REINWARDTIA Vol. 22. No. 1. pp: 1‒25 DOI: 10.55981/reinwardtia.2023.4399 1 VARIATION IN THE COMPOSITION AND STRUCTURE OF NATURAL LOW- LAND FORESTS AT BODOGOL, GUNUNG GEDE PANGRANGO NATIONAL PARK, WEST JAVA, INDONESIA Received September 1, 2022; accepted January 3, 2023 ASEP SADILI Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia. Kampus UI Gedung E Level 2, Jln. Lingkar Kampus Raya, Pondok Cina, Beji, Depok 16424, Indonesia. Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Jln. Raya Jakarta- Bogor Km. 46, Cibinong, Bogor 16911, Indonesia. Email: asep016@brin.go.id. https://orcid.org/0000-0002-9019-8094. ANDI SALAMAH Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia. Kampus UI Gedung E Level 2, Jln. Lingkar Kampus Raya, Pondok Cina, Beji, Depok 16424, Indonesia. Email: salamah@sci.ui.ac.id. https://orcid.org/0000-0002-4074-8342. EDI MIRMANTO Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Jln. Raya Jakarta- Bogor Km. 46, Cibinong, Bogor 16911, Indonesia. Email: emirmanto@yahoo.com. https://orcid.org/0000-0001-7121-9980. KUSWATA KARTAWINATA Integrative Research Center, The Field Museum, 1400 Lake Share Drive, Chicago, IL, 60605, USA. Email: kkartawinata@gmail.com. https://orcid.org/0000-0001-9656-8095. ABSTRACT SADILI, A., SALAMAH, A., MIRMANTO, E. & KARTAWINATA, K. 2023. Variation in the composition and structure of natural lowland forests at Bodogol, Gunung Gede Pangrango National Park, West Java, Indonesia. Reinwardtia 22(1): 1‒25. — An analysis of the composition and structure of lowland natural forests was carried out in Bodogol, Gunung Gede Pangrango National Park (GGPNP). The two study plots (P1CS and P2CS) were located on Cisuren and one plot (P3CP) on Cipadaranten hill. We recorded 107 species and 48 families with an average basal area of 19.73 m 2 /ha, and an average density of 348 trees/ha. The species richness was poorer than those of the typical lowland rainforests of Kalimantan and Sumatra but comparable to those of the montane forests of Java. The IUCN- Red Listed species were Castanopsis argentea and Castanopsis tungurrut (critical) and Saurauia bracteosa (vulnerable). Based on the two dominant species, the forests can be designated as the Maesopsis eminii- Syzygium acuminatissimum association and Syzygium acuminatissimum-Lithocarpus korthalsii association. Maesopsis eminii was dominant in P1CS (IV= 56.46%) and P3CP (IV=55.94%), while Syzygium acuminatissimum in P2CS (IV= 43.67%). Maesopsis eminii was a strongly aggressive and invasive species, that endangered the purity of the natural forest GGPNP, therefore, it must be eradicated. Vertically, P2CS and P3CP consisted of four strata, while P1CS had three strata. This one-hectare study can be considered as a minimal area to reflect the floristic representation of lowland forest and submontane forest. Key words: Association, forest structure, Gunung Gede Pangrango National Park, lowland forests, minimal area, species composition, species richness. ABSTRAK SADILI, A., SALAMAH, A., MIRMANTO, E. & KARTAWINATA, K. 2023. Variasi komposisi dan struktur hutan pamah alami di Bodogol, Taman Nasional Gunung Gede Pangrango, Jawa Barat, Indonesia. Reinwardtia 22(1): 1‒ 25. — Analisis komposisi dan struktur hutan pamah alami dilakukan di Bodogol, Taman Nasional Gunung Gede Pangrango (TNGGP). Kajian dilakukan di dua petak (P1CS dan P2CS) di bukit Cisuren, dan satu petak (P3CP) di bukit Cipadaranten. Dalam tiga petak tersebut tercatat 107 jenis dan 48 suku, dengan luas area dasar rata-rata 19,73 m 2 /ha dan kerapatan rata-rata 348 pohon/ha. Kekayaan jenis di lokasi penelitian ini lebih rendah daripada di hutan hujan pamah Kalimantan dan Sumatra, tetapi sebanding dengan di hutan pegunungan Jawa. Berdasarkan IUCN Red List Castanopsis argentea dan Castanopsis tungurrut tercatat sebagai jenis kritis dan Saurauia bracteosa sebagai jenis rentan. Berdasarkan dua jenis dominan hutan di petak penelitian dapat disebut sebagai asosiasi Maesopsis eminii- Syzygium acuminatissimum dan asosiasi Syzygium acuminatissimum-Lithocarpus korthalsii. Maesopsis eminii dominan di P1CS (IV=56,46%) dan P3CP (IV=55,94%), sementara Syzygium acuminatissimum dominan di P2CS (IV=43,67%). Maesopsis eminii adalah jenis invasif yang sangat agresif sehingga membahayakan kemurnian hutan pegunungan alami TNGGP, oleh karena itu harus diberantas. Secara vertikal, struktur P2CS dan P3CP terdiri dari empat strata, sementara P1CS tiga strata. Hasil penelitian ini menyimpulkan bahwa luas satu hektar dapat dianggap sebagai area minimum yang dapat mencerminkan representasi floristik hutan pamah bagian atas dan hutan pegu- nungan. Kata kunci: Asosiasi, area minimum, Bodogol, hutan pamah, kekayaan jenis, komposisi jenis, struktur hutan, Taman Nasional Gunung Gede Pangrango. https://dx.doi.org/10.55981/reinwardtia.v22i1.4399 https://orcid.org/0000-0002-9019-8094 https://orcid.org/0000-0002-4074-8342 https://orcid.org/0000-0001-7121-9980 https://orcid.org/0000-0001-9656-8095 REINWARDTIA 2 [VOL.22 INTRODUCTION Studies of flora, composition, and structure of forests and other vegetation of GGPNP (Gunung Gede Pangrango National Park) have been undertaken since the early 19th century (Steenis et al., 1972, 2006). The GGPNP has been a key for research on flora, vegetation, and fauna (Karta- winata & Sudarmonowati, 2022; Rozak et al., 2016; Steenis et al., 1972, 2006). The first botani- cal exploration and investigation in Indonesia were carried out in 1777 in the Gede Pangrango twin mountains (now within the GGPNP) by Carl Pehr Thunberg, a Swedish naturalist and student of Carollus Linnaeus, the father of taxonomy. He was the first European naturalist who explored the area. He published the species he collected in Florula Javanica in 1825 (Kartawinata, 2010; Kartawinata & Sudarmonowati, 2022; Steenis et al., 1972, 2006). The Cibodas Botanical Garden, established on the slopes of Mt. Gede, in 1852 was the research station for studies of mountain flora and fauna in Indonesia. It is part of the GGPNP region stretching from the lower montane forest at 1,400 m asl (above sea level) to subalpine vegetation on the top of Mt. Pangrango at 3,019 m asl. Earlier investigators, who undertook vegetation studies, included Junghuhn (1845, 1853-1854), Seifriz (1923, 1924), and Docters van Leeuwen (1933). Steenis-Kruseman (1953) made a complete biblio- graphy of the studies in Mt. Gede-Pangrango and Bogor Botanical Garden. After the 2 nd World War, vegetation studies were carried out by many investigators, including Abdulhadi et al. (1998), Arrijani (2008), Arrijani et al. (2008), Meijer (1959), Rollet et al. (1976), Rozak et al. (2016), Sadili & Alhamd (2012), Sadili et al. (2009), Sriyanto (1987), Yamada (1975; 1976a, 1976b, 1977), and Zuhri & Mutaqien (2013). The GGPNP was divided into seve- ral resorts (regions), including the Bodogol Resort (BR) for management purposes. BR covers planted forests, natural upper lowland forests with an elevation of < 1,000 m asl, and montane forests with an elevation > 1,000 m asl (Sadili et al., 2008; Sadili & Alhamd, 2012; Sadili, 2014; Junaedi et al., 2020). We know very little about the structure and composition of the lowland forests in GGPNP and to date only Helmi et al. (2009), who had investigated a one-hectare plot of the upper lowland forest at Bodogol. Therefore, more studies in the lowland forests are necessary to complement the montane and subalpine forest data for better scientifically based management of the GGPNP (Brearley et al., 2019). Species of Dipterocarpaceae can be found in the Bodogol lowland forest, including A nisoptera costata, Vatica sp., Dipetrocarpus hasseltii, D. retusus, D. gracilis (Ismail et al., 2000; Helmi et al., 2009; Junaedi et al., 2020). These species are listed as vulnerable by the IUCN (IUCN, 2013). Data on the structural characteristics and species composition of the GGPNP’s lowland forest are limited to a one-hectare plot near the Research Station at Bodogol (Helmy et al., 2009). Here we study the composition and structure of the lowland forests at Cisuren and Cipadaranten hill ranges in Bodogol Resort to support data-driven park mana- gement, including ecological restoration of disturb- ed forests and degraded lands within the GGPNP domain. MATERIALS AND METHODS Study site The GGPNP is located in the Bogor, Cianjur, and Sukabumi Regencies (Kabupaten), West Java, at 6°10’‒6°51’ South and 106°51’‒107°02’ East. The study was carried out in May 2022 in Bodogol Resort, in the administrative region of the Benda Village, Cicurug District, Sukabumi Regency, West Java (Fig. 1). The Bodogol resort covered natural forest areas on the Cisuren and Cipada- ranten hill ranges, extending from the lowland area on the western side of the GGPNP towards the top of Mt. Pangrango. It also included tree plantations of rasamala (Liquidambar excelsa), damar (Agathis dammara), and pinus (Pinus merkusii). We select- ed subjectively the study sites in the lowland natural forest with slight disturbances at the Cisuren and Cipadaranten mountain ridges. Three study plots of one hectare (100 m × 100 m) were established on the partially flat sections of the ridges, with steep to very steep slopes (55%‒75%) on the sides, at elevations of < 1,000 m asl. Plot 1 (designated as P1CS) and plot 2 (P2CS) were located in the Cisuren hill range, while plot 3 (P3CP) was in the Cipadaranten hill range. The terrain on the sides of the three plots was steep slopes leading to river valleys. The Cisuren river was located in the northern and Tangkil river on the southern sides of the P1CS and P2CS. The upper stream of the Cisuren river lies on the western side of the P3CP and the Cipadaranten river is on the eastern side of the P3CP. Table 1 summarizes the data on the three plots, including Global Positioning System (GPS) position, eleva- tion, the thickness of litter, air humidity, soil acidity (pH), and disturbances in the three plots at Bodogol, GGPNP. Each one-hectare plot was divided into 10 m × 10 m subplots to measure trees with diameters at breast height (DBH) ≥ 10 cm. The diameters of all trees were measured at 1.3 m above the ground. The total height of each tree was estimated by eye. The position of each tree was mapped out using the X and Y coordinates. Each tree was identified in the field and voucher specimens were collected for identification at the Herbarium Bogoriense, BRIN (National Research and Innovation Agency) in Cibinong Bogor. The measurements of density, dominance (basal area), and frequency followed SADILI et al.: Variation composition and structure of natural lowland forest 2023] 3 Fig. 1. Map of the Gunung Gede Pangrango National Park showing the study site at Bodogol Resort (Redrawn and modified from the map of BBTNGGP 2020). Cox (1967) and Mueller-Dombois & Ellenberg (1974, 2016). The construction of the species-area curve followed Sadili et al. (2018), which was based on species data from 100 subplots nested within the plot, i.e. 100 m 2 (10 m × 10 m), 400 m 2 (20 m × 20 m), 900 m 2 (30 m × 30 m),..... 10,000 m 2 (100 m × 100 m). RESULTS General habitat conditions around the study plot The study plots were located in slightly disturbed natural forests. Natural disturbances, such as landslides were absent in P1CS and P2CS. The canopy cover in P1CS and P2CS varied from 40% to 75%. Many subplots with open canopies were found in P1CS (Fig. 7) and P2CS (Fig. 8). The gaps were filled up with shrubs, climbers, and herbs, including Bambusa sp., Calamus sp., Dinochloa scandens, Dendrocnide stimulans, Meli- cope latifolia, Ficus sp., Pinanga sp., and Piper aduncum. In P3CP gaps in the subplots (Fig. 9) and those resulting from fallen trees were present, in which shrubs and herbs grew, including Cyathea sp., Calliandra houstoniana var. calothyrsus, Etlingera sp., Piper aduncum, and Selaginella willdenowii. Species composition A total of 107 tree species with DBH ≥ 10 cm and 37 families (Appendix 1), with an average basal area of 19.73 m 2 /ha, and an average density of 348 trees/ha, were recorded in the lowland forests of GGPNP as represented by the three study plots. Table 2 shows the summary of the lowland forest vegetation data as recorded in the three study plots. Maesopsis eminii in P1CS and P3CP had the highest density (D= 69 trees/ha), ba- sal area (BA= 2.68 m 2 /ha) and absolute frequ- ency (F= 12.61%), while in P2CS Syzygium acu- minatissimum had the highest density (61 trees/ ha), BA (3.81 m 2 /ha), and absolute frequency (F= 12.46%). Based on IV analysis, the dominant species in P1CS and P3CP were Maesopsis eminii with IV= 56.46% (P1CS) and IV= 55.93% (P3 CP), while in P2CS was Syzygium acuminatissi- mum (IV= 43.67%) (Table 3 and Table 4). Ten species with the highest density (D) and highest basal area (BA) (Table 3), highest absolute frequency (F), and highest importance value (IV) (Table 4) in each plot varied. Among them, however, three species were always recorded as the highest in three plots, i.e., Lithocarpus korthalsii, Syzygium acuminatissimum, and Lithocarpus pseudomoluccus. Species present in the P1CS, P2CS, and P3CP but with low values of REINWARDTIA 4 [VOL.22 D, F, BA, and IV were listed in Group 1 in Appendix 1, while other species present in one or two plots were listed in Groups 2‒7 in Appendix 1. The relationship between the number of species and BA varied (Fig. 2). The highest number of species occurred in the BA class of 0.01‒0.09 cm 2 and the highest appeared in P1CS (71 species). Species with BA of 0.40‒0.49 m 2 appeared only in P3CP (2 species), while BA > 0.50 occurred in P2CS (2 species) and P3CP (4 species). The rela- tionship between the number of trees and stem diameters also varied (Fig. 3). The highest number of trees appeared in the 10‒19.99 cm diameter class and the highest was in P2CS (223 trees). Trees with a diameter class of 80‒89.9 cm occurred only in P2CS and P3CP (2 trees, respectively). The species-area curves in the three plots differed as can be seen in Fig. 4. The curves appeared to begin flattening at 6,400 m 2 (0.64 ha) in P1CS, and 10,000 m 2 (1 ha) in P2CS and P3CP. At the points of inflection, the number of species ranged between 50 and 70. Based on density, the species composition of P1CS, P2CS, and P3CP were slightly similar, where the index of similarity between P1CS, and P2CS was 57% and between P3CP and combined P1CS, P2CS was 54%. Of the total 107 species (Appendix 1), we recorded nine exotic species (8.41%), which were Maesopsis eminii and Cecropia peltata occurring in all the plots, Calliandra houstoniana var. calo- thyrsus, Bellucia pentamera, and Swietenia mahagoni in P3CP, and Indonesian species but not native to GGNPP (Dracaena angustifolia, Falca- taria falcata, Pinus merkusii, and Artocarpus heterophyllus) were slightly similar, where the index of similarity between P1CS, and P2CS was 57% and between P3CP and combined P1CS, P2CS was 54%. Table 5 shows that six families contained five or more species in each plot. Lauraceae, Fagaceae, and Euphorbiaceae occurred in all plots, while Moraceae in two plots (P2CS and P3CP), and Meliaceae in one plot (P3CP). Lauraceae (11 species) in P1CS was the largest family and other families contained less than five species, each (Appendix 1). Table 1. GPS position, elevation, litter thickness, air humidity, soil acidity (pH), and disturbances in the three plots at Bodogol GGPNP. Plot GPS position Elevation (m) Litter Mean air humidity (%) Mean pH Disturbance Latitude (S) Longitude (E) P1CS -06 o 46'52.6" 106 o 51.09.4" 713 Thick 90 7 None P2CS -06 o 46'53.1" 106 o 51.23.1" 767 Thick 89 7 None P3CP -06 o 46'40.2" 106 o 51.41.1" 843 Thin 87 6.8 Slight (human activi- ties along forest trails) No Plot Species Family D (ha) BA (ha) Index Diversity (H’) Evennes (E) 1 P1CS 59 25 283 13.79 3.33 0.82 2 P2CS 64 27 385 24.83 3.52 0.85 3 P3CP 74 29 376 20.57 3.61 0.83 Mean 66 27 348 19.73 3.49 0.83 Table 2. Summarized data show the number of species, the number of families, Density (D), Basal Area (BA Index (H’), and Evenness Index (E) in three plots at the lowland natural forest Bodogol, GGPNP. SADILI et al.: Variation composition and structure of natural lowland forest 2023] 5 Table 3. Ten species with the highest density (D) and basal area (BA) in three plots at the lowland natural forests in Bodogol, GGPNP. No Species Density (trees/ha) Basal area (m 2 /ha) P1CS P2CS P3CP P1CS P2CS P3CP 1 Syzygium acuminatissimum 19 61 21 1.20 3.81 1.46 2 Maesopsis eminii 69 7 51 2.68 0.69 6.54 3 Lithocarpus pseudomoluccus 16 22 13 1.41 1.85 0.49 4 Schima wallichii 6 11 20 0.64 2.74 1.43 5 Lithocarpus korthalsii 11 25 16 1.55 2.32 0.78 6 Macaranga denticulata 9 12 12 0.17 0.27 0.23 7 Castanopsis tungurrut 12 4 11 0.59 0.26 0.34 8 Neoscortechinia kingii 10 17 4 0.27 0.72 0.10 9 Sandoricum koetjape 1 12 8 0.36 0.36 0.47 10 Pometia pinnata 7 8 7 0.34 0.21 0.41 11 Nephelium juglandifolium 6 25 4 0.29 1.53 0.22 12 Ficus padana 7 1 1 0.15 0.02 0.10 13 Aglaia elliptica 2 2 5 0.09 0.22 0.54 14 Castanopsis argentea 1 4 2 0.02 0.15 0.42 15 Beilschmiedia madang 7 6 0.31 0.22 16 Neonauclea lanceolata 7 0.32 17 Donella lanceolata 1 0.37 18 Syzygium antisepticum 13 31 0.37 1.24 19 Didymocheton nutans 14 7 0.79 0.42 20 Symplocos acuminata 8 9 0.18 0.12 21 Chisocheton ceramicus 2 3 0.97 0.07 22 Elaeocarpus angustifolius 2 2 0.71 0.06 23 Spondias pinnata 3 0.98 24 Calliandra houstoniana var. calothyrsus 28 0.33 REINWARDTIA 6 [VOL.22 Forest structure Forest profile diagrams (Fig. 6) for all plots were constructed following the method of Kartawinata et al. (2004) as applied by Rahma et al. (2016). The profile diagrams show the tree heights that jointly form the vertical stratification (A Stratum to D Stratum), which varied from one plot to another. The ten main tree species with the highest density composing A Stratum to C Stra- tum are presented in Table 6. Fig. 5 shows the relationship between the diameters and heights of trees within the three plots revealing that most trees were concentrated in the 10‒20 cm diameter class with heights of < 20 m (C Stratum). In P1CS no trees were forming the emergent A Stratum (height > 34 m). In P2CS, five trees of five species constituted the A Stratum and in P3CP there was only one tree formed the emergent A stratum (Fig. 5 and Fig. 6). The distribution of the exotic species, Maesopsis eminii, in each plot was scattered (Figs. 7‒9, in red). The density of Maesopsis eminii in P1CP (69 trees/ha) was higher than that in P2CS (7 trees/ha) and P3CP (51 trees/ha) (Table 3). Observations during the field study revealed that the fruits of Maesopsis eminii were consumed daily by Owa Jawa (Hylobates moloch), Lutung Jawa (Trachypithecus auratus), Surili (Presbytis comata) and Tupai (Tupaia sp.). DISCUSSION Species Composition Of the total 107 species recorded in the three plots (Appendix 1), 48 species (44.86%) were not registered in the Gunung Gede Pangrango flora (Sunarno & Rugayah, 1992), and in Helmi et al. (2009), whose study site was located in the same forest area. They are here considered as the lowland forest species which were confirmed Table 4. Ten species with the highest absolute frequency (AF) and the highest importance value (IV) in three plots at the lowland natural forests in Bodogol, GGPNP. No Species Absolute Frequency (F= %) Importance Value (IV= %) P1SC P2CS P3CP P1SC P2CS P3CP 1 Maesopsis eminii 12.61 1.87 10.58 56.46 6.48 55.93 2 Syzygium acuminatissimum 7.66 12.46 4.49 23.10 43.67 17.15 3 Lithocarpus korthalsii 3.60 6.85 4.81 18.74 22.68 12.84 4 Lithocarpus pseudomoluccus 5.41 6.23 3.53 21.32 19.40 9.34 5 Neoscortechinia kingii 4.05 4.05 1.28 9.55 11.38 2.81 6 Schima wallichii 2.25 2.49 4.49 9.03 16.38 16.77 7 Castanopsis tungurrut 4.95 1.25 2.88 13.50 3.33 7.46 8 Macaranga denticulata 3.15 2.80 2.56 7.56 7.01 6.88 9 Nephelium juglandifolium 2.70 5.92 0.96 6.90 18.58 3.07 10 Pometia pinnata 3.15 2.49 2.24 8.09 5.40 6.09 11 Cecropia peltata 1.35 0.31 5.13 2.65 1.53 5.44 12 Sandoricum koetjape 0.45 3.43 2.24 3.42 8.01 6.68 13 Syzygium antisepticum 2.80 5.77 7.67 20.05 14 Didymocheton nutans 3.12 1.92 9.94 5.83 15 Neonauclea lanceolata 3.15 7.98 16 Calliandra houstoniana var. calothyrsus 5.13 14.18 SADILI et al.: Variation composition and structure of natural lowland forest 2023] 7 through comparison with Backer & Bakhuizen van den Brink (1963-1968), Djarwaningsih et al. (2010), Ismail et al. (2000), Kartawinata (1977), Rozak et al. (2016), and Yusuf (2004). They contributed to the increase of the current GGNPP floristic diversity of 1,103 species (Kartawinata & Sudarmonowati, 2022), which should now total 1,151 species. The present study, along with Helmy et al. (2009) and Sadili (2014), has described the transitional forest area between the lowland and montane forests with tree species diversity that was not known when GGPNP was established in 1980. It is interesting to note that species of Dipterocarpaceae were reported to occur spa- ringly in Bodogol (Ismail et al., 2000; Helmi et al., 2009; Junaedi et al., 2020) but they were not found in the present study plots, possibly because of unsuitable microclimate and located far away from the seed producing mature trees (Purwaningsih, 2004). Ten species with the highest density (D), basal area (BA) (Table 3), absolute frequency (F), and important value (IV) (Table 4) varied. Based on the dominance as reflected by the highest IV analysis the forest in P1CS and P3CP, on the one hand, may be called Maesopsis eminii-Syzygium acuminatissimum association, with the character species that were confined to the two plots as listed in Group 3 in Appendix 1. The forest in Fig. 2. The relationship between the number of species and BA classes in three plots at the lowland natural forests in Bodogol, GGPNP. Fig. 3. The relationship between density (D) and diameter class in three plots at the lowland forest in Bodogol, GGPNP. REINWARDTIA 8 [VOL.22 Fig. 4. Species-area curves in three plots of one hectare each in the lowland natural forests in Bodogol, GGPNP. Table 5. The number of families having five or more species in the three plots at the lowland natural forests Bodogol, GGPNP. No Family Number of species P1CS P2CS P3CP 1 Lauraceae 11 6 7 2 Fagaceae 6 7 6 3 Euphorbiaceae 5 6 8 4 Moraceae 6 6 5 Meliaceae 6 Fig. 5. Scattered diagram of diameter classes and tree heights in the three plots at the lowland natural forests at Bodogol, GGPNP. SADILI et al.: Variation composition and structure of natural lowland forest 2023] 9 Fig. 6. Profile diagrams of the forest on the plots constructed by plotting the height of each tree and sequential tree position from tree no. 1 in the 1st subplot up to the last tree in the 100 th subplot in all plots in the lowland natural forests at Bodogol, GGPNP, using the method of Kartawinata et al. (2004). Tree Height (m) Tree Height (m) Tree Height (m) REINWARDTIA 10 [VOL.22 Table 6. The number of species, number of trees, and ten species with the highest density in the A, B, and C strata in the three plots in the lowland natural forests at Bodogol, as graphically presented in Fig. 9. Plot Stratum Number Ten species with the highest density (trees/ha) Species Tree A (Height > 30 m) - - - P1CS B (Height: 20‒30 m) 23 50 Maesopsis eminii (8), Syzygium acuminatissimum (7), Lithocarpus korthalsii (7), Lithocarpus pseudomoluccus (5), Schima wallichii (2), Neoscortechinia kingii (2), Castanopsis tungurrut (2), Neonauclea lanceolata (2), Adina trichotoma (1), Liquidambar excelsa (1) C (Height: 4‒19.9 m) 55 233 Maesopsis eminii (61), Syzygium acuminatissimum (2), Lithocarpus pseudomoluccus (12), Castanopsis tungurrut (10), Neoscortechinia kingii (10), Macaranga deltoidea (8), Beilschmiedia madang (7), Ficus padana (7), Nephelium junglandifolium (6), Pometia pinnata (6) P2CS A (Height: > 30 m) 5 5 Chisocheton ceramicus (1), Lithocarpus korthalsii (1), Lithocarpus pallidus (1), Schima wallichii (1), Dalrympelea sphaerocarpa (1) B (Height: 20‒30 m) 33 107 Maesopsis eminii (8), Syzygium acuminatissimum (7), Lithocarpus korthalsii (7), Lithocarpus pseudomoluccus (5), Schima wallichii (2), Neoscortechinia kingii (2), Castanopsis tungurrut (2), Neonauclea lanceolata (2), Adina trichotoma (1), Liquidambar excelsa (1) C (Height: 4‒19.9 m) 55 273 Calliandra houstoniana var. calothyrsus (31), Syzygium antisepticum (27), Maesopsis eminii (22), Syzygium acuminatissimum (13), Schima wallichii (13), Lithocarpus korthalsii (12), Macaranga deltoidea (12), Castanopsis tungurrut (11), Symplocos acuminata (10), Lithocarpus pseudomoluccus (9) P3CP A (Height: > 30 m) 1 1 Maesopsis eminii (1) B (Height: 20‒30 m) 24 76 Syzygium acuminatissimum (25), Lithocarpus korthalsii (14), Nephelium junglandifolium (9), Lithocarpus pseudomoluccus (8) Schima wallichii (7), Neoscortechinia kingii (4), Beilschmiedia madang (3), Didymocheton nutans (3), Sandoricum koetjape (3), Spondias pinnata (3) C (Height: 4‒19.9 m) 69 299 Syzygium acuminatissimum (36), Nephelium juglandifolium (16) Lithocarpus pseudomoluccus (13), Macaranga deltoidea (12), Neoscortechinia kingii (12), Didymocheton nutans (11), Lithocarpus korthalsii (11), Syzygium antisepticum (10), Dendrocnide stimulans (9), Myristica sp. (9) SADILI et al.: Variation composition and structure of natural lowland forest 2023] 11 P2CS, on the other hand, may be designated as Syzygium acuminatissimum-Lithocarpus korthalsii association, characterized by species that were confined to P2CS, as listed in Group 6 in Appendix 1. Before the Maesopsis eminii invasion, the Syzygium acuminatissimum-Lithocarpus kor- thalsii association could have been prevalent in the lowland forests at Bodogol. In these associations, the following species were registered in the IUCN Red List (Effendi et al., 2022; Wihermanto, 2007) as critical (Castanopsis argen- tea and C. tungurrut) and vulnerable category (Saurauia bracteosa). The number of species along the basal area classes (Fig. 2) and diameter classes (Fig. 3) showed that the highest number of species occurred in the lowest BA class (0.01‒0.09 m 2 ) and diameter class (10.0‒19.9 cm). It follows that the number of species decreased as the BA and diameter increased. The BA is related to the diameter. The above reverse-J pattern is typical for the tropical rainforest and indicated that the forest regenerated well and was in a dynamic state (Ogawa et al., 1965; Richards, 1996; Mirmanto, 2014). The species richness and tree density in our plots were comparable to those obtained from various studies in the montane forests of Mount Gede-Pangrango and Mount Halimun in West Java, Foja Mountains in the upper montane forest of Papua, but lower than those of the studies in Sumatra (Table 7). From Table 7 it is evident that the montane forests, even the pristine forest un- touched by human activities in the Foja Mountains in Papua (Sadili et al., 2018), and the transitional lowland-montane forests at Bodogol had a low species diversity of 59‒70 species in one hectare, compared to very species-rich undisturbed lowland forests at Kalimantan (Sheil et al., 2010), and Su- matra (Kartawinata et al., 2004), where the number of species per hectare was 205 and 182, respec- tively. Studies in Sulawesi by Brambach et al. (2017) in several plots with a total area of 3.1 ha in the Lore Lindu National Park at 700–2,400 m asl and by Trethowan et al. (2019) in several plots with a total area of 2.5 ha in lowland forest areas at Morowali, Wawonii and Bualemo, show the mean species richness of 9/ha and 113/ha, respectively, which are comparable to the result of the present study. It may be implied that it is a norm for any montane forest to have low species diversity. The richness of a plot may be due to disturbance by facilitating species dependent on disturbance to associate very closely with late-successional speci- es (Connell, 1978; Sheil & Burslem, 2003; Slik et al., 2008). The occurrence of low species richness is reflected also in a species-area curve. The species- area relationship is essential to ecology (Plotkin et al., 2000) and it can also be used to approximate species extinction resulting from habitat loss (May et al., 1995; Pimm & Raven, 2000) and to assess patterns of species diversity in different forest types (Ashton, 1965; Mueller-Dombois & Ellen- berg, 1974, 2016). The curve was constructed to indicate species diversity in relation to the increas- ing size of the area (Mueller-Dombois & Ellen- berg, 1974, 2016) within the plot. Fig. 4 shows the species-area curves in three plots with an area of one hectare each. The species-area curves in the three plots differed. The curves began to flatten at 6,400 m (0.64 ha) in P1CS and at 10,000 m (1 ha) in P2CS and P3CP, which indicated that at the points of inflection, the number of species ranged between 50 and 70. It is in contrast to the species- area curves of undisturbed lowland forests in Kalimantan and Sumatra. In Kalimantan, Kartawi- nata et al. (2008) showed that the curve still steadi- ly rose to indicate no sign of leveling at the area of 10.5 ha with a number of species of 552 and in Sumatra. Kartawinata et al. (2004) noted the same pattern with no indication of flattening of the curve at one hectare and 182 species. Table 2 shows the Diversity Index (DI) with a mean value of H’= 3.49 may be considered high, comparable to H’= 3.39 at higher elevations (1,000 m asl) of the GGNP forest (Zuhri & Mutaqien, 2011) but higher than the diversity index at the montane forest at the Mt. Ceremai National Park with H’= 2.66‒2.77 (Purwaningsih & Yusuf, 2008). The diversity index is considered high if H’ > 3 and H’ in the tropical forests is 1.5–3.5 and rarely H’ > 4 (Greig-Smith, 1983). The Evenness Index (E) is used as the indicator of prevalence in the forest community. In the present study plots E values were high (0.82‒0.85), which were indi- cating that all the species were even relatively (Ludwig & Reynold, 1988; Oosting, 1956). Exotic species, other than Maesopsis eminii, (i.e. Bellucia pentamera, Calliandra houstoniana var. calothyrsus, Cecropia peltata, and Swietenia mahagoni) and Malesian species but not native to GGPNP (i.e., Artocarpus heterophyllus, Dracaena angustifolia, Falcataria falcata, and Pinus merkusii) were contaminating but not aggressively invading the natural tree communities, as indicated by their very low densities and basal areas (Appendix 1). They should be, however, monitored and prevented from spreading more widely and even eradicated. Maesopsis eminii, which was introduced to Indonesia for the first time in 1920, should receive special attention because this species aggressively and rapidly invaded submontane rain forests and became the dominant species in Eastern Tanzania (Schabel & Latiff, 1997). In Bodogol it dominated the lowland forest, as indicated in the study plots (Appendix 1, Figs. 7‒9, and Table 4), it reached the highest IV in P1CS (56.46%) and P3CP (55.93%), while in P2CS it was one of the 11 main REINWARDTIA 12 [VOL.22 Fig. 7 The scattered and dispersed tree distribution of trees with DBH ≥ 10 in the P1CS at the lowland natural forest Bodogol, GGPNP. Fig. 8. The scattered and dispersed tree distribution of trees with DBH ≥ 10 in the P2CS at the lowland natural forest Bodogol, GGPNP. SADILI et al.: Variation composition and structure of natural lowland forest 2023] 13 species with IV= 6.48%. Naturally, the species occurred in Africa from lowland tropical rain forests to savannas, extending to montane forests at the altitude of 1,800 m asl and dispersed by birds (especially hornbills), rodents, and monkeys (Schabel & Latiff, 1997). It is a fast-growing species with a growth rate of 1.5‒5.5 cm per year in diameter and 1‒3 m per year in height (Schabel & Latiff, 1997) and could grow well at the altitudes of 100‒900 m asl within full sunshine. It was planted in community forests and plantations in West Java in 1960 by the Forestry Department (Samsoedin et al., 2016). Informants (pers. comm., 2022) stated that it was planted in the community forests in Bodogol village in the 1970s. In Bodogol, many primate species (Owa Jawa- Hylobates moloch, Lutung Jawa-Trachypithecus auratus, and Surili-Presbytis comata) and rodents (Tupaia sp.) living in the GGPNP vigorously consumed the fruits of M. eminii (Helmi et al., 2009) and later dispersed seeds germinated and developed into large trees elsewhere in the interior of natural forests as indicated in the results of the present study as far as 1,000 m from the natural forest edges. In Africa, it is an amazingly long- lived pioneer species that could live up to 150 years (Schabel & Latiff, 1997). Considering the above growth and behavioral characteristics of the species and the current dominating existence in Bodogol inland natural forests it would be not surprising that M. eminii will become a dominant species in the upper montane forests and even in the subalpine forests of GGPNP. A drastic action to eradicate M. eminii from the natural forest of GGPNP and the adjacent areas of GGPNP should be seriously undertaken without delay to save the continuing existence of natural forests in GGPNP. Falcataria falcata and Pinus merkusii are native to Indonesia and were present in the study plots but at low density (Appendix 1), hence not aggressive invaders. They were planted by the Forest Department in the vicinity of the GGPNP and those in Bodogol have been incorporated into the GGPNP. The presence of A rtocarpus hetero- phyllus and Dracaena angustifolia could have been due to human activities that inadvertently carry the propagules into the natural forests (An- dila & Warseno, 2019; Samsoedin et al., 2016). Species having high commercial value is Liquidambar excelsa (Sutomo & Sari, 2019). It is native to Bhutan, Assam, Myanmar, Peninsular Malaysia, Sumatra, and Java. Growing at the ele- vation of 550‒1,700 m asl (Vink, 1957). In P1CS it had D= 3/ha, BA= 0.07 m 2 and IV= 2.89% (Ap- pendix 1). In Bodogol, it was recorded by Ismail et al. (2000), Helmi et al. (2009), Gunawan et al. (2011), Sadili & Alhamd (2012), and Sadili (2014). In Cibodas, grew on the submontane to montane forests (Meijer, 1959; Yamada, 1975; Abdulhadi et al., 1998; Arrijani et al., 2006; Rozak et al., 2016). Local people informed us that seedlings and saplings of A . excelsa were hard to find in the natural forests at Bodogol. Similarly, the planted forest of A . excelsa in Bodogol, which according to informants in the village (pers. comm., 2022) was planted in 1918. Sadili (2014) Fig. 9. The scattered and dispersed tree distribution of trees with DBH ≥ 10 in the P3CP at the lowland natural forest Bodogol. A relatively large gap (dark green colour) resulting from fallen trees was present. REINWARDTIA 14 [VOL.22 Table 7. Comparison of the number of species and number of trees in one-hectare plots in montane forests of Java and Papua and the lowland forests of Sumatra and Kalimantan. Elevation (m) Plot size (ha) Density (trees/ha) Number of species Source Locality WEST JAVA Gunung Gede pangrango National Park Bodogol P1CS 713 1 283 59 Present study P2CS 767 1 385 64 Present study P3CP 843 1 376 74 Present study Mean 713-843 1 348 66 Present study Bodogol 806 1 352 70 Helmi et al. (2009) Cibodas 1600 1 427 57 Yamada (1975) Gunung Halimun Salak National Park Gunung Kendeng 1000 1 406 64 Suryanti (2006) Gunung Malang 1000 1 421 69 Suryanti (2006) Gunung Panenjoan 1000 1 405 69 Suryanti (2006) Purabakti 900 1 441 69 Yusuf (2004) KALIMANTAN Malinau 200 1 759 205 Sheil et al. (2010) SUMATRA Batang Gadis National Park 660 1 583 182 Kartawinata et al. (2004) Bukit Lawang 297 1 453 216 Polosakan (2001) PAPUA Foja Mountains 1710 1 693 59 Sadili et al. (2018) SADILI et al.: Variation composition and structure of natural lowland forest 2023] 15 found only two saplings (diameter= 8.62 cm and 9.39 cm), indicating that the species had a poor regenerating capability. An officer of the Halimun- Salak National Park (pers. comm., 2022) informed that seedlings and saplings of A . excelsa could be found only in secondary growth on small landslides near mature trees. Qualitative observation revealed that the absence of regeneration in the old A . excelsa planted in Bodogol could be related to the unsuitable elevation of less than 1,000 m asl for growth and reproduction. It could be inferred that planted A . excelsa had a low ability to sustain itself with the implication that the species may not be a good candidate to be used in ecological restoration but acceptable for rehabilitation of degraded lands. Native tree species that are potentially good for ecological restoration is S. wallichii. It is a variable species, consisting of nine subspecies and five varieties (Bloembergen, 1952), including S. walli- chii subsp. noronhae. In Java, it is spreading from 300 m to 2,600 m asl, which comprised two varieties (Backer & Bakhuizen van den Brink, 1963). Many pioneer species inhabiting the low- land to montane forests are amazingly long-lived (Whitmore, 1986) and S. wallichii could be placed in this category, as can be seen, it lived in the primary montane forest of GGPNP (Kartawinata & Sudarmonowati, 2022; Yamada, 1974, 1976). In the present study, it occurred in all plots (Table 3, Table 4, and Appendix 1). Vertically (Table 6) filled up the B stratum (height 20‒30 m) and C stratum (height 4‒20 m). Gunawan et al. (2011) noted that its distribution was clustered and based on high IV it was predicted that S. wallichii could become dominant in the A gathis dammara planta- tion. In the Kawah Ratu (Halimun-Salak National Park), Hilwan & Rahman (2021) reported good regenerations of S. wallichii. Rozak et al. (2016) in GGPNP, S. wallichii occurred from the submon- tane to the subalpine forests. Lauraceae, Fagaceae, and Euphorbiaceae are common families in the submontane forests (Steenis et al., 2006; Purwaningsih & Polosakan, 2016), hence, the forest is often designated as Lauro-Fagaceous forest (Steenis & Shippers- Lammertse, 1965; Steenis et al., 2006). In the present study, families in the submontane forest with a high number of species (> 5) were Laurace- ae, Fagaceae, and Euphorbiaceae (Table 5). Eu- phorbiaceae contained the highest number of species (eight species) in P3CP, which was related to high adaptability to the environment (Kartawi- nata, 1977; Riswan, 1987). Based on the number of species, in Malesia, Euphorbiaceae is listed as one of the four big family groups (Whitmore, 1995). The existence of Euphorbiaceae in three plots could be implied that the habitat was once disturbed, such as fallen trees creating gaps, which in turn stimulated seeds to germinate. Structure Species distribution in each plot varied (Appendix 1). The number recorded in three plots accounted for 29 species (27.10%), in two plots 31 species (28.97%), and only in one plot 47 species (43.93%). It is implied that each species had different characteristics in its regeneration and sur- vival. The species that had the widest distribution were tolerant to the varied environment of dif- ferent forests (Group 1 in Appendix 1). Magnolia montana (IV= 0.62%) and Neesia altissimo (IV= 0.62%) were species with the lowest IV and occur- red only in P3CP, which could be due to the presence of the highest number of exotic species in the plot. It needs further research to clarify the phenomenon. Forest profile showing the vertical structures (Figs. 5 and 6), containing ten species with varied highest diversity in each stratum of each plot (Table 6). The A stratum (height > 30 m) occurred in P2CS (5 trees/ha) and P3CP (1 tree/ha). Further- more, the correlation between diameter class and tree height of < 20 m (C Stratum), and in general diameters are correlated with tree height, implying that the bigger the diameters the taller the trees, hence the forest canopy. Fig. 5, illustrating the profile of the P2CS, revealed the presence of trees with small diameters but with very tall trunks, implying that the trees optimally utilized the light along with the others. This phenomenon could be observed in Lithocarpus korthalsii. Figs. 7–9 show the uneven distribution of all trees in the plots. The distribution of Maesopsis eminii was concentrated on the more or less flat ridges of the hills and decreased towards the sloping sides. It should be pointed out that in some subplots with open canopies and in such openings, many species of young trees, shrubs and lianas grew profusely, including Bambusa sp., Calamus sp., Dendrocnide stimulans, Dinochloa scandens, Melicope latifolia, Ficus sp., Pinanga sp., and Piper aduncum. Forest structure in Bodogol is comparable to those at 1,600 m asl (Kartawinata & Sudarmonowati, 2022; Yamada, 1975). Successional status of the forest We checked the species listed in Appendix 1 to identify the successional status of species using the following references, Kramer (1926, 1933), Backer & Bakhuizen van den Brink, Jr. (1963‒ 1968), Steenis et al. (1972), Riswan (1984), Whitmore (1986), Sriyanto (1987), Sunarno & Rugayah (1992), Keβler et al. (2000), and Kartawinata & Sudarmonowati (2022). Appendix 1 recorded the following 32 secondary forest spe- cies in the plots i.e. Liquidambar excelsa, Artocarpus elastica, Bellucia pentamera, Blumeodendron tokbrai, Glochidion rubrum var. rubrum, Calliandra houstoniana var. calothyrsus, Castanopsis argentea, C. tungurrut, Cecropia pel- REINWARDTIA 16 [VOL.22 tata, Decaspermum fruticosum, Dendrocnide stimulans, Melicope latifolia, Ficus tinctoria subsp. gibbosa, Ficus fistulosa, Ficus padana, Ficus variegata, Polyspora excelsa, Knema laurina, Litsea noronhae, Maesopsis eminii, Mallotus paniculatus, Neonauclea lanceolata, Homalanthus populneus, Falcataria falcata, Pinus merkusii, Podocarpus neriifolius, Pometia pinata, Schima wallichii, Sterculia chrysodasys, Swietenia mahagoni, Strobocalyx arborea and Oreocnide rubescens. The fact that they constituted 29.9% of the total species recorded in the three plots, combined with many open subplots and the presence of gaps in the three plots (Figs. 7‒9), pointed to the somewhat secondary nature of the lowland forests of Bodogol. It was resulted from human disturbances and natural disruptions such as landslides and thunderstorms, which occasion- ally took place in the area. Structural charac- teristics showing low forest heights (Fig. 5 and Table 6) support this contention. It can be inferred that the forests in the plots were regenerating after disturbances in the past. CONCLUSION The forests investigated contained a total of 107 species recorded in three one-hectare plots. Lowland species were prevalent, thus forming the transition between lowland and lower montane forests, with relatively poor species richness. It was much poorer than the typical lowland rain forest of Kalimantan and Sumatra but comparable to those of the montane forests of Java. Based on two dominant species, the forest could be designated as the Maesopsis eminii-Syzygium acu- minatissimum association and Syzygium acumina- tissimum-Lithocarpus korthalsii association. Be- fore M. eminii invasion the Syzygium acuminatis- simum-Lithocarpus korthalsii association could have been prevalent in lowland forests at Bodogol. The trees native to Mt. Gede-Pangrango recorded in the present studies are the potential species for ecological restoration undertaken around the GGPNP. This study strongly confirmed that the one- hectare area could be considered a minimal area to reflect the representativeness of the floristic composition. The dominance of M. eminii, point- ed to a strong aggressive, and invasive species, which in no time will frighteningly take over the dominance of the lowland to subalpine forests of GGPNP. It, therefore, is very urgent to totally eradicate it at all costs from the natural forests, the plantations, and community forests adjacent to the GGPNP. Structurally and floristically the fo- rest represented a developing and regenerating disturbed forest, and very low frequency and density in the majority of the species reflected species heterogenity. Investigations, similar to the present study, should be extended to other un- described natural lowland forests of other resorts for better management, including ecological resto- ration. ACKNOWLEDGEMENTS We are grateful to the Head of the Research Center for Ecology and Ethnobiology, National Research and Innovation (BRIN) for the research permission. We also thank the Head of the GGPNP, the Head of the Bodogol Resort of GGPNP, Director of Scientific Collection Mana- gement – BRIN, and other staff members of the GGPNP for the provision of various facilities. Our special gratitudes go to Pak Ae and Pak Syarif for their remarkable assistance in the field. REFERENCES ABDULHADI, R., SRIJANTO, A. & KARTAWINATA, K. 1998. Composition, structure, and changes in a montane rain forest at the Cibodas Biosphere Reserve, West Java, Indonesia. In: DALLMEIER, F. & COMIS- KEY, J. A. (Eds.). Forest Biodiversity Re- search, Monitoring, and Modeling: Concep- tual Background and Old World Case Studies. Man and the Biosphere Series 20. Pp. 601‒ 612. ANDILA, P. S. & WARSENO, T. 2019. Study potential of kayu suji (Dracaena angustifolia) as a medicine: A review. W idya Biologi 10(2): 148‒158. ARRIJANI, SETIADI, D., GUHARDJA, E. & QAYIM, I. 2006. Analisis vegetasi hulu DAS Cianjur Taman Nasional Gunung Gede- Pangrango. Biodiversitas 7(2): 147‒153. ARRIJANI. 2008. Struktur dan komposisi vegetasi Zona Montana Taman Nasional Gunung Gede Pangrango. Biodiversitas 9(2): 134‒141. ASHTON, P. S. 1965. Some problems arising in the sampling of mixed rain forest communities for floristic studies. In: KOSTERMANS, A. J. G. H. & FOSBERG, F. R. (Eds.), Symposium on Ecological Research in Humid Tropics Vegetation, Sarawak 1963. UNESCO Science Cooperation Office for S. E. Asia, Jakarta. Pp. 235–240. BBTNGGP (Balai Besar Taman Nasional Gunung Gede Pangrango). 2020. Zona Pengelolaan Taman Nasional Gunung Gede Pangrango. Balai Besar Taman Nasional Gunung Gede Pangrango, Kementerian Lingkungan Hidup dan Kehutanan. Direktorat Jenderal Konservasi Sumber Daya Alam dan Ekosistem. Cibodas. SADILI et al.: Variation composition and structure of natural lowland forest 2023] 17 BACKER, C. A. & BAKHUIZEN VAN DEN BRINK, JR. R. C. 1963‒1968. Flora of Java. Vol. 1‒3. P . Noordhoff, Groningen. BRAMBACH, F., LEUSCHNER, C., TJOA, A., CULMSEE, H. 2017. Diversity, endemism, and composition of tropical mountain forest communities in Sulawesi, Indonesia, in relation to elevation and soil properties. Perspectives in Plant Ecology, Evolution and Systematics 27: 68–79. DOI: 10.1016/j.ppees.2017.06.003. BREARLEY, F. Q., ADINUGROHO, W. C., CÁMARA-LERET, R., KRISNAWATI, H., ALICIA LEDO, A., QIE, L., SMITH, T. E. L., AINI, F., GARNIER, F., NURUL, S., LES- TARI, N. S., MANSUR, M., MURDJOKO, A., OKTARITA, S., SORAYA, E., TATA, H. L., TIRYANA, T., TRETHOWAN, L. A., WHEE- LER, C. E., ABDULLAH, M., ASWANDI, BUCKLEY, B. J. W., CANTARELLO, E., DUNGGIO, I., GUNAWAN, H., HEATUBUN, C. D., ARINI, D. I. D., ISTOMO, KOMAR, T. E., KUSWANDI, R., MUTAQIEN, Z., PA- NGALA, S. R., RAMADHANIL, PRAYOTO, ANTUN PUSPANTI, A., QIROM, M. A., ROZAK, A. H., SADILI, A., SAMSOEDIN, I., SULISTYAWATI, E., SUNDARI, S., SUTO- MO, TAMPUBOLON, A. P. & WEBB, C. O. 2019. Opportunities and challenges for an Indonesian forest monitoring network. A nnals of Forest Science 76: 54. DOI: 10.1007/s13595- 019-0840-0. BLOEMBERGEN, S. 1952. A critical study in the complex-polymorphous genus Schima (Thea- ceae). Reinwardtia 2(1): 133‒183. CONNELL, J. H. 1978. Diversity in tropical rain forests and coral reefs-high diversity of trees and corals is maintained only in a non- equilibrium state. Science 199: 1302–1310. COX, W. G. 1967. Laboratory Manual of General Ecology. 7 th ed. Wm. C. Brown Publishing Ltd. Co., Dubuque. DOCTERS VAN LEEUWEN, W. M. 1933. Biology of plants and animals occurring in the higher parts of Mount Pangrango-Gede in West Java. V erh. Kon. A kad. W et. A ’dam, Afd. II, 31: 1‒278. DJARWANINGSIH, T., SUPRIATNA, A. & AMIR, M. 2010. Flora Cagar A lam Gunung Tukung Gede, Serang-Banten. Jakarta. LIPI press. EFENDI, M., CAHYANTO, T. & RAMDAN, D. M. 2022. Keanekaragaman tumbuhan berbiji di Cagar Alam Gunung Tilu. Jawa Barat. Jurnal Penelitian Hutan & Konservasi Alam 19(1): 1‒ 31. GREIG-SMITH, P. 1983. Quantitative Plant Ecology. Blackwell Scientific Publication. Oxford. GUNAWAN, W., BASUNI, S., INDRAWAN, A., PRASETYO, L. B. & SOEDJITO, H. 2011. Analysis of vegetation structure and composi- tion toward restoration efforts of Gunung Gede Pangrango National Park. Journal of Natural Resources and Environmental Management 1 (2): 93‒105. HELMI, N., KARTAWINATA, K., SAMSOE- DIN, I. 2009. An undescribed lowland natural forest at Bodogol, at the Gunung Gede- Pangrango National Park, Cibodas Biosphere Reserve, West Java, Indonesia. Reinwardtia 13 (1): 33‒44. HILWAN, I. & RAHMAN, S. N. A. 2021. Penyebaran jenis puspa (Schima wallichii (DC.) Korth.) di Resort Kawah Ratu, Taman Nasional Halimun Salak, Jawa Barat. Jurnal Silvikultur Tropika 12(2): 86‒94. ISMAIL, ERMAYANTI & HASIBUAN, H. 2000. Studi Keanekaragaman Flora di Kawasan Pusat Pendidikan Konservasi Alam (PPKAB), Taman Nasional Gunung Gede- Pangrango. In: WAHYONO, E. H. & ARIO, A. (Eds.), Flora and Fauna: A n Inventory and Research Technical Practice in Bodogol Center of Education and Conservation. Taman Nasional Gunung Gede-Pangrango & Conservation International Indonesia Programme, Jakarta. ISTOMO & SARI, P. N. 2019. Penyebaran dan karakteristik habitat jenis rasamala (A ltingia excelsa Noronha) di Taman Nasional Gunung Halimun Salak. Journal of Natural Resources and Environmental Management 9(3): 608‒ 625. DOI: 10.29244/jpsl.9.3.608-625. JUNAEDI, D. I., HANDAYANI, A., SUHEN- DRI, Y. & RUSTANDI. 2020. Sub-population survey of Dipterocarpus retusus Blume in Mount Gede Pangrango National Park. Prosi- ding Earth and Environmental Science. IOP Publishing. DOI: 10.1088/1755-1315/457/1/ 012003. JUNGHUHN, F. 1845. Topographische und Na- turwissenschaftliche Reisen durch Java: Magdeburg. KARTAWINATA, K. 1977. Structure and composition of the forest in some nature reserves in West Java, Indonesia. In: LIPI, Papers Presented at the 13 th Pacific Science Congress, Vancouver, Canada-1975. LIPI. Pp. 59‒68. KARTAWINATA, K., SAMSOEDIN, I., HERIYANTO, M. N. & AFRIASTINI, J. J. 2004. A tree species inventory in a one-hectare plot at the Batang Gadis National Park, North Sumatra, Indonesia. Reinwardtia 12(2): 145‒ 157. KARTAWINATA, K., PURWANINGSIH, PAR- TOMIHARDJO, T., YUSUF, R., ABDUL- HADI, R. & RISWAN, S. 2008. Floristics and structure of a lowland dipterocarp forest at Wanariset Samboja, East Kalimantan, Indone- http://dx.doi.org/10.29244/jpsl.9.3.608-625 REINWARDTIA 18 [VOL.22 sia. Reinwardtia 12(4): 301–323. KARTAWINATA, K. 2013. Diversitas Ekosis- tem Alami Indonesia. Yayasan Obor & LIPI Press. Jakarta. KARTAWINATA, K. & SUDARMONOWATI, E. 2022. Keragaman V egetasi A lami Cagar Biosfer Cibodas. BRIN. Jakarta. KERSHAW, K. A. 1964. Quantitative and Dyna- mic Ecology. Edward Arnold Publishing Co. Ltd. London. LUDWIG, J. A. & REYNOLDS, J. F. 1988. Statistical Ecology: A Primer on Methods and Computing. Wiley-Interscience Pub., New York. MAY, R. M., LAWTON, J. H. & STORK, N. E. 1995. Assesing Extinction Rates. In: Extinction Rates. In: LAWTON, J. H. & MAY, R. M. (Eds.). Oxford. University Press. Oxford. Pp. 1 ‒24. MEIJER, W. 1959. Plant sociological analysis of montane rain forest near Tjibodas, West Java. Acta Botanica Neerlandica 8: 277‒291. MIRMANTO, E. 2014. Fitososiologi hutan pegunungan di lereng tenggara Gunung Salak. Jurnal Biologi Indonesia 10(1): 27‒38. MUELLER-DOMBOIS, D. & ELLENBERG, H. 1974. Aims and Methods of Vegetation Ecology. John Wiley & Sons, New York. MUELLER-DOMBOIS, D. & ELLENBERG, H. 2016. Ekologi Vegetasi: Tujuan dan Metode. KARTAWINATA, K. & ABDULHADI, R (alih bahasa). LIPI Press & Yayasan Pustaka Obor Indonesia, Jakarta. OGAWA, H., YODA, K., OGINO, T., SHIDEI, D., RATNAWONGSE & APA SUTAYA, C. 1965. Comparative ecological study on three main types in S.E. Asia of forest vegetation in Thailand. structure and floristic composition. Nature and Life in Southeast Asia 4: 13‒48. OOSTING, H. J. 1956. The Study of Plant Communities – An Introduction to Plant Eco- logy. 2 nd Eds. W. H. Freeman and Company. San Francisco PIMM, S. L. & RAVEN, P. 2000. Biodiversity: extinction by numbers. Nature 403: 843‒845. DOI: 10.1038/35002708. PLOTKIN, J. B., POTTS, M. D., LESLIE, N., MANOKARAN, N., LAFRANKIE, J. & ASHTON. P. S. 2000. Species-area curves, spatial aggregation, and habitat specialization in tropical forests. J. Theor. Biol. 207: 81‒99. PURWANINGSIH. 2004. Sebaran ekologi Dipte- rocarpaceae di Indonesia. Biodiversitas 5(2): 89‒95. PURWANINGSIH & YUSUF, R. 2008. Analisa vegetasi hutan pegunungan di Taman Nasional Gunung Ciremai, Majalengka, Jawa Barat. Jurnal Biologi Indonesia 4(5): 385‒399. PURWANINGSIH & POLOSAKAN. R. 2016. Keanekaragaman jenis dan sebaran Fagaceae di Indonesia. Ethos (Jurnal Penelitian dan Pe- ngabdian Masyarakat) 4(1): 85‒92. PURWANINGSIH, POLOSOKAN, R., YUSUF, R. & KARTAWINATA, K. 2017. Phytosoci- ological study of the montane forest on the south slope of Mt. Wilis, East Java. Indonesia. Reinwardtia 16(1): 31‒45. RAHMAH, KARTAWINATA, K., NISYAWATI, WARDHANA, W. & NURDIN, E. 2016. Tree species diversity in the lowland forest of the core zone of the Bukit Dua Belas National Park, Jambi, Indonesia. Reinwardtia 15(1): 11‒26. RISWAN, S. 1987. Structure and floristic compo- sition of a mixed Dipterocarp forest at Lempa- ke, East Kalimantan. In: Kostermans, A. J. G. H. (Ed). Proceedings of the Third Round Table Conference on Dipterocarps, Universitas Mula- warman, Samarinda, 1985. UNESCO Regional Office for Science and Technology for South East Asia, Jakarta. Pp. 16‒20. ROLLET, B., SUKARDJO, S. & NOERTA. 1976. Preliminary Analysis of A Survey in The Lower Montane Rainforest of Cibodas. UNESCO Regional Office for Science and Technology for South East Asia, Jakarta (Unpublished Report). ROZAK, A. H., ASTUTIK, S., MUTAQIEN, Z., WIDYATMOKO, D. & SULISTYAWATI, E. 2016. Kekayaan jenis pohon di hutan Taman Nasional Gunung Gede Pangrango, Jawa Barat. Jurnal Penelitian Hutan dan Konservasi Alam 13(1): 1‒14. SADILI, A. 2014. Dinamika vegetasi pada petak permanen rasamala (A ltingia excelsa Noronha) di Bodogol, Taman Nasional Gunung Gede Pangrango, Jawa Barat. Jurnal Biologi Indonesia 10(1): 1‒9. SADILI, A. & ALHAMD, L. 2012. Struktur dan komposisi tumbuhan pada hutan rasamala (Altingia excelsa Noronha) di Bodogol, Taman Nasional Gunung Gede Pangrango, Jawa Barat. Jurnal Teknik Lingkungan (Edisi Khusus “Hari Bumi”). April 2012. 61–66. SADILI, A. KARTAWINATA, K., SOEDJITO, H. & SAMBAS, E. N. 2018. Tree species diversity in a pristine montane forest previously un- touched by human activities in Foja Mountains, Papua, Indonesia. Reinwardtia 17(2): 133‒154. SADILI, A., KARTAWINATA, K., KARTONE- GORO, A., SOEDJITO, H. & SUMADIJAYA, A. 2008. Floristic composition and structure of subalpine summit habitats on Mt. Gede-Pang- rango complex, Cibodas Biosphere Reserve, West Java, Indonesia. Reinwardtia 12(5): 391– 404. SAMSOEDIN, I., SUKIMAN, H., WARDANI M. & HERIYANTO, N. M. 2016. Pendugaan biomassa dan kandungan karbon kayu afrika di Kabupaten Sukabumi, Jawa Barat. Jurnal Penelitian Hutan Tanaman 13(1): 73‒81. SCHABEL, H. G. & LATIFF, A. 1997. Maesopsis eminii Engler. In: FARIDAH HANUM, I. & VAN DER MAESEN, L. G. J. (Eds.). Plant SADILI et al.: Variation composition and structure of natural lowland forest 2023] 19 Resources of Southeast Asia. No. 11. Auxiliary Plants. Backhuys Publishers, Leiden. Pp. 184‒ 187. SEIFRIZ, W. 1923. The altitudinal distribution of plants on Mt. Gedeh, West Java. Bulletin of the Torrey Botanical Club 50: 283–306. SEIFRIZ, W. 1924. The altitudinal distribution of lichens and moses on Mt. Gedeh, Java. The Journal of Ecology 12(2): 307–313. SHEIL, D. & BURSLEM, D. F. R. P. 2003. Disturbing hypotheses in tropical forests. Trends in Ecology & Evolution 18(1): 18–26. SHEIL, D., KARTAWINATA, K., SAMSOEDIN, I., PRIYADI, H. & AFRIASTINI, J. J. 2010. The lowland forest tree community in Malinau, Kalimantan (Indonesian Borneo): Results from a one-hectare plot. Plant Ecology and Diversity 3: 59‒66. SLIK, J. W. F., BERNARD, C. S., BREMAN, F. C., VAN BEEK, M., SALIM, A. & SHEIL, D. 2008. Wood density as a conservation tool: quantification of disturbance and identification of conservation priority areas in tropical forests. Conservation Biology 22: 1299–1308. SRIJANTO, A. 1987. Pengaruh Rumpang Terha- dap Permudaan Alam dan Struktur Tegakan di Hutan Hujan Tropika Pegunungan. Fakultas Pasca Sarjana, IPB. Bogor. [Thesis]. SUNARNO, B. & RUGAYAH. 1992. Flora Taman Nasional Gede Pangrango. Herbarium Bogoriense, Puslitbang Biologi – LIPI. Bogor. SUNARYO, UJI, T. & TIHURUA, E. F. 2012. Jenis tumbuhan asing invasif mengancam ekosistem di Taman Nasional Gunung Gede Pangrango, Resort Bodogol, Jawa Barat. Berkala Hayati 17: 147–152. SURYANTI, T. 2006 Ekologi Lanskap dalam Manajemen dan Konservasi Habitat Owa Jawa (Hylobates moloch Audebert 1797) di Taman Nasional Gunung Halimun. Universitas Indone- sia. Depok. [Dissertation]. TRETHOWAN, L. A., EISERHARDT, W. L., GIRMANSYAH, D., KINTAMANI, E., M. A., UTTERIDGE, T. M. A. & BREARLEY, F. Q. 2020. Floristics of forests across low nutrient soils in Sulawesi, Indonesia. Biotropica 52(6): 1309–1318. DOI: 10.1111/btp.12838. VAN STEENIS, C. G. G. J. & SCHIPPERS- LAMMERTSE, A. F. 1965. Concise plant geo- graphy of Java. In: BACKER C. A. & BAKHUIZEN VAN DEN BRINK Jr, R. C. Flora of Java. Vol. 2. Noordhoff, Groningen. Pp. 3‒72. VAN STEENIS, C. G. G. J., HAMZAH, A. & TOHA, M. 1972. Mountain Flora of Java. E. J. Brill, Leiden. VAN STEENIS, C. G. G. J., HAMZAH, A. & TOHA, M. 2006. Flora pegunungan Jawa. KARTAWINATA, J. A. (Penerjemah), Pusat Penelitian Biologi-LIPI. VINK, W. 1957. Hamamelidaceae. In: VAN STEENIS, C. G. G. J. (Ed.), Flora Malesiana I 5: 363‒379. WIHERMANTO. 2004. Dispersi asosiasi dan status populasi tumbuhan terancam punah di zona sub montana dan montana Taman Nasional Gunung Gede-Pangrango. Biodiversitas 5(1): 17‒22. YAMADA, I. 1975. Forest ecological studies of the mountain forest of Mt. Pangrango, West Java. I. Stratification and floristic composition of the montane rain forest near Cibodas. The Southeast Asian Studies 13: 402‒426. YAMADA, I. 1976a. Forest ecological studies of the mountain forest of Mt. Pangrango, West Java. II. Stratification and floristic composition of the forest vegetation of the higher part of Mt. Pangrango. The Southeast A sian Studies 13: 513‒534. YAMADA, I. 1976b. Forest ecological studies of the mountain forest of Mt. Pangrango, West Java. III. Litter fall of the tropical montane forest near Cibodas. The Southeast A sian Studies 14: 194‒229. YAMADA, I. 1977. Forest ecological studies of the mountain forest of Mt. Pangrango, West Java. IV. Floristic along the altitude. The Southeast Asian Studies 15: 226‒254. YUSUF, R. 2004. Keanekaragaman jenis pohon pada hutan terganggu di daerah koridor Taman Nasional Gunung Halimun. Berita Biologi 7(1): 41‒50. ZUHRI, M. & MUTAQIEN, Z. 2011. Perubahan komposisi vegetasi dan struktur pohon pada plot Meijer (1959-2009) di Gunung Gede, Jawa Barat. Buletin Kebun Raya 14(1): 37‒45. REINWARDTIA 20 [VOL.22 Appendix 1. Species present in the plots of the lowland natural forests at Bodogol GGPNP with their parameters on Density (D=trees/ha), Basal area (BA= m 2 ), and Importance Value (IV= %) The NSR and NH are considered lowland species following Backer & Bakhuizen van den Brink (1963-1968). Note; L= lowland; M=Montane; A=Alien; NSR=Non Sunarno & Rugayah (1992); NH=Non Helmi et al. (2009): No Species Family P1CS P2CS P3CP Note D (Ha) BA (m2/ ha) IV (%) D (Ha) BA (m2/ ha) IV (%) D (Ha) BA (m2/ ha) IV (%) 1 2 3 4 5 6 7 8 9 10 11 12 13 GROUP 1 1 Maesopsis eminii Engl. Rham. 69 2.68 56.46 7 0.69 6.48 51 6.54 55.93 L.M.A.N H 2 Syzygium acuminatissimum (Blume) DC. Myrt. 19 1.20 23.10 61 3.81 43.67 21 1.46 17.15 M.NH 3 Lithocarpus pseudomoluccus (Blume) Rehder Fag. 16 1.41 21.32 22 1.85 19.40 13 0.49 9.34 M.NH 4 Lithocarpus korthalsii (Endl.) Soepadmo Fag. 11 1.55 18.74 25 2.32 22.68 16 0.78 1.84 M.NH 5 Castanopsis tungurut (Blume) A.DC. Fag. 12 0.59 13.50 4 0.26 3.33 11 0.34 7.46 M.NH 6 Neoscortechinia kingii (Hook.f.) Pax & K.Hoffm Euph. 10 0.27 9.55 17 0.72 11.38 4 0.10 2.81 M.NSR.N H 7 Schima wallichii (DC.) Korth. Thea. 6 0.64 9.03 11 2.72 16.38 20 1.43 16.77 L.M.NH 8 Pometia pinnata J.R.Forst. & G.Forst. Sapin. 7 0.34 8.09 8 0.22 5.40 7 0.41 6.09 L.M.NSR. NH 9 Macaranga denticulata (Blume) Müll.Arg. Euph. 9 0.17 7.56 12 0.27 7.01 12 0.23 6.88 M.NSR.N H 10 Nephelium juglandifolium Blume Sapin. 6 0.29 6.90 25 1.53 18.58 4 0.22 3.07 M.NSR.N H. 11 Ficus padana Burm.f. Mor. 7 0.15 6.25 1 0.02 0.66 1 0.10 1.07 L.M.NSR. NH 12 Strobocalyx arborea (Buch.- Ham.) Sch.Bip. Astera. 3 0.24 4.17 1 0.01 0.61 2 0.04 1.39 M.NH 13 Knema cinerea (Poir.) Warb. Myrist. 4 0.08 3.80 2 0.21 1.93 6 0.33 5.13 L.M.NSR. NH 14 Melicope latifo- lia (DC.) T.G.Hartley Rut. 4 0.05 3.60 3 0.18 2.44 4 0.25 3.55 M.NSR SADILI et al.: Variation composition and structure of natural lowland forest 2023] 21 15 Sandoricum koetjape (Burm.f.) Merr. Melia. 1 0.36 3.42 12 0.36 8.01 8 0.47 6.68 L.M.NSR. NH 16 Gynotroches axillaris Blume Rhiz. 3 0.10 3.17 7 0.35 5.08 4 0.09 2.80 M 17 Persea venosa Nees & Mart. Laur. 2 0.15 2.68 1 0.03 0.70 1 0.12 1.16 M.NH 18 Cecropia pachystachya Trécul Urt. 3 0.03 2.65 4 0.04 1.53 1 0.01 5.44 L.A.NH 19 Dalrympelea sphaerocarpa (Hassk.) Nor- Ezzaw. Staph 3 0.08 2.57 8 0.45 6.08 1 0.01 0.64 M 20 Myristica sp. Myrist. 2 0.12 2.48 9 0.16 5.78 1 0.02 0.66 M.NH 21 Aglaia elliptica (C.DC.) Blume Melia. 2 0.09 2.25 2 0.22 2.02 5 0.54 5.56 M.NSR.N H 22 Litsea resinosa Blume Laur. 2 0.04 1.87 7 0.24 4.98 6 0.11 4.05 M.NH 23 Mallotus paniculatus (Lam.) Müll.Arg. Euph. 2 0.03 1.85 1 0.04 0.75 3 0.14 2.45 M.NSR 24 Symplocos acuminata (Blume) Miq. Sympl. 2 0.02 1.77 2 0.12 1.61 6 0.08 3.28 M.NH 25 Dendrocnide stimulans (L.f.) Chew Urt. 2 0.02 1.30 9 0.17 5.82 5 0.05 3.17 M.NH 26 Quercus gemelliflora Blume Fag. 1 0.06 1.25 1 0.03 0.70 1 0.01 0.66 M.NSR.N H 27 Antidesma velutinosum Blume Euph. 1 0.02 0.97 1 0.09 0.93 1 0.01 0.64 L.NGPF 28 Castanopsis argentea (Blume) A.DC. Fag. 1 0.02 0.96 4 0.15 2.27 2 0.42 3.22 M.NH 29 Oreocnide rubescens (Blume) Miq. Urt. 1 0.01 0.88 9 0.13 4.73 7 0.12 4.06 L.M GROUP 2 30 Beilschmiedia madang (Blume) Blume Laur. 7 0.31 7.42 6 0.22 4.33 M.NSR 31 Syzygium koghianum Petitm. & Bonati Myrt. 6 0.21 6.35 4 0.13 2.81 M.NH 32 Astronia macrophylla Blume Melast. 3 0.19 3.81 1 0.07 0.87 M.NSR 33 Lithocarpus pallidus (Blume) Rehder Fag. 2 0.10 2.35 5 0.69 5.32 M.NH REINWARDTIA 22 [VOL.22 34 Glochidion rubrum Blume var. rubrum Euph. 2 0.05 1.96 3 0.04 1.89 M.NSR.N H 35 Unidentified Uni- dent. 2 0.04 1.90 2 0.02 0.63 M.NH 36 Litsea ligustrina (Nees) Fern.-Vill. Laur. 1 0.08 1.40 1 0.16 1.20 M.NH 37 Ficus ribes Reinw. ex Blume Mor. 1 0.01 0.87 3 0.03 1.82 L.M 38 Urophyllum arboreum (Reinw. ex Blume) Korth. Rub. 1 0.01 0.87 3 0.03 1.84 M.NSR GROUP 3 39 Prasoxylon alliaceum (Blume) M. Roem. Melia. 6 0.25 6.60 1 0.02 0.66 M.NH 40 Polyspora excelsa (Blume) Orel, Peter G. Wilson, Curry & Luu Thea. 3 0.06 2.83 2 0.03 1.30 M 41 Barringtonia racemosa (L.) Spreng Lecyth. 3 0.04 2.27 1 0.03 0.71 M.NSR.N H 42 Machilus rimosa Blume Euph. 2 0.05 1.98 3 0.05 2.01 M.NH 43 Lannea coromandelica (Houtt.) Merr. Anac. 1 0.13 1.75 3 0.12 2.36 M.NSR.N H 44 Cinnamomum sp. Laur. 1 0.11 1.57 2 0.03 1.00 M.NH 45 Litsea noronhae Blume Laur. 1 0.02 0.97 1 0.08 0.97 M.NH GROUP 4 46 Chisocheton ceramicus Miq. Melia. 2 0.97 5.05 3 0.07 1.80 M.NSR.N H 47 Didymocheton nutans Blume Melia. 14 0.79 9.94 7 0.42 5.83 M 48 Syzygium antisepticum (Blume) Merr. & L.M.Perry Myrt. 13 0.37 7.67 31 1.24 20.05 M. NH 49 Symplocos acuminata (Blume) Miq. Sympl. 8 0.18 5.29 9 0.12 5.23 M.NSR.N H 50 Myrsine hasseltii Blume ex. Scheff. Myrs. 7 0.11 4.44 1 0.11 1.13 M.NH 51 Elaeocarpus angustifolius Blume Elaeoc. 2 0.71 4.00 2 0.06 1.48 M.NSR.N H SADILI et al.: Variation composition and structure of natural lowland forest 2023] 23 52 Lithocarpus korthalsii (Endl.) Soepadmo Fag. 3 0.52 3.82 1 0.02 0.70 M.NH 53 Knema laurina (Blume) Warb. Myrist. 3 0.23 2.35 1 0.03 0.72 L.NSR.N H 54 Nauclea subdita (Korth.) Steud. Rub. 3 0.14 2.28 3 0.30 3.20 M.NSR.N H 55 Cinnamomum parthenoxylon (Jack) Meisn. Laur. 3 0.11 2.15 2 0.19 2.08 M.NSR.N H 56 Ostodes paniculata Blume Euph. 1 0.08 0.89 1 0.06 0.87 M.NH 57 Ficus tinctoria subsp. gibbosa (Blume) Corner Mor. 1 0.04 0.73 3 0.03 1.57 M.NSR.N H 58 Ficus fistulosa Reinw. ex Blume Mor. 1 0.03 0.70 3 0.03 1.93 L.M 59 Mangifera laurina Blume Anac. 1 0.01 0.61 1 0.06 0.90 M.NSR.N H 60 Mangifera sp. Anac. 1 0.01 0.61 1 0.17 1.40 M.NH GROUP 5 61 Neonauclea lanceolata (Blume) Merr. Rub. 7 0.32 7.98 M 62 Myrsine affinis A.DC. Myrs. 5 0.11 4.39 M 63 Donella lanceolata (Blume) Aubrév Sapot. 1 0.37 3.50 M.NSR.N H 64 Litsea brachystachya (Blumea) Fern.- Vill. Laur. 3 0.10 3.16 M.NSR.N H 65 Liquidambar excelsa (Noronha) Oken Ham. 3 0.07 2.89 M 66 Actinodaphne glomerata (Blume) Nees Laur. 2 0.07 2.10 M.NSR.N H 67 Semecarpus heterophylla Blume Anac. 2 0.07 1.87 L.NSR.N H 68 Adina trichotoma (Zoll. & Moritzi) Benth. & Hook.f. ex B.D.Jacks Rub. 1 0.04 1.52 L.NSR.N H 69 Litsea glutinosa (Lour.) C.B.Rob. Laur. 1 0.04 1.11 M.NSR.N H 70 Litsea sp. Laur. 1 0.04 0.90 M.NH 71 Gironniera subaequalis Planch. Cann. 1 0.04 0.89 M.NSR.N H REINWARDTIA 24 [VOL.22 72 Saurauia bracteosa DC. Acthin. 1 0.03 0.89 M.NH 73 Symplocos fasciculata Zoll. Sympl. 1 0.01 0.88 M 74 Ficus grossularioides Burm.f. Mor. 1 0.01 0.87 M.NH GROUP 6 75 Spondias pinnata (L.f.) Kurz Anac. 3 0.98 5.65 M.NSR.N H 76 Flacourtia sp. Flacour . 5 0.13 3.38 M.NH 77 Ficus glandulifera (Miq.) Wall. ex King Mor. 2 0.32 2.45 M.NSR.N H 78 Sterculia chrysodasys Miq. Ster. 2 0.03 1.26 M.NSR.N H 79 Diospyros frutescens Blume Ebena. 1 0.09 0.94 L.NGPF 80 Artocarpus elasticus Reinw. ex Blume Mor. 1 0.05 0.94 L.M.NSR. NH 81 Podocarpus neriifolius D.Don Pod. 1 0.05 0.76 M.NH 82 Magnolia macklottii (Korth.) Dandy Mag. 1 0.04 0.73 M.NSR.N H 83 Litsea sphaerocarpa Blume Laur. 1 0.02 0.66 M.NSR 84 Leptospermum polygalifolium Salisb. Laur. 1 0.02 0.64 M.NSR.N H GROUP 7 85 Calliandra houstoniana var. calothyrsus (Meisn.) Barne- by Leg. 28 0.33 14.18 L.A.NH 86 Decaspermum fruticosum J.R.Forst. & G.Forst. Myrt. 3 0.40 3.72 M.NH 87 Swietenia mahagoni (L.) Jacq. Melia. 4 0.31 3.55 L.A.NH SADILI et al.: Variation composition and structure of natural lowland forest 2023] 25 88 Falcataria falca- ta (L.) Greuter & R.Rankin Leg. 3 0.35 3.45 L.A.NH 89 Pinus merkusii Jungh. & de Vriese Pin. 4 0.11 2.90 L.A.NH 90 Ficus variegata Blume Mor. 4 0.08 2.39 L.N.H 91 Cryptocarya ferrea Blume Laur. 3 0.08 2.14 L.N.H 92 Bellucia pentam- era Naudin Melast. 3 0.05 1.99 M.A.NH 93 Quercus lineata Blume Fag. 2 0.13 1.80 M.NSR.N H 94 Artocarpus heterophyllus Lam. Mor. 2 0.09 1.62 L.A.NH 95 Garcinia cambogioides (Murray) Headland var. cambogioides Clusia. 2 0.06 1.45 M.NSR.N H 96 Syzygium sp. Myrt. 1 0.15 1.32 M.NH 97 Blumeodendron t okbrai (Blume) Kurz Euph. 1 0.05 0.82 L.M.NSR. NH 98 Dracaena angustifolia (Medik.) Roxb. Aspar. 1 0.04 0.79 L.A.NH 99 Ficus virens Aiton var. virens Mor. 1 0.04 0.78 M.NSR.N H 100 Magnolia sumatrana var. gl auca (Blume) Figlar & Noot. Mag. 1 0.03 0.72 M.NH 101 Aporosa spaeridophora Merr. Euph. 1 0.02 0.71 M.NSR.N H 102 Pavetta montana Reinw. ex Blume Rub. 1 0.01 0.65 M.NSR.N H 103 Homalanthus populneus (Geisel er) Kuntze Euph. 1 0.01 0.64 L.M.NH 104 Elaeocarpus angustifolius Blu me Elaeoc. 1 0.01 0.63 M.NH 105 Sterculia sp. Ster. 1 0.01 0.63 M.NH 106 Magnolia montana (Blume) Figlar Mag. 1 0.01 0.62 L.M.NH 107 Neesia altissima (Blume) Blume Bomb. 1 0.01 0.62 M.NSR REINWARDTIA 26 [VOL.22