Ratio Mathematica Volume 44,2022 Reach Energy of Digraphs V. Mahalakshmi* B. Vijaya Prabaโ€  K. Palaniโ€ก Abstract A Digraph D consists of two finite sets (๐‘‰, ๐’œ), where ๐‘‰ denotes the vertex set and ๐’œ denotes the arc set. For vertices ๐‘ข, ๐‘ฃ โˆˆ ๐‘‰, if there exists a directed path from ๐‘ข to ๐‘ฃ then ๐‘ฃ is said to be reachable from ๐‘ข and vice versa. The Reachability matrix of D is the ๐‘› ร— ๐‘› matrix ๐‘…(๐ท) = [๐‘Ÿ๐‘–๐‘—], where ๐‘Ÿ๐‘–๐‘— = 1, if ๐‘ฃ๐‘— is reachable from ๐‘ฃ๐‘– and ๐‘Ÿ๐‘–๐‘— = 0 otherwise. The eigen values corresponding to the reachability matrix are called reach eigen values. The reach energy of a digraph is defined by ๐ธ๐‘…(๐ท) = โˆ‘ |๐œ†๐‘–| ๐‘› ๐‘–=1 where ๐œ†๐‘– is the eigen value of the reachability matrix. In this paper we introduce the reach spectrum of a digraph and study its properties and bounds. Moreover, we compute reach spectrum for some digraphs. Keywords: Reachable, Reachability matrix, reach eigen values, reach spectrum, Reach energy. 2010 AMS subject classification: 05C50,05C90, 15A18ยง *Assistant Professor (PG & Research Department of Mathematics, A.P.C. Mahalaxmi College for Women Thoothukudi, India); Email - mahalakshmi@apcmcollege.ac.in โ€ Research Scholar Reg.No: 21212012092002 (PG & Research Department of Mathematics, A.P.C. Mahalaxmi College for Women Thoothukudi, India); Email - vijayapraba.b@gmail.com โ€ก Third Authorโ€™s Affiliation (PG & Research Department of Mathematics, A.P.C. Mahalaxmi College for Women Thoothukudi, India); Email - palani@apcmcollege.ac.in Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India; ยงReceived on June 19th, 2022. Accepted on Sep 1st, 2022. Published on Nov 30th, 2022. doi: 10.23755/rm.v44i0.926. ISSN: 1592-7415. eISSN: 2282-8214. ยฉThe Authors. This paper is published under the CC-BY licence agreement. 363 V. Mahalakshmi, B. Vijaya Praba, and K. Palani 1. Introduction In this paper we considered simple and connected graph. A directed graph or digraph D consists of two finite sets (๐‘‰, ๐’œ ) where ๐‘‰ denotes the vertex set and ๐’œ denotes the arc set. For two vertices ๐‘ข and ๐‘ฃ, an arc from ๐‘ข to ๐‘ฃ is denoted by ๐‘ข๐‘ฃ. Two vertices ๐‘ข and ๐‘ฃ is said to be adjacent if either ๐‘ข๐‘ฃ โˆˆ ๐’œ or ๐‘ฃ๐‘ข โˆˆ ๐’œ . In 1978 Gutman [4] defined the energy of a simple graph as the sum of the absolute values of its eigen values and it is denoted by ๐ธ(๐บ). i.e., ๐ธ(๐บ) = โˆ‘ |๐œ†๐‘–| ๐‘› ๐‘–=1 . The concept of graph energy was extended to digraph by Pena and Rada [8] and Adiga et al. [1]. Khan et al. [5] defined a new notion of energy of digraph called iota energy. In this paper, we investigate the properties and some bounds on reach energy. Definition 1.1. A path is said to be directed path in which all the edges are directed either in clockwise or in anticlockwise direction and it is denoted as ๐‘ƒ๐‘›โƒ—โƒ—โƒ—โƒ— โƒ—. Let {๐‘ฃ1, ๐‘ฃ2, โ€ฆ , ๐‘ฃ๐‘›} be the vertex set of a directed path. Then the set {๐‘ฃ๐‘–๐‘ฃ๐‘–+1| ๐‘– = 1,2, . . . , ๐‘› โˆ’ 1} is the arc set of ๐‘ƒ๐‘›โƒ—โƒ—โƒ—โƒ— โƒ—. Definition 1.2. A path is said to be alternate path in which the edges are given alternate direction and it is denoted as ๐ด๐‘ƒ๐‘›โƒ—โƒ— โƒ—โƒ—โƒ—โƒ— โƒ—โƒ— Definition 1.3. A star graph ๐พ1,๐‘› in which all the edges are directed towards the root vertex is called an instar and is denoted as ๐‘–๐พ1,๐‘›โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— โƒ— Definition 1.4. A star graph ๐พ1,๐‘› in which all the edges are directed away from the root vertex is called an outstar and is denoted as ๐‘œ๐พ1,๐‘›โƒ—โƒ—โƒ—โƒ— โƒ—โƒ—โƒ—โƒ—โƒ—โƒ— 2. Reach Energy Definition 2.1. Let ๐ท = (๐‘‰, ๐ด) be a directed graph with ๐‘› vertices. The reachability matrix [2] ๐‘…(๐ท) = [๐‘Ÿ๐‘–๐‘—] is the ๐‘› ร— ๐‘› matrix with ๐‘Ÿ๐‘–๐‘— = 1, if ๐‘ฃ๐‘— is reachable from ๐‘ฃ๐‘– and ๐‘Ÿ๐‘–๐‘— = 0 otherwise. We assume that each vertex is reachable from itself. The characteristic polynomial of ๐‘…(๐ท) = [๐‘Ÿ๐‘–๐‘—] is denoted by ๐‘“(๐ท, ๐œ†) = ๐‘‘๐‘’๐‘ก(๐‘…(๐ท) โˆ’ ๐ผ๐œ†). Let {๐œ†1, ๐œ†2, โ€ฆ , ๐œ†๐‘›} be the reach eigen values of ๐ท. The reach eigen values of the graph ๐ท are the eigen values of ๐‘…(๐ท) and is called as reach spectrum of ๐ท. The spectrum of D is denoted by ๐‘ ๐‘๐‘’๐‘ ๐ท = { ๐œ†1 ๐œ†2 โ€ฆ ๐œ†๐‘› ๐‘š1 ๐‘š2 โ€ฆ ๐‘š๐‘› } where ๐‘š๐‘– is the algebraic multiplicity of the eigen values ๐œ†๐‘–, for 1 โ‰ค ๐‘– โ‰ค ๐‘› Then the reach energy of ๐ท is defined as the sum of absolute values of reach spectrum of ๐ท. i.e., ๐ธ๐‘…(๐ท) = โˆ‘ |๐œ†๐‘–| ๐‘› ๐‘–=1 364 Reach energy of digraphs Example 2.2. Figure 1. Reachability matrix is ๐‘…(๐ท) = ( 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1) Characteristic polynomial of ๐‘…(๐ท) is given by ๐‘“(๐ท, ๐œ†) = ๐œ†6 โˆ’ 6๐œ†5 + 15๐œ†4 โˆ’ 20๐œ†3 + 15๐œ†2 โˆ’ 6๐œ† + 1. Hence, the reach spectrum is { 1 6 }. Therefore, the reach energy of D is ๐ธ๐‘…(๐ท) = 6. 3. Reach Energy of Some Graphs Theorem 3.1. Directed path and alternate path attains same Reach Energy. Proof: Let ๐‘ƒ๐‘›(๐ท) be the directed path with vertex set ๐‘‰ = {๐‘ฃ1, ๐‘ฃ2, โ€ฆ , ๐‘ฃ๐‘›} Let ๐ด๐‘ƒ๐‘›(๐ท) be the alternate path with vertex set ๐‘‰ = {๐‘ฃ1โ€ฒ, ๐‘ฃ2โ€ฒ, โ€ฆ , ๐‘ฃ๐‘›โ€ฒ}. The reachability matrix of ๐‘ƒ๐‘›(๐ท) is in the upper triangular matrix form with the entries 1. The reachability matrix of ๐ด๐‘ƒ๐‘›(๐ท) is of the form ๐‘…(๐ด๐‘ƒ๐‘›(๐ท)) = [ 1 1 0 โ‹ฏ 0 0 0 1 0 โ‹ฏ 0 0 0 1 โ‹ฏ 1 0 0 0 0 0 โ‹ฑ 1 0 โ‹ฎ โ‹ฎ โ‹ฎ 0 โ‹ฎ โ‹ฎ 0 0 โ‹ฏ 0 1 1] ๐‘ฃ1 ๐‘ฃ2 ๐‘ฃ3 ๐‘ฃ4 ๐‘ฃ5 ๐‘ฃ6 365 V. Mahalakshmi, B. Vijaya Praba, and K. Palani Characteristic polynomial of ๐‘ƒ๐‘› is ๐‘“(๐‘ƒ๐‘›(๐ท), ๐œ†) = det(๐‘…(๐‘ƒ๐‘›(๐ท)) โˆ’ ๐œ† ๐ผ๐‘›) ๐‘“(๐‘ƒ๐‘›(๐ท), ๐œ†) = | 1 โˆ’ ๐œ† 1 โ‹ฏ 1 0 1 โˆ’ ๐œ† 1 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ 1 0 โ‹ฏ 0 1 โˆ’ ๐œ† | = (โˆ’1)๐‘› (๐œ† โˆ’ 1)๐‘›. Characteristic polynomial of ๐ด๐‘ƒ๐‘› is ๐‘“(๐ด๐‘ƒ๐‘›(๐ท), ๐œ†) = det(๐‘…(๐ด๐‘ƒ๐‘›(๐ท)) โˆ’ ๐œ† ๐ผ๐‘›) ๐‘“(๐ด๐‘ƒ๐‘›(๐ท), ๐œ†) = | | 1 โˆ’ ๐œ† 1 0 โ‹ฏ 0 0 0 1 โˆ’ ๐œ† 0 โ‹ฏ 0 0 0 1 โ‹ฏ 1 0 0 0 0 0 โ‹ฑ 1 0 โ‹ฎ โ‹ฎ โ‹ฎ 0 โ‹ฎ โ‹ฎ 0 0 โ‹ฏ 0 1 1 โˆ’ ๐œ† | | = (โˆ’1)๐‘› (๐œ† โˆ’ 1)๐‘›. Clearly, ๐‘“(๐‘ƒ๐‘›(๐ท), ๐œ†) = ๐‘“(๐ด๐‘ƒ๐‘›(๐ท), ๐œ†). Since the characteristic polynomial of ๐‘ƒ๐‘›(๐ท) and ๐ด๐‘ƒ๐‘›(๐ท) are same, Spectrum of ๐‘…(๐‘ƒ๐‘›) and ๐‘…(๐ด๐‘ƒ๐‘›) are same. Hence, the Reach Spectrum of ๐‘…(๐‘ƒ๐‘›(๐ท)) and ๐‘…(๐ด๐‘ƒ๐‘›(๐ท)) are { 1 ๐‘› } and its Reach Energy is ๐ธ๐‘…(๐‘ƒ๐‘›(๐ท)) = ๐ธ๐‘…(๐ด๐‘ƒ๐‘›(๐ท)) = โˆ‘ 1 ๐‘› 1 = ๐‘› Therefore, the directed path and alternate path attains same Reach Energy. Theorem 3.2. Reach energy of directed star is independent of its orientation. Proof: Let ๐พ1,๐‘›โˆ’1(๐ท) be the directed instar with vertex set ๐‘ฃ1, ๐‘ฃ2, โ€ฆ , ๐‘ฃ๐‘›โˆ’1 Let ๐พโ€ฒ1,๐‘›โˆ’1(D) be the directed outstar with vertex set ๐‘ฃ1โ€ฒ, ๐‘ฃ2โ€ฒ, โ€ฆ , ๐‘ฃ๐‘›โˆ’1โ€ฒ The reachability matrix of ๐พ1,๐‘›โˆ’1(๐ท) is of the form ๐‘… (๐พ1,๐‘›โˆ’1(๐ท)) = ๐ผ๐‘› + ( 0 01ร—๐‘›โˆ’1 ๐ฝ๐‘›โˆ’1ร—1 0๐‘›โˆ’1ร—๐‘›โˆ’1 ) The reachability matrix of ๐พโ€ฒ1,๐‘›โˆ’1(๐ท) is of the form ๐‘… (๐พโ€ฒ1,๐‘›โˆ’1(๐ท)) = ๐ผ๐‘› + ( 0 ๐ฝ1ร—๐‘›โˆ’1 0๐‘›โˆ’1ร—1 0๐‘›โˆ’1ร—๐‘›โˆ’1 ) Characteristic polynomial of ๐พ1,๐‘›โˆ’1(๐ท) is 366 Reach energy of digraphs ๐‘“(๐พ1,๐‘›โˆ’1(๐ท), ๐œ†) = det(๐‘… (๐พ1,๐‘›โˆ’1(๐ท)) โˆ’ ๐œ† ๐ผ๐‘›) ๐‘“(๐พ1,๐‘›โˆ’1(๐ท), ๐œ†) = | 1 โˆ’ ๐œ† 0 โ‹ฏ 0 1 1 โˆ’ ๐œ† 0 โ‹ฎ โ‹ฎ 0 โ‹ฑ 0 1 0 0 1 โˆ’ ๐œ† | = (โˆ’1)๐‘› (๐œ† โˆ’ 1)๐‘› Characteristic polynomial of ๐พโ€ฒ1,๐‘›โˆ’1(๐ท) is ๐‘“(๐พโ€ฒ1,๐‘›โˆ’1(๐ท), ๐œ†) = det(๐‘… (๐พโ€ฒ1,๐‘›โˆ’1(๐ท)) โˆ’ ๐œ† ๐ผ๐‘›) ๐‘“(๐พโ€ฒ1,๐‘›โˆ’1(๐ท), ๐œ†) = | 1 โˆ’ ๐œ† 1 โ‹ฏ 1 0 1 โˆ’ ๐œ† 0 0 โ‹ฎ 0 โ‹ฑ 0 0 โ‹ฏ 0 1 โˆ’ ๐œ† | = (โˆ’1)๐‘› (๐œ† โˆ’ 1)๐‘›. Clearly, ๐‘“(๐พ1,๐‘›โˆ’1(๐ท) , ๐œ†) = ๐‘“(๐พโ€ฒ1,๐‘›โˆ’1(๐ท) , ๐œ†). Since the characteristic polynomial of ๐พ1,๐‘›โˆ’1(๐ท) and ๐พโ€ฒ1,๐‘›โˆ’1(๐ท) are same, Spectrum of ๐‘…(๐พ1,๐‘›โˆ’1(๐ท) ) and ๐‘…(๐พโ€ฒ1,๐‘›โˆ’1(๐ท) ) are same. Hence, the Reach Spectrum of ๐‘…(๐พ1,๐‘›โˆ’1(๐ท) ) and ๐‘…(๐พโ€ฒ1,๐‘›โˆ’1(๐ท) ) are { 1 ๐‘› and its Reach Energy ๐ธ๐‘… (๐พ1,๐‘›โˆ’1(๐ท)) = ๐ธ๐‘… (๐พโ€ฒ1,๐‘›โˆ’1(๐ท)) = โˆ‘ 1 ๐‘› 1 = ๐‘› Therefore, the Reach Energy of directed star is independent of its orientation. 4. Properties of Reach Eigen values Theorem 4.1: Let ๐ท be any digraph. If ๐œ†1, ๐œ†2, โ€ฆ , ๐œ†๐‘› are the reach eigen values of ๐‘…(๐ท), then the following condition holds. i. โˆ‘ ๐œ†๐‘– = ๐‘› ๐‘› ๐‘–=1 ii. โˆ‘ ๐œ†๐‘– 2๐‘› ๐‘–=1 = ๐‘› + ๐›ผ + ๐›ฝ; where ๐›ผ = โˆ‘ ๐‘Ÿ๐‘–๐‘—๐‘Ÿ๐‘—๐‘–๐‘–>๐‘— and ๐›ฝ = โˆ‘ ๐‘Ÿ๐‘–๐‘—๐‘Ÿ๐‘—๐‘–๐‘–<๐‘— Proof: i. Sum of eigen values of ๐‘…(๐ท) is same as the trace of ๐‘…(๐ท). i.e., โˆ‘ ๐œ†๐‘– = โˆ‘ ๐‘Ÿ๐‘–๐‘– ๐‘› ๐‘–=1 ๐‘› ๐‘–=1 ; Since each vertex is reachable from itself, all the diagonal entries must be 1. = 1 + 1 + 1 + โ‹ฏ + 1 (๐‘› times) 367 V. Mahalakshmi, B. Vijaya Praba, and K. Palani Therefore, โˆ‘ ๐œ†๐‘– = ๐‘› ๐‘› ๐‘–=1 ii. Since, the sum of squares of the eigen values of R is the trace of [๐‘…(๐ท)]2 โˆ‘ ๐œ†๐‘– 2 ๐‘› ๐‘–=1 = โˆ‘ โˆ‘ ๐‘Ÿ๐‘–๐‘— ๐‘Ÿ๐‘—๐‘– ๐‘› ๐‘–=1 ๐‘› ๐‘–=1 = โˆ‘ ๐‘Ÿ๐‘–๐‘–๐‘Ÿ๐‘–๐‘– ๐‘› ๐‘–=๐‘—=1 + โˆ‘ ๐‘Ÿ๐‘–๐‘—๐‘Ÿ๐‘—๐‘– ๐‘› ๐‘–โ‰ ๐‘—=1 = โˆ‘(๐‘Ÿ๐‘–๐‘–) 2 ๐‘–=๐‘— + โˆ‘ ๐‘Ÿ๐‘–๐‘—๐‘Ÿ๐‘—๐‘– ๐‘–>๐‘— + โˆ‘ ๐‘Ÿ๐‘–๐‘—๐‘Ÿ๐‘—๐‘– ๐‘–<๐‘— = ๐‘› + ๐›ผ + ๐›ฝ ; where ๐›ผ = โˆ‘ ๐‘Ÿ๐‘–๐‘—๐‘Ÿ๐‘—๐‘–๐‘–>๐‘— and ๐›ฝ = โˆ‘ ๐‘Ÿ๐‘–๐‘—๐‘Ÿ๐‘—๐‘–๐‘–<๐‘— Therefore, โˆ‘ ๐œ†๐‘– 2 ๐‘› ๐‘–=1 = ๐‘› + ๐›ผ + ๐›ฝ 5. Bounds for Reach Energy Theorem 5.1: Let ๐ท be a directed graph. Let Z be the absolute value of determinant of the reachability matrix ๐‘… of ๐ท i.e., ๐‘ = |det ๐‘…(๐ท)| Then ๐‘›โˆš๐‘› + ๐›ผ + ๐›ฝ โ‰ค ๐ธ๐‘…(๐ท) โ‰ค โˆš(๐‘› + ๐›ผ + ๐›ฝ) + ๐‘›(๐‘› โˆ’ 1)๐‘ 2/๐‘› Proof: We know that Cauchy Schwarz inequality is (โˆ‘ ๐‘Ž๐‘–๐‘๐‘– ๐‘› ๐‘–=1 ) 2 โ‰ค (โˆ‘ ๐‘Ž๐‘– ๐‘› ๐‘–=1 ) 2 (โˆ‘ ๐‘๐‘– ๐‘› ๐‘–=1 ) 2 Put ๐‘Ž๐‘– = 1, ๐‘๐‘– = |๐œ†๐‘–| (โˆ‘|๐œ†๐‘–| ๐‘› ๐‘–=1 ) 2 โ‰ค (โˆ‘ 1 ๐‘› ๐‘–=1 ) 2 (โˆ‘|๐œ†๐‘–| 2 ๐‘› ๐‘–=1 ) [๐ธ๐‘…(๐ท)] 2 โ‰ค ๐‘›2(๐‘› + ๐›ผ + ๐›ฝ) ๐ธ๐‘…(๐ท) โ‰ค ๐‘›โˆš๐‘› + ๐›ผ + ๐›ฝ (1) Since arithmetic mean is not smaller than geometric mean, we have 368 Reach energy of digraphs 1 ๐‘›(๐‘› โˆ’ 1) โˆ‘|๐œ†๐‘–||๐œ†๐‘—| ๐‘–โ‰ ๐‘— โ‰ฅ (โˆ|๐œ†๐‘–||๐œ†๐‘—| ๐‘–โ‰ ๐‘— ) 1 ๐‘›(๐‘›โˆ’1) = (โˆ|๐œ†๐‘–| 2(๐‘›โˆ’1) ๐‘› ๐‘–=1 ) 1 ๐‘›(๐‘›โˆ’1) = โˆ|๐œ†๐‘–| 2 ๐‘› ๐‘› ๐‘–=1 = |โˆ ๐œ†๐‘– ๐‘› ๐‘–=1 | 2 ๐‘› = |det ๐‘…(๐ท)| 2 ๐‘› = ๐‘ 2 ๐‘› Therefore, โˆ‘ |๐œ†๐‘–||๐œ†๐‘—|๐‘–โ‰ ๐‘— โ‰ฅ ๐‘›(๐‘› โˆ’ 1) ๐‘ 2 ๐‘› (2) Now consider, [๐ธ๐‘…(๐ท)] 2 = (โˆ‘|๐œ†๐‘–| ๐‘› ๐‘–=1 ) 2 = โˆ‘|๐œ†๐‘–| 2 ๐‘› ๐‘–=1 + โˆ‘|๐œ†๐‘–||๐œ†๐‘–| ๐‘–โ‰ ๐‘— โ‰ฅ (๐‘› + ๐›ผ + ๐›ฝ) + ๐‘›(๐‘› โˆ’ 1) ๐‘ 2 ๐‘›); ๐‘๐‘ฆ (2) Hence, ๐ธ๐‘…(๐ท) โ‰ฅ โˆš(๐‘› + ๐›ผ + ๐›ฝ ) + ๐‘›(๐‘› โˆ’ 1) ๐‘ 2 ๐‘› From (1) and (2), ๐‘›โˆš๐‘› + ๐›ผ + ๐›ฝ โ‰ค ๐ธ๐‘…(๐ท) โ‰ค โˆš(๐‘› + ๐›ผ + ๐›ฝ) + ๐‘›(๐‘› โˆ’ 1)๐‘ 2/๐‘› References [1] Adiga.C, Balakrishnan, R., & So, W. (2010). The skew energy of a digraph. Linear Algebra and its Applications, 432(7), 1825-1835. [2] Arumugam.S, Ramachandran.S, Invitation to Graph Theory, SciTech. [3] Bapat.R.B. B, Graphs and Matrices Hindustan Book Agency, (2011) [4] Gutman. I, The Energy of a Graph, Ber. Math โ€“ Statist. Sekt. For schungsz. Graz 103 (1978), 1-22. [5] Mehtab Khan, (2021). A new notion of energy of digraphs. Iranian Journal of Mathematical Chemistry, 12(2), 111-125. 369 V. Mahalakshmi, B. Vijaya Praba, and K. Palani [6] Palani, K., & Kumari, M. L. (2022). Minimum hop dominating energy of a graph, Advan.Appl.Math.Sci. 21(3), 2022, pp. 1169-1179. [7] Palani, K., & Lalitha Kumari, M. (2021, March). Total Energy of a Graph. Proceedings of the Second International Conference on Applied Mathematics and Intellectual Property Rights (pp. 9-10). [8] Pena. I and Rada. J, Energy of Digraphs, Linear Multilinear Algebra 56(5) (2008) 565-579. 370