) = 𝑑𝑐2(π‘˜2,π‘šβˆ’1, 𝑗) + 𝑑𝑐2(π‘˜2,π‘šβˆ’1, 𝑗 βˆ’ 1) βˆ’ 2 when 𝑗 = π‘š. 3. Connected 2 βˆ’Domination Polynomials of the Complete Bipartite Graph π’ŒπŸ,π’Ž. Definition 3.1. Let 𝑑𝑐2(π‘˜2,π‘š, 𝑗) be the number of connected 2 –dominating sets of the Complete bipartite Graph π‘˜2,π‘š with cardinality 𝑗.Then, the connected 2 βˆ’ domination 54 Connected 2 βˆ’ Dominating Sets and Connected 2 βˆ’ Domination Polynomials of the Complete Bipartite Graph π‘˜2,π‘š. Polynomial of π‘˜2,π‘š is defined as 𝐷𝑐2 (π‘˜2,π‘š,π‘₯) = βˆ‘ 𝑑𝑐2 (π‘˜2,π‘š,j)π‘₯ 𝑗 , |𝑉(π‘˜2,π‘š)| 𝑗=𝛾𝑐2 (π‘˜2,π‘š) where 𝛾𝑐2 (π‘˜2,π‘š) is the connected 2 – domination number of π‘˜2,π‘š. Remark 3.2 𝛾𝑐2 (π‘˜2,π‘š) =3. Proof. Let π‘˜2,π‘š be the complete bipartite graph with partite sets 𝑉1 ={𝑣1,𝑣2} and 𝑉2 = {𝑣3,𝑣4,,...,π‘£π‘š+1,π‘£π‘š+2}. Let 𝑣1,𝑣2πœ– V (π‘˜2,π‘š) and 𝑣1,𝑣2 are adjacent to all the other vertices 𝑣3,𝑣4,...,π‘£π‘š+1,π‘£π‘š+2 of π‘˜2,π‘š. Also Since, 𝑣1 and 𝑣2 are not connected, every connected 2 –dominating set must contain the vertices 𝑣1,𝑣2 and one more vertex from {𝑣3, 𝑣4,...,π‘£π‘š+1,π‘£π‘š+2}. Therefore, the minimum cardinality is 3. Hence, 𝛾𝑐2 (π‘˜2,π‘š) =3. Theorem 3.3 Let π‘˜2,π‘š be the complete bipartite graph with π‘š β‰₯ 3. Then 𝐷𝑐2(π‘˜2,π‘š,π‘₯)=(1 + π‘₯) 𝐷𝑐2(π‘˜2,π‘šβˆ’1,π‘₯)+π‘₯ 3 βˆ’ 2π‘₯π‘š. Proof: From the definition of connected 2 βˆ’ domination Polynomial, we have, 𝐷𝑐2(π‘˜2,π‘š,π‘₯) = βˆ‘ 𝑑𝑐2 (π‘˜2,π‘š,j)π‘₯ π‘—π‘š+2 𝑗=3 . = 𝑑𝑐2(π‘˜2,π‘š, 3)π‘₯ 3 + βˆ‘ 𝑑𝑐2 (π‘˜2,π‘š,j)π‘₯ π‘—π‘šβˆ’1 𝑗=4 + 𝑑𝑐2 (π‘˜2,π‘š,π‘š)π‘₯ π‘š + βˆ‘ 𝑑𝑐2 (π‘˜2,π‘š,j)π‘₯ π‘—π‘š+2 𝑗=π‘š+1 . = [𝑑𝑐2 (π‘˜2,π‘šβˆ’1,3) + 1]π‘₯ 3 + βˆ‘ [𝑑𝑐2 (π‘˜2,π‘šβˆ’1,j) π‘š+2 𝑗=4 + 𝑑𝑐2 π‘˜2,π‘šβˆ’1, 𝑗 βˆ’ 1]π‘₯ 𝑗 +[𝑑𝑐2 (π‘˜2,π‘šβˆ’1,π‘š) + 𝑑𝑐2 (π‘˜2,π‘šβˆ’1,π‘š βˆ’ 1)βˆ’2]π‘₯ π‘š , by Theorem 2.5 = 𝑑𝑐2(π‘˜2,π‘šβˆ’1, 3)π‘₯ 3 + π‘₯3 + βˆ‘ 𝑑𝑐2 (π‘˜2,π‘šβˆ’1,j) π‘š+2 𝑗=4 π‘₯ 𝑗 + βˆ‘ 𝑑𝑐2 (π‘˜2,π‘šβˆ’1,j βˆ’ 1) π‘š+2 𝑗=4 π‘₯ 𝑗 βˆ’ 2π‘₯π‘š. = βˆ‘ 𝑑𝑐2 (π‘˜2,π‘šβˆ’1,j) π‘š+2 𝑗=3 π‘₯ 𝑗 +π‘₯ βˆ‘ 𝑑𝑐2 (π‘˜2,π‘šβˆ’1,j βˆ’ 1) π‘š+2 𝑗=4 π‘₯ π‘—βˆ’1 + π‘₯3 βˆ’ 2π‘₯π‘š. = 𝐷𝑐2(π‘˜2,π‘šβˆ’1,π‘₯) +π‘₯𝐷𝑐2(π‘˜2,π‘šβˆ’1,π‘₯)+ π‘₯ 3 βˆ’ 2π‘₯π‘š . Hence, 𝐷𝑐2(π‘˜2,π‘š,π‘₯) = (1 + π‘₯)𝐷𝑐2(π‘˜2,π‘šβˆ’1,π‘₯) +π‘₯ 3 βˆ’ 2π‘₯π‘š, for every π‘š β‰₯ 3. Example 3.4 Let π‘˜2,7 be the complete bipartite graph with order 9 as given in Figure 2.1. π‘˜2,7 : Figure 2.1 𝐷𝑐2 (𝐾2,6,π‘₯) = 6π‘₯ 3 + 15π‘₯4+20π‘₯5 + 15π‘₯6 + 8π‘₯7 + π‘₯8. 55 Y. A. Shiny and T. Anithababy By Theorem 3.3, we have, 𝐷𝑐2 (𝐾2,7,π‘₯) = (1 + π‘₯)( 6π‘₯ 3+15π‘₯4+20π‘₯5+15π‘₯6+8π‘₯7+π‘₯8)+ π‘₯3 βˆ’ 2π‘₯7. = 6π‘₯3+15π‘₯4+20π‘₯5+15π‘₯6+8π‘₯7+π‘₯8 +6π‘₯4+15π‘₯5+20π‘₯6+15π‘₯7+8π‘₯8+π‘₯9 + π‘₯3 βˆ’ 2π‘₯7. = 7π‘₯3+21π‘₯4+35π‘₯5+35π‘₯6+21π‘₯7+9π‘₯8+π‘₯9 We obtain 𝑑𝑐2 (π‘˜2,π‘š,𝑗) for 3≀ π‘š ≀ 15 and 3≀ 𝑗 ≀ 15 as shown in Table 1. 𝑗 π‘š 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 3 0 3 5 1 4 0 4 6 6 1 5 0 5 10 10 7 1 6 0 6 15 20 15 8 1 7 0 7 21 35 35 21 9 1 8 0 8 28 56 70 56 28 10 1 9 0 9 36 84 126 126 84 36 11 1 10 0 10 45 120 210 252 210 120 45 12 1 11 0 11 55 165 330 462 462 330 165 55 13 1 12 0 12 66 220 495 792 924 792 495 220 66 14 1 13 0 13 78 286 715 1287 1716 1716 1287 715 286 78 15 1 14 0 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 16 1 15 0 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 107 17 1 Table 1.𝑑𝑐2 (π‘˜2,π‘š,𝑗), the number of connected 2βˆ’ dominating sets of π‘˜2,π‘š with cardinality 𝑗. In the following Theorem, we obtain some properties of 𝑑𝑐2 (𝐾2,π‘š,𝑗). Theorem: 3.5 The following properties hold for the coefficients of 𝐷𝑐2 (𝐾2,π‘š,π‘₯) for all m. (i) 𝑑𝑐2 (π‘˜2,π‘š,3) = π‘š, for all π‘š β‰₯ 3. (ii) 𝑑𝑐2 (π‘˜2,π‘š,π‘š + 2) = 1, for all π‘š β‰₯ 3. (iii) 𝑑𝑐2 (π‘˜2,π‘š,π‘š + 1) = π‘š + 2 , for all π‘š β‰₯ 3. (iv) 𝑑𝑐2 (π‘˜2,π‘š,π‘š) = ( π‘š + 2 2 ) βˆ’ ( π‘š + 1 1 ) βˆ’ π‘š. (v) 𝑑𝑐2 (π‘˜2,π‘š,π‘š βˆ’ 1) = ( π‘š + 2 3 ) βˆ’ ( π‘š + 1 2 ) βˆ’ ( π‘š 2 ) , for all π‘š β‰₯ 4. (vi) 𝑑𝑐2 (π‘˜2,π‘š,π‘š βˆ’ 2) = ( π‘š + 2 4 ) βˆ’ ( π‘š + 1 3 ) βˆ’ ( π‘š 3 ) , for all π‘š β‰₯ 5. (vii) 𝑑𝑐2 (π‘˜2,π‘š,π‘š βˆ’ 3) = ( π‘š + 2 5 ) βˆ’ ( π‘š + 1 4 ) βˆ’ ( π‘š 4 ) , for all π‘š β‰₯ 6. 56 Connected 2 βˆ’ Dominating Sets and Connected 2 βˆ’ Domination Polynomials of the Complete Bipartite Graph π‘˜2,π‘š. (viii) 𝑑𝑐2 (π‘˜2,π‘š,π‘š βˆ’ 𝑖) = ( π‘š + 2 𝑖 + 2 ) βˆ’ ( π‘š + 1 𝑖 + 1` ) βˆ’ ( π‘š 𝑖 ) , for all π‘š β‰₯ 4 and 𝑖 β‰₯ 1. Proof: (i) 𝑑𝑐2 (π‘˜2,π‘š,3) = π‘š. We prove this by induction on m. When π‘š = 3 , 𝑑𝑐2 (π‘˜2,π‘š,3) = 3. Therefore, the result is true for π‘š = 3. Now, suppose that the result is true for all numbers less than β€˜m’ and we prove it for m. By Theorem 2.6, 𝑑𝑐2 (π‘˜2,π‘š,3) = 𝑑𝑐2 (π‘˜2,π‘šβˆ’1,3) + 1 = π‘š βˆ’ 1 + 1 = π‘š. (ii) 𝑑𝑐2 (π‘˜2,π‘š,π‘š + 2) = 1, for all π‘š β‰₯ 3. Since, there is only one connected 2βˆ’ dominating set of cardinalities π‘š + 2, 𝑑𝑐2 (π‘˜2,π‘š,π‘š + 2) = 1. (iii) 𝑑𝑐2 (π‘˜2,π‘š,π‘š + 1) = π‘š + 2 , for all mβ‰₯4. Since, 𝑑𝑐2 (π‘˜2,π‘š,π‘š + 1) = {[π‘š + 2]βˆ’π‘₯/π‘₯πœ€[π‘š + 2]},we have the result. (iv), (v), (vi), (vii) and (viii) follows from Theorem 2.4. 4. Conclusion In this paper, the connected 2βˆ’ domination polynomials of the complete bipartite graph 𝐾2,π‘š has been derived by identifying its connected 2βˆ’ dominating sets. It also helps us to characterize the connected. Connected 2βˆ’ dominating sets of cardinality j. We can generalize this study to any of complete bipartite graph 𝐾𝑛,π‘š and some interesting properties can be obtained. References [1] Alikhani. S, peng. Y. H.” Introduction to Domination Polynomial of a Graph,” Ars Combinatoria, Available as arxiv:0905.2251|v| [math.co]14 May 2009. [2] Alikhani. S, and Hamzeh Torabi,” On Domination Polynomials of Complete Partite Graphs” World Applied Sciences Journal,9(1):23βˆ’24,2010. [3] Sahib. Sh. Kahat. Abdul Jalil M. Khalaf and Roslan Hasni,” Dominating sets and Domination Polynomials of Wheels”. Asian Journal of Applied Sciences (ISSN:2321βˆ’ 0893), volume 02βˆ’ Issue 03, June 2014. [4] Sahib Shayyal Kahat, Abdul Jalil M. Khalaf and Roslan Hasni,” Dominating sets and Domination Polynomials of Stars”. Australian Journal of Basics and Applied Science,8(6) June 2014, pp 383βˆ’386. [5] A. Vijayan, T. Anithababy, G. Edwin,” Connected Total Dominating Sets and 57 Y. A. Shiny and T. Anithababy Connected Total Domination Polynomials of Stars and Wheels”, IOSR Journal of Mathematics, Volume II, pp 112βˆ’121. [6] A. Vijayan, T. Anithababy, G. Edwin, β€œConnected Total Dominating Sets and Connected Total Domination Polynomials of Fan Graphs 𝐹2,𝑛". International Journal of Mathematical Sciences and Engineering Applications (IJMSEA), Vol.10, No.1(April 2016), pp.135βˆ’146, ISSN:0473 βˆ’9424. 58