REINWARDTIA_13_1_101209 + dftar isi+new RE IN W AR DT IA 13 (1) A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY RE IN W AR DT IA 13 (1) A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY REINWARDTIA Vol 13, Part 1, pp: 33 − 44 33 AN UNDESCRIBED LOWLAND NATURAL FOREST AT BODOGOL, THE GUNUNG GEDE PANGRANGO NATIONAL PARK, CIBODAS BIOSPHERE RESERVE, WEST JAWA, INDONESIA Received June 8, 2009; accepted June 16, 2009 NELVA HELMI, Jurusan Biologi, FMIPA, Universitas Indonesia, Depok 16424 KUSWATA KARTAWINATA, UNESCO Jakarta Office, Jl. Galuh (II) No. 5 , Kebayoran Baru, Jakarta 12119, Indonesia; Herbarium Bogoriense, Botany Division, Research Center for Biology, LIPI, Jl. Raya Jakarta Bogor Km 46, Cibinong 16911, Indonesia; Botany Department, Field Museum, Chicago, IL, USA. E-mail: kkjak@indo.net.id (all communications should be sent to this address) ISMAYADI SAMSOEDIN Pusat Penelitian Hutan dan Konservasi Alam, Badan Penelitian dan Pengembangan Kehutanan, Jl. Gunung Batu, Bogor 16610. E-mail: i.samsoedin@yahoo.com. ABSTRACT HELMI, N., KARTAWINATA, K., & SAMSOEDIN, I. 2009. An undescribed lowland natural forest at Bodogol, Gunung Gede Pangrango National Park, Cibodas Biosphere Reserve, West Java, Indonesia. Reinwardtia 13(1): 33–46. — An analysis of the structure and floristic composition of trees with diameters at breast height ≥ 10 cm in a one– hectare plot in a lowland natural forest at the elevation of 800 m at Bodogol, the Gunung Gede Pangrango National Park, Cibodas Biosphere Reserve, recorded 70 spesies and 30 families with a density of 350 trees/hectare and a total basal area of 23.36 m2. As high as 37 tree spesies (52.86 %) were not recorded in the flora of Mt.Gede Pangrango; they were species of upper lowland forest and dominated the plot. Among 10 main species, only Altingia excelsa and Ficus ribes are montane forest species. Thus the forest plot represents a transition between lowland forest and lower montane forest, which may be called an upper lowland forest. This is a new phenomenon which has not been recorded previ- ously at the Gunung Gede Pangrango National Park. The most prominent species with Importance Value (VI) > 10 % are Schima wallichii, Pternandra caerulescens, Neesia altissima, Luvunga sarmentosa and Maesopsis eminii; the latter is an exotic species invading the natural forest. Dipterocarpus hasseltii is present in the area. Key words: Species composition, structure, lowland and montane forests ABSTRAK HELMI, N., KARTAWINATA, K., & SAMSOEDIN, I. 2009. Hutan alam pamah dataran rendah yang belum pernah dipertelakan di Bodogol, Taman Nasional Gunung Gede Pangrango, Cagar Biosfer Cibodas, Jawa Barat, Indonesia. Reinwardtia 13(1): 33–46. — Analisis struktur dan komposisi floristik pohon dengan diameter setinggi dada ≥ 10 cm dalam petak satu hektar di hutan pada elevasi 800 m di Bodogol, Taman Nasional Gunung Gede Pangrango, Cagar Biosfer Cibodas, mencatat 70 jenis dan 30 suku dengan kerapatan 350 pohon/hektar dan luas bidang dasar total 23,36 m2. Sebanyak 37 jenis pohon (52,86 %) tidak tercatat dalam flora Gunung Gede Pangrango dan merupakan jenis pohon hutan pamah, yang mendominasi petak ini; dari 10 jenis utama hanya tercatat dua jenis hutan pegunungan, yaitu Altingia excelsa dan Ficus ribes. Hutan di sini dapat dikatakan transisi antara hutan pamah dan hutan pegunungan bawah, yang dapat dinamakan hutan pamah atas. Ini merupakan fenomena baru yang belum tercatat sebelumnya bagi Taman Nasional Gunung Gede Pangrango. Jenis yang paling menonjol dengan Nilai Penting (NP) > 10 adalah Schima wallichii, Pternandra caerulescens, Neesia altissima, Luvunga sarmentosa dan Maesopsis eminii; jenis terakhir ini adalah jenis eksotik, yang menginvasi hutan alam. Dipterocarpus hasseltii terdapat juga di hutan ini. Kata kunci: Komposisi floristik, struktur, hutan pamah dan pegunungan REINWARDTIA 34 [VOL.13 INTRODUCTION The Gunung Gede Pangrango National Park (GGPNP) or the Taman Nasional Gunung Gede Pangrango (TNGGP) is one of the first National Parks established in Indonesia in 1980, comprising the entire Mt. Gede Pangrango complex (Departemen Kehutanan, 1994; Rustiami, 2004). The GGPNP along with the man–made ecosystems around it bordered by encircling inter–city highway between Ciawi, Sukabumi, Cianjur, and Cipanas (Figure 1) was designated as the Cibodas Biosphere Reserve in 1977 and has been a member of the the World Network of Biosphere Reserves (Rustiami, 2004). Since the establishment of the Botanic Gardens in Bogor in 1817, especially after the Cibodas Bo- tanical Garden was instituted in 1840, a large num- ber of research activities, including qualitative as- sessment of vegetation, were conducted by many botanists in the forest of the Mt.Gede Pangrango behind the Botanical Garden (Steenis–Kruseman 1953) and the most prominent result is that of Docters van Leeuwen (1933). Steenis et al. (1971, 2006 a & b) based his book on the Mountain flora of Java mainly on the data collected from this area. After the 2nd World War quantitative vegetation studies in the same area were undertaken by Abdulhadi et al. (1998), Meijer (1959), Rollet et al. (1976), Sadili et al. (2009), Sriyanto (1987), and Yamada (1975, 1976a & b, 1977). The studies were carried out on sites lo- cated between the Botanical Garden (1400 m ) and the top of Mt. Pangrango (3019 m), while the natural vegetation of the GGPNP extend from the altitudes of 700 m to 3019 m. It is surprising that after more than one and a half century research in the area no one has paid attention to the lowland section of the Mt. Gede Pangrango at the altitude of less than 1000 m. To date no vegetation data are available for the forest area below the altitude of 1400 m, except for floristic re- cords made recently (Ismail et al. 2000, Sadili et al. 2007). The present paper deals with the floristic composition and structure of an undescribed lowland natural forest at an altitude of 800 m at Bodogol, on the western side of the GGPNP. STUDY SITE AND METHOD The study was conducted in April 2005 at the edge of a lowland natural forest bordering with the planted forest at the Bodogol Section in the south– western part of the GGPNP, in the Bogor Regency (Figure 1). The topography of the area is hilly with steep slopes. The soils belong to the Red–Yellow Podsolic Soil (Soepraptohardjo, 1975). The rainfall in the study area belongs to the type A of the rainfalll classification system of Schmidt & Ferguson (1951). The nearest meteorological station at Tapos with an elevation of 806 m (LMG 1969), about 10 km north of Bodogol, shows a rainfall variation of the mean monthly rainfall over a 12 month period from January to December, based on data for 32 years (Figure 1), The mean annual rainfall is 2094 mm and the mean monthly rainfall show the driest (196 mm) in August and the wettest (446 mm) in December. We established a one–hectare plot to analyze the floristic composition and structure of the forest on a slope of a ridge near the aerial observation bridge. We laid down 25 quadrats of 20 m x 20 m each, side by side in such away so as to form a plot of 100 m x 100 m (one hectare). We measured the diameter of all trees with DBH (Diameter at Breast Height) ≥ 10 cm and determined their positions within the plots and identify their identities to spe- cies level. A voucher specimen for each tree was collected for identification at the Herbarium Bogoriense, Bo- gor, and the nomenclature of plant names followed Backer & Bakhuizen van den Brink, Jr. (1958– 1965). Analysis of data on density, frequency and dominance (expressed with basal area) and impor- tance value for each species follows Mueller– Dombois & Ellenberg (1972). RESULTS AND DISCUSSION Floristic Composition The enumeration of trees with DBH ≥ 10 cm reveals that the one–hectare plot of a Bodogol low- land forest contains 70 species of 30 families repre- sented by 350 trees, with the total basal area of 23,36 m2. Appendix 1 shows the list of all tree spe- cies arranged according to families and species, complemented with data on density (D), relative density (RD), frequency (F), relative frequency (RF), basal area (BA), relative basal area (RBA) and importance value (IV). The sum of IVs of all species within a family indicates the total species importance values for families (TSIVF), calculated using the method applied by Kartawinata et al. (2004). Out of 70 species listed in Appendix 1, 37 spe- cies (52.86 %) were not recorded in the “Flora Ta- man Nasional Gede Pangrango” (Sunarno & Ru- gayah, 1992). They include Actinodaphne glomer- ata, Actinodaphne angustifolia, Aglaia argentea, Alangium javanicum, Antidesma velutinum, Beil- schmiedia madang, Blumeodendron kurzii, Cana- rium littorale, Diospyros frutescens, Evodia latifo- HELMI et al. : An undescribed lowland natural forest at Bodogol, Gede Pangrango National Park 2009] 35 Sukaraja SelabintanaSelabintana Cimungkat Nagrak Bodogol Cimande Tapos Cisarua Gunung Mas Puncak BOGOR Ciawi Cisaat Karang Tengah Gadog Cimacan Cipanas Gn. Putri Gedeh Gekbrong Mt..Pangrango SitugunungSitugunung Cibodas Botanical Garden STUDY SITE N Mt..Gede CIANJUR Cicurug 0 5 10 KM INDONESIA SUKABUMI –– 60 40’ –– 60 55’ 1060 50’ 1070 00’ HIGHWAY Sarrongge MEAN MONTHLY RAINFALL AT TAPOS 439 408 424 435 325 230 201 196 222 236 371 446 0 50 100 150 200 250 300 350 400 450 500 J F M A M J J A S O N D MONTH M E A N R A IN F A LL ( M M ) Figure 1. Map of the Gunung Gede Pangrango National Park–Cibodas Biosphere Reserve, (redrawn and modified after TNGGP in Rustiami, 2004), showing the study site at Bodogol and the mean monthly rainfall at Tapos, the nearest rainfall station to Bodogol (LMG 1969). REINWARDTIA 36 [VOL.13 lia, Ficus callosa, Garcinia lateriflora, Gnetum cus- pidatum, Knema intermedia, Macaranga triloba, Mallotus paniculatus, Neesia altissima, Pternandra caerulescens, and Radermachera gigantea. Obser- vation outside the plot reveals also the presence of Dipterocarpus hasseltii in the area, and this species along with other two dipterocarps, Anisoptera co- stata and Vatica sp. were recorded by Ismail et al. (2000). The presence of these species justifies to call the forest in this area as one of the remnants of the more widespread lowland mixed dipterocarp forest of Jawa (Mirmanto & Simbolon. 1998; Sury- anti, 2006; Wardani & Kalima, 2008). Appendix 1 shows that the forest contains also a number of species characterizing montane forest, but with low IVs. The species of Castanopsis and Lithocarpus (Fagaceae), that are usually present abundantly in montane forests do not occur in the study area. Quantitatively, the floristic composition Locality Elevation (m) Plot size (ha) Density (trees.ha) Number of Species Reference WEST JAVA Gunung Gede–Pangrango National Park Bodogol Cibodas 1 Cibodas 2 Gunung Halimun National Park Gunung Kendeng Gunung . Malang Gunung Panenjoan Citalahab: secondary forest Citorek: Plot 1 Plot 2 Plot 3 Cikaniki Cikelat 806 1500–1900 1600 1000 1000 1000 1000–1200 905–1127 761–893 784–939 850–1500 1000–1600 1.0 4.0 1.0 1.0 1.0 1.0 0.7 5 x 0.1 5 x 0.1 2 x 0.1 26 x 0.09 352 889 427 406 421 405 395 530 384 106 601 624 70 93 57 64 69 69 51 56 61 26 73 80 Present study Abdulhadi et al. (1998) Yamada (1975) Suryanti (2006) Suryanti (2006) Suryanti (2006) Rahayoe (1996) Mirmanto & Simbolon (1998) Mirmanto & Simbolon (1998) Mirmanto & Simbolon (1998) Simbolon & Mirmanto (1997) Simbolon & Mirmanto (1997) EAST KALIMANTAN Sungai Barang Site 1 Site 2 700–770 850–930 4 x 0.16 4 x 0.16 719 838 179 78 Bratawinata (1986) Bratawinata (1986) NORTH SUMATRA Batang Gadis National Park Aek Nangali 660 1 583 182 Kartawinata et al. (2004) PAPUA Wamena: Wanduga Wamena:Tengon Wamena: Kurulu Yapen Tengah. 2800 1600 1600–2350 600–1200 0.5 0.15 0.7 14 x 0.1 528 813 564 799 28 38 76 235 Partomihardjo & Supardiyono (1993) Partomihardjo (1991) Partomihardjo (1991) Partomihardjo (2001) Table 1. The comparison of density and number of tree species with DBH of ≥10 cm in the forest at Bodogol and other montane forests at GGPNP, Mt. Halimun National Park in West Java, Sungai Barang in East Kalimantan, Batang Gadis National Park in North Sumatra and in Yapen and Wamena, Papua. of the plot differs from that of Yamada (1975, 1976), located at the altitude of 1600 m, with Jac- card Index of Similarity (based on the species pres- ence) of only 8.26 %. It may be implied that the forest at Bodogol is the transition between lowland and montane forests. Compared with other areas (Table 1) in the montane forests of Java (Mt. Gede Pangrango and Mt. Halimun) and Papua it is clear that the number of species is comparable to that in Gunung Kendeng in Mt Halimun and greater than those in Cibodas 2 and Wanduga (Papua), but smaller than that in Kurulu (Papua). The number of species in Bodogol is much smaller than that in lowland forests of Kalimantan and Sumatra (see Kartawinata 2005). Ten most important families in descending or- der of the number of species are shown in Table 2, where the Euphorbiaceae recorded as the richest family. It differs from the findings of Abdulhadi et HELMI et al. : An undescribed lowland natural forest at Bodogol, Gede Pangrango National Park 2009] 37 al. (1998) at 1500–1900 m altitude and Yamada (1975) at 1600 m altitude in the montane forest of Mt. Gede Pangrango as well as of Simbolon & Mirmanto (1997) and Suryanti (1996) at Mt. Halimun, where Euphorbiaceae occupies lower or- ders in the 10 most important families. The high number of species of Euphorbiaceae in Bodogol is attributed to the presence of Macaranga rhizi- noides, M. semiglobosa, M. triloba and Mallotus paniculatus, filling up the gaps of the forest. The presence of these species along with an exotic spe- cies, Maesopsis eminii, indicates that the forest at Bodogol has been disturbed. Ten most important species are shown in Table 3. It differs from those at the altitude of 1400 m in 0 10 20 30 40 50 60 70 80 0 0.2 0.4 0.6 0.8 1 1.2 AREA (HA) N U M B E R O F S P E C IE S No. Families Number of spesies 1 Euphorbiaceae 8 2 Melastomataceae 6 3 Meliaceae 6 4 Moraceae 6 5 Rubiaceae 5 6 Rutaceae 4 7 Theaceae 4 8 Araliaceae 3 9 Lauraceae 3 10 Myrtaceae 3 the montane forest at Mt. Gede Pangrango (Abdulhadi et al. 1998; Yamada 1975) and at Mt. Halimun (Simbolon & Mirmanto 1997; Suryanti 2006). The most important species is, Schima wal- lichii, while at the same elevation in Mt Gede Pangrango and Mt. Halimun, S. wallichii occupies a lower position in the species order. The species–area curve (Figure 2) shows the cumulative increase of the number of species in the one–hectare plot, where it increases rapidly and there is no indication of flattening up. The pattern is comparable to the curve in the same montane for- est but at altitudes of 1400–1900 m, which slightly flattens when the plots were extended to 4 hectare Table 2. Ten most important families according to the Total Species Importance Values for Families (TSIVF) in one–hectare plot of a lowland forest at Bodogol, GGPNP No Species IV 1 Schima wallichii (**) 19.03 2 Pternandra caerulescens (*) 11.78 3 Neesia altissima (*) 11.71 4 Luvunga sarmentosa (*) 11.60 5 Maesopsis eminii (**) 10.5 6 Gynotroches axillares 9.16 7 Dysoxylum parasticum (**) 9.09 8 Altingia excelsa 8.35 9 Radermachera gigantea (*) 7.77 10 Ficus ribes (**) 7.18 Total 97.08 (32.3 %) Figure 2. Species–area curve for trees in a one–hectare plot of a lowland forest at Bodogol, GGPNP. Table 3. Ten leading tree species based on Important Value (IV) in a one–hectare plot of a lowland forest at Bodogol, GGPNP. (*) Strictly lowland forest species; (**) lowland to montane forest species) REINWARDTIA 38 [VOL.13 Forest structure It is apparent that the ten species with highest density and basal area (Tables 4–6) are mostly low- land forest species, including species whose distri- bution ranges from low to high altitudes, such as Dysoxylum parasiticum, Gynotroches axillaris, Meliosma pinnata, Schima wallichii and Maesopsis eminii. The order of ten most important species according to frequency, density and basal area and even the species combination differ. Table 1 shows that tree density in Bodogol is the lowest (350 trees/ha) compared to those in the montane forests in Java and Papua and even is very much lower in comparison to those in the lowland forests in Indonesia (Kartawinata 2005). In Bodogol the species with the highest density is Pternandra caerulescens and Schima wallichii (each 15 trees/ hectare), which differs from that in montane forest in Gede Pangrango at an altitude of 1400, where the highest was Schima wallichii (47 trees/ha) and Sau- rarua pendula (46 trees/ha) (Yamada 1975), while at Mt. Halimun, they are Castanopsis acuminatis- sima (87 trees/ha) and Schima wallichii (42 trees/ ha) (Mirmanto & Simbolon, 1998). It is interesting to note that Schima wallichii occurs abundantly (53 trees per hectare) in the upper montane forest at an altitude of 2400 m (Yamada 1977). From the den- sity perspective Schima wallichii is the species that can be implied as spesies characterizing the upper lowland to upper montane forest at the elevation of 800–2400 m. Appendix 1 shows that no species is distributed evenly whitin a one–hectare plot of forest and the frequency values of most species are low. The fre- quency of 24–44 % are considered high in this for- est and shared by the following species: Aglaia ar- gentea, Neesia altissima, Pternandra caerulescens, Meliosma pinnata Maesopsis eminii, Luvunga sar- mentosa, Knema intermedia, Gynotroches axillaris, Dysoxylum parasiticum and Schima wallichii. Other species with low frequency may be consid- ered uncommon, such as Alangium javanicum, Garcinia lateriflora and Bridelia insulana, or gre- garious, such as Symplocos costata and Altingia excelsa. The total BA of the 350 trees within one hectare plot is 23,36 m2. It is smaller than that in the forest at Cibodas at the altitude of 1400 m (Abdulhadi et al. 1998; Yamada 1975) and at Mt. Halimun (Suryanti 2006). Table 5 shows ten species with highest BA, totaling 11.841 m² (52,68 % of the total BA). The low BA is attributed to the absence of trees with large diameters (Figure 3), which may be lost due to illegal cutting or natural catastrophe such as severe rainstorms that took place in 1983. It is clear also that most of the trees with highest BA are No. Species Density (trees/ha) 1 Schima wallichii (**) 15 2 Pternandra caerulescens (*) 15 3 Dysoxylum parasiticum (**) 14 4 Gynotroches axillaries (**) 12 5 Knema intermedia (*) 10 6 Luvunga sarmentosa (*) 10 7 Meliosma pinnata (**) 10 8 Neesia altissima (*) 9 9 Maesopsis eminii (**) 9 10 Memecylon excelsum (*) 8 Total 112 (32,0 %) No. Species Density (trees/ha) 1 Schima wallichii (**) 15 2 Pternandra caerulescens (*) 15 3 Dysoxylum parasiticum (**) 14 4 Gynotroches axillaries (**) 12 5 Knema intermedia (*) 10 6 Luvunga sarmentosa (*) 10 7 Meliosma pinnata (**) 10 8 Neesia altissima (*) 9 9 Maesopsis eminii (**) 9 10 Memecylon excelsum (*) 8 Total 112 (32,0 %) Table 4. Ten leading species according to the density (D) of trees in a one–hectare plot of a lowland forest in Bodogol, GGPNP; (*) Lowland forest species; (**) low- land– montane forest species. Table 5. Ten leading tree species according to the basal area (BA) in a one–hectare plot of a lowland forest at Bodogol, GGPNP; (*) lowland forest species, (**) low- land–montane forest species. lowland species, including three species which oc- curs also at higher elevation, i.e., Orophea hexan- dra, Ficus ribes, dan Schima wallichii. This indi- cates the dominance of the lowland species. Most of the trees have diameters of less than 50 cm, especially in diameter class of 10–20 cm. The diameter–class distribution does not exactly follow the inverted J shape of typical primary tropi- cal forest. No trees with diameters of 60–70 cm , 90–100 cm were recorded in the plot. This may be implied that the forest in this plot has been dis- turbed, which, as mentioned above, could be at- tributed to illegal cutting and natural death, as indi- HELMI et al. : An undescribed lowland natural forest at Bodogol, Gede Pangrango National Park 2009] 39 cated by the presence of gaps and decaying dead trees on the ground within the plot. Planting the African exotic spesies, Maesopsis eminii, carried out by the state forest corporation, Perum Perhutani, and local people around the park has allowed this species to invade the natural gaps and disturbed areas within the primary forest and established itself as one of the important compo- nents of the lowland forest at Bodogol. Observa- tions outside the plot show that it has spread widely along the edges of the park and that the Javan gib- bons eat the fruits voraciously and disperse the seeds widely. It has been reported also that the seeds are dispersed by bats (Mirmanto, personal communication). CONCLUSION The botanical research in the Mt. Gede Pangrango area has been going on since at least 1817 and yet it is surprising that no one has paid attention to the lowland section of these twin mountains. From the present study it may be concluded that the tree species re- corded in the plot are mainly the lowland species that have not been recorded in the flora of Mt. Gede Pangrango (Sunarno & Rugayah, 1992) and consti- tute a new set of scientific data for the GGPNP. The forest at Bodogol is a disturbed forest and can be considered as the transition between upper lowland forest and the lower montane forest. Undisturbed forests of this kind occur over a relatively large area at GGPNP at the altitude of 700 m and 1000 m, extending at least on the lower western and south– western slopes of Mt. Gede Pangrango (Sadili, per- sonal communication). The presence of Anisoptera costata, Dipterocarpus hasseltii and Vatica sp. (Ismail et al. 2000) justifies to call the forest in this area as one of the remnants of the more widespread mixed dipterocarp forest of Java. The fast growing exotic tree species, Maesopsis eminii, has appar- 167 59 35 42 26 7 9 7 0 20 40 60 80 100 120 140 160 180 10 -1 9.9 20 -2 9.9 30 -3 9.9 40 -4 9.9 50 -5 9.9 60 -6 9.9 70 .79 .9 80 -8 9.9 90 -9 9.9 > 10 0 DIAMETER CLASS (CM) N U M B E R O F T R E E S Figure 3. Diameter class distribution of trees in a one –hectare plot of a lowland forest at Bodogol, GGPNP ently invaded the primary forest in the area for some time and will continue to spread filling up suitable open habitats and in the long run may threaten the purity of the natural forest ecosystem in the park. ACKNOWLDEGEMENT We thank the GGPNP authority at Bodogol for allow- ing us to undertake the study in the area and for the pro- vision of facilities. We also appreciate Conservation In- ternational Indonesia that in various ways has provided support to this study. We are also grateful to the Smith- sonian Institution team, Edy Mirmanto and Scott Hoover for reading the manuscript and comments. REFFERENCES ABDULHADI, R., SRIJANTO, A. & KARTAWINATA, K. 1998. Composition, structure, and changes in a montane rain forest at the Cibodas Biosphere Reserve, West Java, Indonesia. In DALLMEIER, F. & COMISKEY, J. A. (Eds.). Forest Biodiversity Research, Monitoring and Modeling. Conceptual Background and Old World Case Studies. Man and the Biosphere Series 20: 601– 612. BACKER, C.A. & BAKHUIZEN VAN DEN BRINK Jr., R.C. 1958–1968. Flora of Java, P. Noordhoff, Groningen. BRATAWINATA, A. A. 1986. Bestandesgliederung eines Bergenwaldes in Ostkalimantan/ Indonesien nach floristischen undstrukturellen Merkmalen. Dissertation zur Erlangung des Doctorgrades des Forswischaftlichen Fachbereichs der Georg–Augus–Universität Göttingen, Göttingen. BRUGEMAN, M. L. A. 1927. The numbered trees, shrubs, lianas in the forest of Mount Gede near Tjibodas, West Java. Bull. Jard. Bot. Bzg. III, 9: 196–219. DOCTERS VAN LEEUWEN, W. M. 1933. Biology of plants and animals occurring in the higher parts of Mount Pangrango Gedeh in West Java. Verhan- delingen der Koninklijke Akademir van Weten- schappen te Amsterdam, Afdeling Natuurkunde (Tweede Sectie), 31. Uitgave van den N.V. Noord –Hollandsche Uitgevers–Maatschappij, Amster- dam. ISMAIL, ERMAYANTI & HASIBUAN, H. 2000. Studi keanekaragaman flora di kawasn Pusat Pendidikan Konservasi Alam (PPKAB), Taman Nasional Gunung Gede Pangrango. In WAHYONO, E.H. & ARIO, A. (Eds.). Flora and Fauna: An inven- tory and Research Technical Practice in Bodogol Center of Education and Conservation. Taman Nasional Gunung Gede Pangrango & Conserva- tion International Indonesia Programme, Jakarta. KARTAWINATA, K. 2005. Six decades of natural REINWARDTIA 40 [VOL.13 vegetation studies in Indonesia. :95–140. In SAS- TRAPRADJA, S. D. & SOEMODIHARDJO, S. (Eds.), Six Decades of Science and Scientists in Indonesia. Naturindo, Bogor. KARTAWINATA, K., SAMSOEDIN, I., HERIYANTO, M. & AFRIASTINI, J.J. 2004. A tree inventory in a one hectare plot at the Batang Gadis National Park, North Sumatra, Indonesia. Reinwardtia 12: 145–157. LMG. 1969. Tjurah hudjan rata2 di Djawa dan Madura (Mean rainfall in Java and Madura), Periode 1931–1960. Meteorological Note No. 8 Part 1. Lembaga Meteorologi dan Geofisika, Djakarta. MEIJER, W. 1959. Plant sociological analysis of montane rain forest near Tjibodas, West Java. Acta Bot. Neerl. 8: 277–291. MIRMANTO, E. & SIMBOLON, H. 1998. Vegetation analysis of Citorek forest, Gunung Halimun Na- tional Park. :41–59. In SIMBOLON, H. , M. YONEDA & SUGARDJITO, J. (Eds.). Research and Conservation of Biodiversity in Indonesia, vol. IV – Gunung Halimun: the Last Submontane Tropical Forest in West Java. LIPI, JICA & PHPA, Bogor. MUELLER–DOMBOIS, D. & ELLENBERG, H. 1972. Aims and methods of vegetation ecology. John Wiley & Sons, New York. OSR 1952. Bogor Scientific Center. OSR (Organization for Scientific Research) Bulletin 12: 1–35. PARTOMIHARDJO, T. 2001. Studi awal ekologi jenis– jenis pohon di hutan Cagar Alam Yapen Tengah, Yapen–Waropen, Irian Jaya. Ekologi Indonesia 3 (1): 1–21. PARTOMIHARDJO, T. 1991. Analisis vegetasi hutan sekitar Air Garam, Jayawijaya. Prosiding Seminar Hasil Penelitian dan Pengembangan Sumber Daya Hayati 1990/1991. Puslitbang Biologi, LIPI, Bogor. PARTOMIHARDJO, T. & SUPARDIYONO, 1993. Penelaahan ekologi kawasan hutan Wanduga dan Jalur Wamens–Tengon (Km 65), Jayawijaya, Irian Jaya. :234–240. In ADIKEHRANA, A.S., WALUYO, E.B. & YULISTIONO, H. (Eds.). Prosiding Seminar Hasil Penelitian dan Pengem- bangan Sumber Daya Hayati, Puslitbang Biologi, LIPI, Bogor, 14 Juni 1993. RAHAJOE, J.S. 1996. Fisiognomi dan keanekaragaman jenis tumbuhan di Taman Nasional Gunung Halimun. :1–9. In ARIEF, A.J. dkk. (Eds.). Laporan Teknik Proyek Penelitian, Pengem- bangan dan Pendayagunaan Biota Darat Ta- hun 1995/1996. Pusat Penelitian dan Pengem- bangan Biologi, LIPI, Bogor. ROLLET, B, SUKARDJO, S. & NOERTA. 1976. Pre- liminary analysis of a survey in the lower mon- tane rainforest of Cibodas. Unpublished Report, UNESCO Regional Office for Science and Tech- nology for South East Asia, Jakarta. (Unpublished Report). RUSTIAMI, H. 2004. Cagar Biosfer Cibodas. :11–34. In SOEDJITO, H. (Ed.). Panduan Cagar Biosfer di Indonesia. Panitia Nasional MAB Indonesia, Lembaga Ilmu Pengetahuan Indonesia, Jakarta. SADILI, A., KARTAWINATA, K., KARTONEGORO, A., SOEDJITO, H. & SUMADIJAYA, A. 2009. Structure and composition of subalpine summit habitats on Mt. Gede Pangrango complex, Cibo- das Biosphere Reserve, West Java, Indonesia. Reinwardtia 12 (5): 391–404. SCHMIDT, F.H. & J.H. FERGUSON. 1951. Rainfall types based on wet and dry period ratios for Indonesia with Western New Guinea. Verhandelingen Djawatan Meteorolgi dan Geofisika, Djakarta 42. SIMBOLON, H. & MIRMANTO, E. 1997. Altitudinal zonation of the forest vegetation in Gunung Halimun National Park, West Java. In YONEDA, M., SOEGARDJITO, J. & SIMBOLON, H. Research and conservation of biodiversity in Indonesia Vol II. The inventory of natural resource in Gunung Halimun National Park. A joint project with LIPI, PHPA, and JICA, Bogor. :14–35. SOEPRAPTOHARDJO, M. 1975. Generalized soil map, Indonesia. Scale 1:2,500,000. 3rd ed. Soil Re- search Institute, Bogor. SRIJANTO, A. 1987. Pengaruh rumpang terhadap permudaan alam dan struktur tegakan di hutan hujan tropika pegunungan. M.Sc. Thesis, Fa- kultas Pasca Sarjana, IPB, Bogor. STEENIS, C.G.G.J. VAN, HAMZAH, A. & TOHA, M. 1972. Mountain Flora of Java. E.J. De Brill, Lei- den STEENIS, C. G. G. J. VAN, .HAMZAH, A & TOHA, M. . 2006a. Mountain Flora of Java. E.J. De Brill, Leiden (Edisi Cetak ulang). STEENIS, C.G.G.J .VAN, HAMZAH, A. & TOHA, M. (2006b). Flora Pegunungan Jawa. LIPI Press untuk Pusat Penelitian Biologi, LIPI, Bogor (Edisi terjemahan). STEENIS, C. G. G. J. van & M. J. van Steenis– Kruseman. 1953. A brief sketch of the Tjibodas Mountain Garden. Flora Malesiana Bulletin 10: 312–351. SUNARNO, B & RUGAYAH, 1992. Flora Taman Na- sional Gede Pangrango. Herbarium Bogoriense, Puslitbang Biologi – LIPI, Bogor. SURYANTI, T. 2006 Ekologi lansekap dalam manage- men dan konservasi habitat owa jawa (Hylobates moloch Audebert 1797) di Taman Nasional Gu- nung Halimun, Jawa Barat. Disertasi Doktor, Universitas Indonesia, Depok. WARDANI, M. & KALIMAH, T. 2008. Dipterocarpa- ceae in Central Java: Their conservation and their future. Flora Malesiana Bull. 14(3): 193–197. YAMADA, I. 1975. Forest ecological studies of the montane forest of Mt. Pangrango, West Java. I. Stratification and floristic composition of the montane rain forest near Cibodas. The Southeast Asian Studies 13: 402–426. YAMADA, I. 1976a. Forest ecological studies of the montane forest of Mt. Pangrango, West Java. II. Stratification and floristic composi- tion of the forest vegetation of the higher part of Mt. Pangrango. The Southeast Asian Studies 13: 513–534. HELMI et al. : An undescribed lowland natural forest at Bodogol, Gede Pangrango National Park 2009] 41 YAMADA, I. 1976b. Forest ecological studies of the montane forest of Mt. Pangrango, West Java. III. Litter fall of the tropical montane forest near Cibodas. The Southeast Asian Studies 14: 194–229. YAMADA, I. 1977. Forest ecological studies of the montane forest of Mt. Pangrango, West Java. IV. Floristic along the altitude. The Southeast Asian Studies 15: 226–254. REINWARDTIA 42 [VOL.13 No. Spe- sies Family & Species SR D (trees//ha) DR (%) F (%) RF (%) BA (m²) RBA (%) IV (%) 1. Alangiaceae 1 Alangium javanicum (K. & V.) Wang x 1 0.28 4 0.43 0.01 0.020 0.71 TSIVF 0.71 2. Annonaceae 2 Orophea hexandra Bl 6 1.7 20 2.16 0.84 3.720 7.58 TSIVF 7.58 3. Araliacea 3 Macropanax dispermus (Bl.) O.K. 6 1.7 8 0.86 0.32 1.420 3.98 4 Macropanax undulatus (Wall. ex G. Don) Seem. 5 1.4 16 1.73 0.30 1.131 4.44 5 Trevesia sundaica Miq. 3 0.85 8 0.86 0.28 1.250 2.96 TSIVF 11.38 4. Bombacaceae 11.71 6 Neesia altissima (Bl.) Bl. x 9 2.5 24 2.59 1.49 6.620 11.71 TSIVF 11.71 5. Bignoniaceae 7 Radermachera gigantea (Bl.) Miq. x 7 1.9 16 1.73 0.93 4.140 7.77 TSIVF 7.77 6. Burseraceae 8 Canarium littorale Bl. x 5 1.4 16 1.73 0.23 0.480 3.61 TSIVF 3.61 7. Clusiaceae 9 Garcinia lateriflora Bl. x 1 0.28 4 0.43 0.02 0.070 0.78 TSIVF 0.78 8. Crypteroniaceae 10 Crypteronia paniculata Bl. x 5 1.4 16 1.73 0.23 1.030 4.16 TSIVF 4.16 9. Ebenaceae 11 Diospyros frutescens Bl. x 4 1.1 12 1.29 0.34 0.150 2.54 TSIVF 2.54 10. Euphorbiaceae 12 Antidesma velutinosum Bl. x 7 1.9 20 2.16 0.17 0.690 4.75 13 Blumeodendron kurzii (Hook.f.) J.J.S. x 3 0.85 8 0.86 0.17 0.760 2.47 14 Bridelia sp. x 1 0.28 4 0.43 0.01 0.004 0.75 15 Glochidion rubrum Bl. 5 1.4 12 1.29 0.13 0.580 3.27 16 Macaranga rhizinoides (Bl.) M.A. 2 0.85 8 0.86 0.23 1.020 2.73 17 Macaranga semiglobosa J.J.S. x 6 1.7 16 1.73 0.22 0.960 5.25 18 Macaranga triloba (Reinw. ex Bl.) M.A. x 3 0.85 12 1.29 0.39 1.740 3.88 19 Mallotus paniculatus (Lmk) M.A. x 4 1.1 4 0.43 0.11 0.460 1.99 TSIVF 25.09 11. Gnetaceae 20 Gnetum cuspidatum Bl. x 2 0.56 4 0.43 0.05 0.190 1.18 TSIVF 1.18 Appendix 1. List of families and species with density (D), relative density (RD), frequency (F), relative frequency (RF), basal Area (BA), relative basal area (RBA), importance value (IV) and total species importance values for fam- ily (TSIVF) in one–hectare block of lowland natural forest at Bodogol, GGPNP – Cibodas Biosphere Reserve. SR indicates that the species is not listed in the Flora Taman Nasional–Gede Pangrango (Sunarno & Rugayah 1992). HELMI et al. : An undescribed lowland natural forest at Bodogol, Gede Pangrango National Park 2009] 43 No. Spesies Family & Species SR D (trees//ha) DR (%) F (%) RF (%) BA (m²) RBA (%) IV (%) 12. Hamamealidaceae 21 Altingia excelsa Noroña 9 2.5 8 0.86 1.13 4.990 8.35 TSIVF 8.35 13. Hydrangeaceae 22 Dichroa sylvatica (Reinw. ex Bl.) Merr. 5 1.4 16 1.73 0.20 0.860 3.99 TSIVF 3.99 14. Lauraceae 23 Actinodaphne angustifolia (Bl.) Nees x 6 1.7 16 1.73 0.33 1.480 4.29 24 Actinodaphne glomerata (Bl.) Nees x 3 0.85 12 1.29 0.10 0.460 2.6 25 Beilschmiedia madang (Bl.) x 3 0.85 4 0.43 0.14 0.600 1.88 TSIVF 25.52 15. Magnoliaceae 26 Magnolia candollii (Bl.) Keng 4 1.1 16 1.73 0.39 1.740 4.57 TSIVF 4.57 16. Melastomataceae 27 Astronia macrophylla Bl. x 5 1.4 16 1.73 0.18 0.810 3.94 28 Astronia spectabilis Bl. 4 1.1 16 1.73 0.21 0.900 3.73 29 Bellucia axinanthera Triana x 5 1.4 12 1.29 0.23 1.020 3.71 30 Memecylon excelsum Bl. x 8 2.2 12 1.29 0.25 1.090 4.58 31 Pternandra caerulescens Jack x 15 4.2 24 2.59 1.13 4.990 11.78 TSIVF 27.74 17. Meliaceae 32 Aglaia argentea Bl. x 8 0.82 24 2.59 0.18 0.780 5.57 33 Aglaia sp. x 4 1.1 4 0.43 0.15 0.670 2.2 34 Dysoxylum nutans (BI.) Merr. 2 0.56 4 0.43 0.03 0.120 1.11 35 Dysoxylum parasiticum (Osb.) Kostem. 14 3.9 40 4.32 0.20 0.870 9.09 36 Sandoricum koetjape (Burm. f.) Merr. x 4 1.1 12 1.29 0.15 0.650 3.04 37 Toona sureni (BI.) Merr. x 3 0.85 4 0.43 0.33 0.150 2.48 TSIVF 23.49 18. Moraceae 38 Artocarpus gomeziana Wall. ex Tréc. x 2 0.56 4 0.43 0.02 0.930 1.19 39 Ficus callosa Willd. x 2 0.56 4 0.43 0.17 0.760 1.75 40 Ficus fistulosa Reinw. ex Bl. 4 1.1 8 0.86 0.37 1.630 3.59 41 Ficus montana Burm. f. 5 1.4 20 2.16 0.60 2.670 6.22 42 Ficus punctata Thunb. 4 1.1 12 1.29 0.34 1.510 3.9 43 Ficus ribes Reinw. ex Bl. 6 1.7 16 1.73 0.85 3.750 7.18 TSIVF 23.83 19. Myristicaceae 44 Knema intermedia (Bl.) Warb. x 10 2.8 36 3.89 0.36 1.580 8.27 TSIVF 8.27 20. Myrtaceae 45 Syzygium chloranthum (Duthie) Merr. & Perry x 4 1.1 12 1.29 0.26 1.130 3.52 46 Syzygium gracile (Korth.) Amsh. 2 0.56 8 0.86 0.27 0.290 1.71 47 Syzygium rostratum (Bl..) DC. 5 1.4 12 1.29 0.30 1.300 3.99 TSIVF 9.22 21. Rhamnaceae 48 Maesopsisi eminii Engl. x 9 2.5 32 3.46 1.03 4.540 10.50 TSIVF 10.50 REINWARDTIA 44 [VOL.13 22. Rhizophoraceae 49 Gynotroches axillaris Bl. 12 3.4 40 4.32 0.33 1.440 9.16 TSIVF 9.16 23. Rosaceae 50 Prunus gricea (C. Muell.) Kalkm 3 1.4 16 1.73 0.11 0.480 3.61 TSIVF 3.61 24. Rubiaceae 51 Canthum didymum (Gaertn.) T. & B. x 6 1.7 8 0.86 0.06 0.250 2.81 52 Neanotis hirsuta (L.f.) W.H. Lewis x 4 1.1 4 0.43 0.07 0.320 2.13 53 Neonauclea lanceolata (Bl.) Merr 3 0.85 8 0.86 0.37 1.650 3.36 54 Urophyllum arboreum (Reinw. ex Bl.) Korth x 2 0.56 4 0.43 0.02 0.100 1.09 55 Urophyllum macrophyllum (Bl.) Korth. x 3 0.85 12 1.29 0.62 2.750 4.89 TSIVF 14.28 25. Rutaceae 56 Acronychya laurifolia Bl. 3 0.85 12 1.29 0.06 0.240 2.38 57 Euodia latifolia DC. x 4 1.1 8 0.86 0.07 0.320 2.28 58 Luvunga sarmentosa (Bl.) Kurz. 10 2.8 32 3.46 1.20 5.340 11.6 59 Zanthoxylum scandens Bl. 6 1.7 12 1.29 0.12 0.540 3.53 TSIVF 19.79 26. Sabiaceae 60 Meliosma nitida Bl. x 3 0.85 4 0.43 0.04 0.160 1.44 61 Meliosma pinnata (Roxb.) Maxim. ssp. ferruginea (Bl.) Beus. 10 2.8 0.14 0.590 6.42 TSIVF 7.86 27, Symplocaceae 62 Symplocos costata (Bl.) Choisy 7 1.9 4 0.43 0.14 0.620 2.95 63 Symplocos fasciculata Zoll. 3 0.85 12 1.29 0.05 0.220 2.37 64 Symplocos odoratissima (Bl.) Choisy 2 0.56 8 0.86 0.03 0.110 1.53 TSIVF 6.85 28. Sterculiaceae 65 Sterculia oblongata R. Br. x 5 1.4 12 1.29 0.08 0.350 3.04 TSIVF 3.04 29. Theaceae 66 Eurya acuminata DC. 3 0.85 4 0.43 0.20 0.880 2.16 67 Gordonia excelsa (Bl.) Bl. 2 0.56 8 0.86 0.03 0.140 1.56 68 Laplacea integerrima Miq. 2 0.56 4 0.43 0.02 0.093 1.08 69 Schima wallichii (DC.) Korth. 15 4.2 44 4.76 2.27 10.070 19.03 TSIVF 23.83 30. Urticaceae 70 Villebrunea rubescens (Bl.) Bl. 4 1.1 12 1.29 0.98 4.320 6.71 TSIVF 6.71 Total 350 23.36 No. Spesies Family & Species SR D (trees//ha) DR (%) F (%) RF (%) BA (m²) RBA (%) IV (%) 47 Syzygium rostratum (Bl.) DC. 5 1.4 12 1.29 0.30 1.300 3.99 TSIVF 9.22 21. Rhamnaceae 48 Maesopsisi eminii Engl. x 9 2.5 32 3.46 1.03 4.540 10.50 TSIVF 10.50 cover.pdf REINWARDTIA_13_1_291209_nelva.pdf