REINWARDTIA 
Vol. 22. No. 1. pp: 1‒25 

DOI: 10.55981/reinwardtia.2023.4399 

 1 

VARIATION IN THE COMPOSITION AND STRUCTURE OF NATURAL LOW-
LAND FORESTS AT BODOGOL, GUNUNG GEDE PANGRANGO NATIONAL 
PARK, WEST JAVA, INDONESIA 

Received September 1, 2022; accepted January 3, 2023 

ASEP SADILI 
Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia. Kampus UI Gedung E 
Level 2, Jln. Lingkar Kampus Raya, Pondok Cina, Beji, Depok 16424, Indonesia.  
Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Jln. Raya Jakarta-
Bogor Km. 46, Cibinong, Bogor 16911, Indonesia.  
Email: asep016@brin.go.id.                                                                   https://orcid.org/0000-0002-9019-8094. 

ANDI SALAMAH 
Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia. Kampus UI Gedung E 
Level 2, Jln. Lingkar Kampus Raya, Pondok Cina, Beji, Depok 16424, Indonesia.  
Email: salamah@sci.ui.ac.id.                                                          https://orcid.org/0000-0002-4074-8342. 

EDI MIRMANTO 
Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Jln. Raya Jakarta-
Bogor Km. 46, Cibinong, Bogor 16911, Indonesia.  
Email: emirmanto@yahoo.com.                                                         https://orcid.org/0000-0001-7121-9980. 

KUSWATA KARTAWINATA
Integrative Research Center, The Field Museum, 1400 Lake Share Drive, Chicago, IL, 60605, USA. 
Email: kkartawinata@gmail.com.     https://orcid.org/0000-0001-9656-8095. 

ABSTRACT 
SADILI, A., SALAMAH, A., MIRMANTO, E. & KARTAWINATA, K. 2023. Variation in the composition and 
structure of natural lowland forests at Bodogol, Gunung Gede Pangrango National Park, West Java, Indonesia. 
Reinwardtia 22(1): 1‒25. — An analysis of the composition and structure of lowland natural forests was carried out in 
Bodogol, Gunung Gede Pangrango National Park (GGPNP). The two study plots (P1CS and P2CS) were located on 
Cisuren and one plot (P3CP) on Cipadaranten hill. We recorded 107 species and 48 families with an average basal 
area of 19.73 m

2
/ha, and an average density of 348 trees/ha. The species richness was poorer than those of the typical 

lowland rainforests of Kalimantan and Sumatra but comparable to those of the montane forests of Java. The IUCN-
Red Listed species were Castanopsis argentea and Castanopsis tungurrut (critical) and Saurauia 
bracteosa (vulnerable). Based on the two dominant species, the forests can be designated as the Maesopsis eminii-
Syzygium acuminatissimum association and Syzygium acuminatissimum-Lithocarpus korthalsii association. Maesopsis 
eminii was dominant in P1CS (IV= 56.46%) and P3CP (IV=55.94%), while Syzygium acuminatissimum in P2CS (IV= 
43.67%). Maesopsis eminii was a strongly aggressive and invasive species, that endangered the purity of the natural 
forest GGPNP, therefore, it must be eradicated. Vertically, P2CS and P3CP consisted of four strata, while P1CS had 
three strata. This one-hectare study can be considered as a minimal area to reflect the floristic representation of 
lowland forest and submontane forest.  

Key words: Association,  forest structure, Gunung Gede Pangrango National Park, lowland forests, minimal area, 
species composition, species richness.  

ABSTRAK 
SADILI, A., SALAMAH, A., MIRMANTO, E. & KARTAWINATA, K. 2023. Variasi komposisi dan struktur hutan 
pamah  alami  di Bodogol, Taman Nasional Gunung Gede Pangrango, Jawa Barat, Indonesia. Reinwardtia 22(1): 1‒
25. — Analisis komposisi dan struktur hutan pamah alami dilakukan di Bodogol, Taman Nasional Gunung Gede
Pangrango (TNGGP). Kajian dilakukan di dua petak (P1CS dan P2CS) di bukit Cisuren, dan satu petak (P3CP) di
bukit Cipadaranten. Dalam tiga petak tersebut tercatat 107 jenis dan 48 suku, dengan luas area dasar rata-rata 19,73
m

2
/ha dan kerapatan rata-rata 348 pohon/ha. Kekayaan jenis di lokasi penelitian ini lebih rendah daripada di hutan

hujan pamah  Kalimantan dan Sumatra, tetapi sebanding dengan di hutan pegunungan Jawa. Berdasarkan IUCN Red
List Castanopsis argentea dan Castanopsis tungurrut tercatat sebagai jenis kritis dan Saurauia bracteosa  sebagai jenis
rentan. Berdasarkan dua jenis dominan hutan di petak penelitian dapat disebut sebagai asosiasi Maesopsis eminii-
Syzygium acuminatissimum dan asosiasi Syzygium acuminatissimum-Lithocarpus korthalsii. Maesopsis eminii
dominan di P1CS (IV=56,46%) dan P3CP (IV=55,94%), sementara Syzygium acuminatissimum dominan di P2CS
(IV=43,67%). Maesopsis eminii adalah jenis invasif yang sangat agresif sehingga membahayakan kemurnian hutan
pegunungan alami TNGGP, oleh karena itu harus diberantas. Secara vertikal, struktur P2CS dan P3CP terdiri dari
empat strata, sementara P1CS tiga strata. Hasil penelitian ini menyimpulkan bahwa luas satu hektar dapat dianggap
sebagai area minimum yang dapat  mencerminkan representasi floristik hutan pamah bagian atas dan hutan pegu-
nungan.

Kata kunci: Asosiasi, area minimum, Bodogol, hutan pamah,  kekayaan jenis, komposisi jenis, struktur hutan, Taman 

Nasional Gunung Gede Pangrango.   

https://dx.doi.org/10.55981/reinwardtia.v22i1.4399
https://orcid.org/0000-0002-9019-8094
https://orcid.org/0000-0002-4074-8342
https://orcid.org/0000-0001-7121-9980
https://orcid.org/0000-0001-9656-8095


 

  REINWARDTIA  2                                [VOL.22 

INTRODUCTION 
  
Studies of flora, composition, and structure of 

forests and other vegetation of GGPNP (Gunung 
Gede Pangrango National Park) have been 
undertaken since the early 19th century (Steenis et 
al., 1972, 2006). The GGPNP has been a key for 
research on flora, vegetation, and fauna (Karta- 
winata & Sudarmonowati, 2022; Rozak et al., 
2016; Steenis et al., 1972, 2006). The first botani- 
cal exploration and investigation in Indonesia 
were carried out in 1777 in the Gede Pangrango 
twin mountains (now within the GGPNP) by Carl 
Pehr Thunberg, a Swedish naturalist  and  student 
of  Carollus   Linnaeus, the father  of  taxonomy.  
He was the first European naturalist who explored  
the area. He published the species he collected 
in Florula Javanica in 1825 (Kartawinata, 2010; 
Kartawinata & Sudarmonowati, 2022; Steenis et 
al., 1972, 2006). 

  The Cibodas Botanical Garden, established on 
the slopes of Mt. Gede, in 1852 was the research 
station for studies of mountain flora and fauna in 
Indonesia. It is part of the GGPNP region 
stretching from the lower montane forest at 1,400 
m asl (above sea level) to subalpine vegetation on 
the top of Mt. Pangrango at 3,019 m asl. Earlier 
investigators, who undertook vegetation studies, 
included Junghuhn (1845, 1853-1854), Seifriz 
(1923, 1924), and Docters van Leeuwen (1933). 
Steenis-Kruseman (1953) made a complete biblio- 
graphy of the studies in Mt. Gede-Pangrango and 
Bogor Botanical Garden. After the 2

nd
 World War, 

vegetation studies were carried out by many 
investigators, including Abdulhadi et al. (1998), 
Arrijani (2008), Arrijani et al. (2008), Meijer 
(1959), Rollet et al. (1976), Rozak et al. (2016), 
Sadili & Alhamd (2012), Sadili et al. (2009), 
Sriyanto (1987), Yamada (1975; 1976a, 1976b, 
1977), and Zuhri & Mutaqien (2013).  

The GGPNP was divided into seve-
ral resorts (regions), including the Bodogol Resort 
(BR) for management purposes. BR covers 
planted forests, natural upper lowland forests with 
an elevation of < 1,000 m asl, and montane forests 
with an elevation > 1,000 m asl (Sadili et al., 
2008; Sadili & Alhamd, 2012; Sadili, 2014; 
Junaedi et al., 2020). We know very little about 
the structure and composition of the lowland 
forests in GGPNP and to date only Helmi et al. 
(2009), who had investigated a one-hectare plot of 
the upper lowland forest at Bodogol. Therefore, 
more  studies in the lowland  forests are necessary 
to complement the montane and subalpine forest  
data for better scientifically based management of 
the GGPNP (Brearley et al., 2019). Species 
of  Dipterocarpaceae  can be found in the Bodogol 
lowland forest, including A nisoptera costata, 
Vatica sp., Dipetrocarpus hasseltii, D. retusus, D. 
gracilis (Ismail  et al., 2000; Helmi et al., 2009; 
Junaedi et al., 2020). These species are listed as 
vulnerable by the IUCN (IUCN, 2013).  

Data on the structural characteristics and species 
composition of the GGPNP’s lowland forest are 
limited to a one-hectare plot near the Research 
Station at Bodogol (Helmy et al., 2009). Here we 
study the composition and structure of the lowland 
forests at Cisuren and Cipadaranten hill ranges in 
Bodogol Resort to support data-driven park mana- 
gement, including ecological restoration of disturb- 
ed forests and degraded lands within the GGPNP 
domain.    

  
MATERIALS AND METHODS 

 

Study site 

The GGPNP is located in the Bogor,  Cianjur, 
and Sukabumi Regencies (Kabupaten), West Java, 
at 6°10’‒6°51’ South and 106°51’‒107°02’ East.  
The study was carried out in May 2022 in Bodogol 
Resort, in the administrative region of the Benda 
Village, Cicurug District, Sukabumi Regency, 
West Java (Fig. 1). The Bodogol resort covered 
natural forest areas on the Cisuren and Cipada- 
ranten hill ranges, extending from the lowland area 
on the western side of the GGPNP towards the top 
of Mt. Pangrango. It also included tree plantations 
of rasamala (Liquidambar excelsa), damar (Agathis 
dammara), and pinus (Pinus merkusii). We select- 
ed subjectively the study sites in the lowland 
natural forest with slight disturbances at the 
Cisuren and Cipadaranten mountain ridges. Three 
study plots of one hectare  (100 m × 100 m)  were 
established on the partially flat sections of the 
ridges, with steep to very steep slopes (55%‒75%)  
on the sides,   at elevations of  < 1,000 m asl.  Plot 
1 (designated as P1CS)  and plot 2 (P2CS) were 
located in the Cisuren hill range, while plot 3 
(P3CP) was in the Cipadaranten hill range.  

The terrain on the sides of the three plots was 
steep slopes leading to river valleys. The Cisuren 
river was located in the northern and Tangkil river 
on the southern sides of the P1CS and P2CS. The 
upper stream of the Cisuren river lies on the 
western side of the P3CP and the Cipadaranten 
river is on the eastern side of the P3CP. Table 1 
summarizes the data on the three plots, including 
Global Positioning System (GPS) position, eleva- 
tion, the thickness of litter, air humidity, soil 
acidity (pH), and disturbances in the three plots at  
Bodogol,  GGPNP.  

Each one-hectare plot was divided into 10 m × 
10 m subplots to measure trees with diameters at 
breast height (DBH) ≥ 10 cm.  The diameters of all 
trees were measured at 1.3 m above the ground.  
The total height of each tree was estimated by eye.  
The position of each tree was mapped out using the 
X and  Y coordinates. Each tree was identified in 
the field and voucher specimens were collected for 
identification at the Herbarium Bogoriense, BRIN 
(National Research and Innovation Agency) in 
Cibinong Bogor. The measurements of density, 
dominance (basal area), and frequency followed  



SADILI et al.: Variation composition and structure of natural lowland forest 

 

2023]                                    3 

Fig. 1. Map of the Gunung Gede Pangrango National Park  showing the study site at Bodogol Resort 
(Redrawn and modified from the map of BBTNGGP 2020). 

Cox (1967) and Mueller-Dombois & Ellenberg 
(1974, 2016).  The construction of the species-area 
curve followed Sadili et al. (2018), which was 
based on species data from 100 subplots nested 
within the plot, i.e. 100 m

2
 (10 m × 10 m),  400 m

2
 

(20 m × 20 m), 900 m
2
 (30 m × 30 m),..... 10,000 

m
2 
(100 m × 100 m). 
   

RESULTS 
 
General habitat conditions around the study 
plot  
The study plots were located in slightly disturbed 
natural forests. Natural disturbances, such as 
landslides were absent in P1CS and P2CS. The 
canopy cover in P1CS and P2CS varied from 40% 
to  75%.  Many subplots with open canopies were 
found in P1CS (Fig.  7) and P2CS (Fig. 8). The 
gaps were filled up with shrubs, climbers, and 
herbs, including Bambusa sp., Calamus sp., 
Dinochloa scandens, Dendrocnide stimulans, Meli-
cope latifolia, Ficus sp., Pinanga sp., and Piper 
aduncum. In P3CP gaps in the subplots (Fig. 9) 
and those resulting from fallen trees were present, 
in which shrubs and herbs grew, including Cyathea 
sp., Calliandra houstoniana var. calothyrsus, 
Etlingera sp., Piper aduncum, and Selaginella  
willdenowii.  
 

Species composition 
A total of 107 tree species with DBH ≥ 10 cm 

and 37 families (Appendix 1), with an average 
basal area of 19.73 m

2
/ha, and an average density 

of 348 trees/ha, were recorded in the lowland 
forests of GGPNP as represented by the three 
study plots. Table 2 shows the summary of the 
lowland forest vegetation data as recorded in the 
three study plots. Maesopsis eminii in P1CS and 
P3CP had the highest density (D= 69 trees/ha), ba- 
sal area (BA= 2.68 m

2
/ha) and absolute frequ- 

ency (F= 12.61%), while in P2CS Syzygium acu-
minatissimum had the highest density (61 trees/
ha), BA (3.81 m

2
/ha), and absolute frequency (F= 

12.46%). Based on IV analysis, the dominant 
species in P1CS and P3CP were Maesopsis eminii 
with IV= 56.46% (P1CS) and IV= 55.93% (P3 
CP), while in P2CS was Syzygium acuminatissi-
mum (IV= 43.67%)  (Table 3 and Table 4).  

Ten species with the highest density (D) and 
highest basal area (BA) (Table 3), highest absolute 
frequency (F), and highest importance value (IV) 
(Table 4) in each plot varied. Among them, 
however, three species were always recorded as 
the highest in three plots, i.e., Lithocarpus   
korthalsii, Syzygium acuminatissimum, and 
Lithocarpus pseudomoluccus. Species present in 
the P1CS, P2CS, and P3CP but with low values of 



 

  REINWARDTIA  4                                [VOL.22 

D, F, BA, and IV were listed in Group 1 in 
Appendix 1, while other species present in one or 
two plots were listed in Groups 2‒7 in Appendix 
1.  

The relationship between the number of species 
and  BA varied (Fig. 2). The highest number of 
species occurred in the BA class of 0.01‒0.09 cm

2 

and the highest appeared in P1CS (71 species). 
Species with BA of 0.40‒0.49 m

2 
appeared only in 

P3CP (2 species), while BA > 0.50 occurred in 
P2CS (2 species) and P3CP (4 species). The rela-
tionship between the number of trees and stem 
diameters also varied (Fig. 3). The highest number 
of trees appeared in the 10‒19.99 cm diameter 
class and the highest was in P2CS (223 trees). 
Trees with a diameter class of 80‒89.9 cm 
occurred only in P2CS and P3CP (2 trees, 
respectively).  

The species-area curves in the three plots 
differed as can be seen in Fig. 4. The curves 
appeared to begin flattening at 6,400 m

2
 (0.64 ha) 

in P1CS, and 10,000 m
2 

(1 ha) in P2CS and P3CP.  
At the points of inflection, the number of species 
ranged between 50 and 70. Based on density, the 

species composition of P1CS, P2CS, and P3CP  
were slightly similar, where the index of similarity 
between P1CS, and P2CS was 57% and between 
P3CP and combined P1CS, P2CS was 54%. 

Of the total 107 species (Appendix 1), we 
recorded nine exotic species (8.41%), which were 
Maesopsis eminii and Cecropia peltata occurring 
in all the plots, Calliandra houstoniana var. calo-
thyrsus, Bellucia pentamera, and Swietenia 
mahagoni in P3CP, and Indonesian species but not 
native to GGNPP (Dracaena angustifolia, Falca-
taria falcata, Pinus merkusii, and Artocarpus 
heterophyllus) were slightly similar, where the 
index of similarity between P1CS, and P2CS was 
57% and between P3CP and combined P1CS, 
P2CS  was 54%. 

Table 5 shows that six families contained five or 
more species in each plot. Lauraceae, Fagaceae, 
and Euphorbiaceae occurred in all plots, while 
Moraceae in two plots (P2CS and P3CP), and  
Meliaceae in one plot (P3CP). Lauraceae (11 
species) in P1CS was the largest family and other 
families contained less than five species, each 
(Appendix 1).  

Table 1. GPS position, elevation, litter thickness, air humidity, soil acidity (pH), and disturbances in the 
three plots at  Bodogol  GGPNP.  

 
 

Plot  

GPS position   
 

Elevation 
(m)  

 
 

Litter  

 
 

Mean air 
humidity 

(%)  

 
 

Mean 
pH  

 
 

Disturbance  
Latitude (S) Longitude 

(E) 

P1CS  -06
o
 46'52.6"  106

o
 51.09.4"  713 Thick 90 7 None 

P2CS  -06
o
 46'53.1"  106

o
 51.23.1"  767 Thick 89 7 None 

P3CP  -06
o
 46'40.2"  106

o
 51.41.1"  843 Thin 87 6.8 Slight (human activi-

ties along forest trails) 

 
No  

 
Plot  

 
Species  

 
Family  

 
D (ha)  

 
BA (ha)  

Index  

Diversity (H’) Evennes (E) 

1 P1CS  59 25 283 13.79 3.33 0.82 

2 P2CS  64 27 385 24.83 3.52 0.85 

3 P3CP  74 29 376 20.57 3.61 0.83 

 Mean 66 27 348 19.73 3.49 0.83 

Table 2.  Summarized data show the number of species, the number of families, Density  (D), Basal Area 
(BA  Index  (H’), and Evenness Index (E) in three plots at the lowland natural forest Bodogol, GGPNP. 



SADILI et al.: Variation composition and structure of natural lowland forest 

 

2023]                                    5 

Table 3. Ten species with the highest density (D) and basal area (BA) in three plots at the lowland natural 
forests in  Bodogol, GGPNP. 

No Species Density (trees/ha)  Basal area (m
2
/ha)  

  P1CS P2CS P3CP P1CS  P2CS  P3CP  

1 Syzygium acuminatissimum 19 61 21 1.20 3.81 1.46 

2 Maesopsis eminii  69 7 51 2.68 0.69 6.54 

3 Lithocarpus 
pseudomoluccus 

16 22 13 1.41 1.85 0.49 

4 Schima wallichii  6 11 20 0.64 2.74 1.43 

5 Lithocarpus korthalsii  11 25 16 1.55 2.32 0.78 

6 Macaranga denticulata  9 12 12 0.17 0.27 0.23 

7 Castanopsis tungurrut  12 4 11 0.59 0.26 0.34 

8 Neoscortechinia kingii  10 17 4 0.27 0.72 0.10 

9 Sandoricum koetjape  1 12 8 0.36 0.36 0.47 

10 Pometia pinnata  7 8 7 0.34 0.21 0.41 

11 Nephelium juglandifolium  6 25 4 0.29 1.53 0.22 

12 Ficus padana  7 1 1 0.15 0.02 0.10 

13 Aglaia elliptica  2 2 5 0.09 0.22 0.54 

14 Castanopsis argentea  1 4 2 0.02 0.15 0.42 

15 Beilschmiedia madang  7 6  0.31 0.22  

16 Neonauclea lanceolata  7   0.32   

17 Donella lanceolata  1   0.37   

18 Syzygium antisepticum   13 31  0.37 1.24 

19 Didymocheton nutans   14 7  0.79 0.42 

20 Symplocos acuminata   8 9  0.18 0.12 

21 Chisocheton ceramicus  2 3  0.97 0.07 

22 Elaeocarpus angustifolius  2 2  0.71 0.06 

23 Spondias pinnata   3   0.98  

24 Calliandra houstoniana 
var. calothyrsus 

  28   0.33 



 

  REINWARDTIA  6                                [VOL.22 

Forest structure   
 Forest profile diagrams (Fig. 6)  for all plots 

were constructed following the method of 
Kartawinata et al. (2004) as applied by Rahma et 
al. (2016). The profile diagrams show the tree 
heights that jointly form the vertical stratification 
(A Stratum to D Stratum), which varied from one 
plot to another. The ten main tree species with the 
highest density composing A Stratum to C Stra- 
tum are presented in Table 6. Fig. 5 shows the 
relationship between the diameters and heights of 
trees within the three plots revealing that most 
trees were concentrated in the 10‒20 cm diameter 
class with heights of < 20 m (C Stratum). In P1CS 
no trees were forming the emergent A Stratum  
(height > 34 m). In P2CS, five trees of five 
species constituted the A Stratum and in P3CP 
there was only one tree formed the emergent A 
stratum (Fig. 5 and Fig. 6).  

The distribution of the exotic species, 

Maesopsis eminii, in each plot was scattered 
(Figs. 7‒9, in red). The density of Maesopsis 
eminii in P1CP  (69 trees/ha) was higher than that 
in P2CS (7 trees/ha) and P3CP (51 trees/ha) (Table 
3). Observations during the field study revealed 
that the fruits of Maesopsis eminii were consumed 
daily by Owa Jawa (Hylobates moloch), Lutung 
Jawa (Trachypithecus auratus), Surili (Presbytis 
comata) and Tupai (Tupaia sp.).  
 
DISCUSSION 
 
Species Composition 

Of the total 107 species recorded in the three 
plots (Appendix 1), 48 species (44.86%) were not 
registered in the Gunung Gede Pangrango flora 
(Sunarno & Rugayah, 1992), and in Helmi et al. 
(2009), whose study site was located in the same 
forest area. They are here considered as the 
lowland forest species which were confirmed 

Table 4. Ten species with the highest absolute frequency (AF) and the highest importance value (IV) in 
three plots at the lowland natural forests in  Bodogol, GGPNP.  

No Species Absolute Frequency (F= %) Importance Value (IV= %)   

  P1SC P2CS P3CP P1SC  P2CS  P3CP  

1 Maesopsis eminii  12.61 1.87 10.58 56.46 6.48 55.93 

2 Syzygium acuminatissimum 7.66 12.46 4.49 23.10 43.67 17.15 

3 Lithocarpus korthalsii 3.60 6.85 4.81 18.74 22.68 12.84 

4 Lithocarpus 
pseudomoluccus 

5.41 6.23 3.53 21.32 19.40 9.34 

5 Neoscortechinia kingii  4.05 4.05 1.28 9.55 11.38 2.81 

6 Schima wallichii 2.25 2.49 4.49 9.03 16.38 16.77 

7 Castanopsis tungurrut  4.95 1.25 2.88 13.50 3.33 7.46 

8 Macaranga denticulata  3.15 2.80 2.56 7.56 7.01 6.88 

9 Nephelium juglandifolium 2.70 5.92 0.96 6.90 18.58 3.07 

10 Pometia pinnata  3.15 2.49 2.24 8.09 5.40 6.09 

11 Cecropia peltata 1.35 0.31 5.13 2.65 1.53 5.44 

12 Sandoricum koetjape  0.45 3.43 2.24 3.42 8.01 6.68 

13 Syzygium antisepticum   2.80 5.77  7.67 20.05 

14 Didymocheton nutans   3.12   1.92  9.94 5.83 

15 Neonauclea lanceolata  3.15   7.98   

16 Calliandra houstoniana 
var. calothyrsus 

  5.13   14.18 



SADILI et al.: Variation composition and structure of natural lowland forest 

 

2023]                                    7 

through comparison with Backer & Bakhuizen van 
den Brink (1963-1968), Djarwaningsih et al. 
(2010), Ismail et al. (2000), Kartawinata (1977), 
Rozak et al. (2016), and Yusuf (2004). They 
contributed to the increase of the current GGNPP 
floristic diversity of 1,103 species (Kartawinata  & 
Sudarmonowati, 2022), which should now total 
1,151 species.  

The present study, along with Helmy et al. 
(2009) and Sadili (2014), has described the 
transitional forest area between the lowland and 
montane forests with tree species diversity that 
was not known when GGPNP was established in 
1980. It is interesting to note that species of 
Dipterocarpaceae were reported to occur spa- 

ringly in Bodogol (Ismail et al., 2000;  Helmi  et  
al., 2009; Junaedi et al., 2020)  but  they  were  
not  found  in  the present study plots, possibly  
because of  unsuitable  microclimate  and  located  
far away from the seed producing mature trees  
(Purwaningsih, 2004).   

Ten species with the highest density (D), basal 
area (BA) (Table 3), absolute frequency (F), and 
important value (IV) (Table 4) varied. Based on 
the dominance as reflected by the highest IV 
analysis the forest in P1CS and P3CP, on the one 
hand, may be called Maesopsis eminii-Syzygium 
acuminatissimum association, with the character 
species that were confined to the two plots as 
listed in Group 3 in Appendix 1. The  forest  in  

Fig. 2. The relationship between the number of species and BA classes in three plots at the lowland 
natural forests in Bodogol, GGPNP.  

Fig. 3. The relationship  between density (D) and diameter class in three plots at the lowland forest in 
Bodogol, GGPNP.  



 

  REINWARDTIA  8                                [VOL.22 

Fig. 4. Species-area curves in three plots of one hectare each in the lowland natural forests in Bodogol, 
GGPNP.   

Table  5.  The number of families having five or more species in the three plots at the lowland natural 
forests Bodogol, GGPNP.  

No Family Number of species  

  P1CS P2CS P3CP 

1 Lauraceae 11 6 7 

2 Fagaceae 6 7 6 

3 Euphorbiaceae 5 6 8 

4 Moraceae  6 6 

5 Meliaceae   6 

Fig. 5. Scattered diagram of diameter classes and tree heights in the three plots at the lowland natural 
forests at Bodogol, GGPNP. 



SADILI et al.: Variation composition and structure of natural lowland forest 

 

2023]                                    9 

Fig. 6. Profile diagrams of the forest on the plots constructed by plotting the height of each tree and 
sequential tree position from tree no. 1 in the 1st subplot up to the last tree in the 100

th
 subplot in all plots in 

the lowland natural forests at Bodogol, GGPNP, using the method of Kartawinata et al. (2004). 

Tree 
Height 

(m) 

Tree 
Height 

(m) 

Tree 
Height 

(m) 



 

  REINWARDTIA  10                                [VOL.22 

Table 6. The number of species, number of trees, and ten species with the highest density in the A, B, and C 
strata in the three plots in the lowland natural forests at  Bodogol, as graphically presented in Fig. 9. 

 
Plot  

 
Stratum  

Number  Ten species with the highest density (trees/ha)  

Species Tree  

A 

(Height > 30 m)  

 
- 

 
- 

 
- 

 
 
 
 
 
 
 
 

P1CS  

B 

(Height: 20‒30 m)  

 
 

23 

 
 

50 

Maesopsis eminii (8), Syzygium acuminatissimum  
(7), Lithocarpus korthalsii (7), Lithocarpus 
pseudomoluccus (5), Schima wallichii (2), 
Neoscortechinia kingii (2), Castanopsis tungurrut 
(2), Neonauclea lanceolata (2), Adina trichotoma 
(1), Liquidambar excelsa (1)  

C 

(Height: 4‒19.9 m)  

 
 

55 

 
 

233 

Maesopsis eminii (61), Syzygium acuminatissimum   
(2), Lithocarpus pseudomoluccus (12), 
Castanopsis tungurrut (10), Neoscortechinia kingii 
(10), Macaranga deltoidea (8), Beilschmiedia 
madang (7), Ficus padana  (7), Nephelium 
junglandifolium (6), Pometia pinnata (6)  

 
 
 
 
 
 
P2CS  

A 

(Height: > 30 m)  

 
5 

 
5 

Chisocheton ceramicus (1), Lithocarpus korthalsii (1), 
Lithocarpus pallidus (1), Schima wallichii (1),  
Dalrympelea sphaerocarpa (1)  

B 

(Height: 20‒30 m)  

 
 

33 

 
 

107 

Maesopsis eminii (8), Syzygium acuminatissimum   
(7), Lithocarpus korthalsii (7), Lithocarpus 
pseudomoluccus (5), Schima wallichii (2), 
Neoscortechinia kingii (2), Castanopsis tungurrut 
(2), Neonauclea lanceolata (2), Adina trichotoma 
(1), Liquidambar excelsa (1)  

C 

(Height:  4‒19.9 m)  

 
 
 

55 

 
 
 

273 

Calliandra houstoniana var. calothyrsus (31), 
Syzygium antisepticum (27), Maesopsis eminii 
(22), Syzygium acuminatissimum (13), Schima 
wallichii (13),  Lithocarpus korthalsii (12), 
Macaranga deltoidea (12), Castanopsis tungurrut 
(11), Symplocos acuminata (10), Lithocarpus 
pseudomoluccus (9)  

 
 
 
 
 
 
P3CP  

A 

(Height: > 30 m)  

 
1 

 
1 

Maesopsis eminii (1)  

B 

(Height:  20‒30 m)  

 
 

24 

 
 

76 

Syzygium acuminatissimum (25), Lithocarpus 
korthalsii (14), Nephelium junglandifolium (9), 
Lithocarpus pseudomoluccus (8) Schima wallichii 
(7), Neoscortechinia kingii (4), Beilschmiedia 
madang (3), Didymocheton nutans (3), 
Sandoricum koetjape (3), Spondias pinnata (3)  

C 

(Height: 4‒19.9 m)  

 
 

69 

 
 

299 

Syzygium acuminatissimum (36), Nephelium 
juglandifolium (16) Lithocarpus pseudomoluccus 
(13), Macaranga deltoidea (12), Neoscortechinia 
kingii (12), Didymocheton nutans (11), 
Lithocarpus korthalsii (11), Syzygium antisepticum 
(10), Dendrocnide stimulans (9), Myristica sp. (9)  



SADILI et al.: Variation composition and structure of natural lowland forest 

 

2023]                                    11 

P2CS, on the other hand, may be designated as 
Syzygium acuminatissimum-Lithocarpus korthalsii 
association, characterized by species that were 
confined to P2CS, as listed in Group 6 in 
Appendix 1. Before the Maesopsis eminii invasion, 
the Syzygium acuminatissimum-Lithocarpus kor- 
thalsii association could have been prevalent in 
the lowland forests at Bodogol. In these 
associations, the following species were registered 
in the IUCN Red List (Effendi et al., 2022; 
Wihermanto, 2007) as critical (Castanopsis argen- 
tea and C. tungurrut) and vulnerable category 
(Saurauia bracteosa).   

The number of species along the basal area 
classes (Fig. 2) and diameter classes (Fig. 3) 
showed that the highest number of species 
occurred in the lowest BA  class (0.01‒0.09 m

2
)

 

and diameter class  (10.0‒19.9 cm). It follows that 
the number of species decreased as the BA and 
diameter increased. The BA is related to the 
diameter. The above reverse-J pattern is typical for 
the tropical rainforest and indicated that the forest 
regenerated well and was in a dynamic state 
(Ogawa et al., 1965; Richards, 1996; Mirmanto, 
2014).  

The species richness and tree density in our 
plots were comparable to those obtained from 
various studies in the montane forests of Mount 
Gede-Pangrango and Mount Halimun in West 
Java, Foja Mountains in the upper montane forest 
of Papua, but lower than those of the studies in 
Sumatra (Table 7). From Table 7 it is evident that 
the montane forests, even the pristine forest un- 
touched by human activities in the Foja  Mountains 
in Papua (Sadili et al., 2018), and the transitional 
lowland-montane forests at Bodogol had a low 
species diversity of 59‒70 species in one hectare, 
compared to very species-rich undisturbed lowland 
forests at Kalimantan (Sheil et al., 2010), and Su- 
matra (Kartawinata et al., 2004), where the number 
of species per hectare was 205 and 182,  respec- 
tively. Studies in Sulawesi by Brambach et al. 
(2017) in several plots with a total area of 3.1 ha in 
the Lore Lindu National Park at 700–2,400 m asl 
and by Trethowan et al. (2019) in several plots 
with a total area of 2.5 ha in lowland forest areas at 
Morowali, Wawonii and Bualemo, show the mean 
species richness of 9/ha and 113/ha, respectively,    
which are comparable to the result of the present 
study. It may be implied that it is a norm for any 
montane forest to have low species diversity. The 
richness of a plot may be due to disturbance by 
facilitating species dependent on disturbance to 
associate very closely with late-successional speci- 
es (Connell, 1978; Sheil & Burslem, 2003; Slik et 
al., 2008). 

The occurrence of low species richness is 
reflected also in a species-area curve. The species-
area relationship is essential to ecology (Plotkin et 
al., 2000) and it can also be used to approximate 

species extinction resulting from habitat loss (May 
et al., 1995; Pimm & Raven, 2000) and to assess 
patterns of species diversity in different forest 
types (Ashton, 1965; Mueller-Dombois & Ellen- 
berg, 1974, 2016). The curve was constructed to 
indicate species diversity in relation to the increas- 
ing size of the area (Mueller-Dombois & Ellen- 
berg, 1974, 2016) within the plot. Fig. 4 shows the 
species-area curves in three plots with an area of 
one hectare each. The species-area curves in the 
three plots differed. The curves began to flatten at 
6,400 m (0.64 ha) in P1CS  and at 10,000 m (1 ha) 
in P2CS and P3CP, which indicated that at the 
points of inflection, the number of species ranged 
between 50 and 70.  It  is in contrast to the species-
area curves of undisturbed lowland forests in 
Kalimantan and Sumatra. In Kalimantan, Kartawi- 
nata et al. (2008) showed that the curve still steadi- 
ly rose to indicate no sign of leveling at the area of 
10.5 ha with a number of species of 552 and in 
Sumatra. Kartawinata et al. (2004) noted the same 
pattern with no indication of flattening of the curve 
at one hectare and 182 species.   

Table 2 shows the Diversity Index (DI)  with a 
mean value of  H’= 3.49 may be considered high, 
comparable to H’= 3.39 at higher elevations (1,000 
m asl) of the GGNP forest (Zuhri & Mutaqien, 
2011) but higher than the diversity index at the 
montane forest at the Mt. Ceremai National Park 
with H’= 2.66‒2.77 (Purwaningsih & Yusuf, 
2008). The diversity index is considered high if  
H’ > 3 and H’ in the tropical forests is 1.5–3.5 and 
rarely H’ > 4 (Greig-Smith, 1983). The Evenness 
Index (E) is used as the indicator of prevalence in 
the forest community. In the present study plots E 
values were high (0.82‒0.85), which were indi- 
cating that all the species were even relatively 
(Ludwig & Reynold, 1988; Oosting, 1956).  

Exotic species, other than Maesopsis eminii,  
(i.e. Bellucia pentamera, Calliandra houstoniana 
var. calothyrsus, Cecropia peltata, and Swietenia 
mahagoni) and Malesian species but not native to 
GGPNP (i.e., Artocarpus heterophyllus, Dracaena 
angustifolia, Falcataria falcata, and Pinus 
merkusii)  were contaminating but not aggressively 
invading the natural tree communities, as indicated 
by their very low densities and basal areas 
(Appendix 1). They should be, however, 
monitored and prevented from spreading more 
widely and even eradicated.   

Maesopsis eminii, which was introduced to 
Indonesia for the first time in 1920, should receive 
special attention because this species aggressively 
and rapidly invaded submontane rain forests and 
became the dominant species in Eastern Tanzania 
(Schabel & Latiff, 1997). In Bodogol it dominated 
the lowland forest, as indicated in the study plots 
(Appendix 1, Figs. 7‒9, and Table 4), it reached 
the highest IV in P1CS (56.46%) and P3CP 
(55.93%), while in P2CS it was one of the 11 main 



 

  REINWARDTIA  12                                [VOL.22 

Fig. 7  The scattered and  dispersed tree distribution of trees with DBH  ≥ 10 in the P1CS at the lowland 
natural forest Bodogol, GGPNP.  

Fig. 8.  The scattered and dispersed tree distribution of trees with DBH  ≥ 10 in the P2CS at the lowland 
natural forest Bodogol, GGPNP.  



SADILI et al.: Variation composition and structure of natural lowland forest 

 

2023]                                    13 

species with IV= 6.48%. Naturally, the species 
occurred in Africa from lowland tropical rain 
forests to savannas, extending to montane forests 
at the altitude of 1,800 m asl and dispersed by 
birds (especially hornbills), rodents, and monkeys 
(Schabel & Latiff, 1997). It is a fast-growing 
species with a growth rate of 1.5‒5.5 cm per year 
in diameter and 1‒3 m per year in height (Schabel 
& Latiff, 1997) and could grow well at the 
altitudes of 100‒900 m asl within full sunshine. It 
was planted in community forests and plantations 
in West Java in 1960 by the Forestry Department  
(Samsoedin et al., 2016). Informants (pers. comm., 
2022) stated that it was planted in the community 
forests in Bodogol village in the 1970s.  

In Bodogol, many primate species (Owa Jawa-
Hylobates moloch, Lutung Jawa-Trachypithecus 
auratus, and Surili-Presbytis comata) and rodents 
(Tupaia sp.) living in the GGPNP vigorously 
consumed the fruits of M. eminii (Helmi et al., 
2009) and later dispersed seeds germinated and 
developed into large trees elsewhere in the interior 
of natural forests as indicated in the results of the 
present study as far as 1,000 m from the natural 
forest edges. In Africa, it is an amazingly long-
lived pioneer species that could live up to 150 
years (Schabel & Latiff, 1997). Considering the 
above growth and behavioral characteristics of the 
species and the current dominating existence in 
Bodogol inland natural forests it would be not 
surprising that M. eminii will become a dominant 
species in the upper montane forests and even in 
the subalpine forests of GGPNP. A drastic action 

to eradicate  M. eminii from the natural forest of 
GGPNP and the adjacent areas of GGPNP  should 
be seriously undertaken without delay to save the 
continuing existence of natural forests in GGPNP.   

Falcataria falcata and Pinus merkusii are 
native to Indonesia and were present in the study 
plots but at low density (Appendix 1), hence not 
aggressive invaders. They were planted by the 
Forest Department in the vicinity of the GGPNP 
and those in Bodogol have been incorporated into 
the GGPNP. The presence of A rtocarpus hetero- 
phyllus and Dracaena angustifolia could have 
been due to human activities that inadvertently 
carry the propagules into the natural forests (An- 
dila & Warseno, 2019; Samsoedin et al., 2016).  

Species having high commercial value is  
Liquidambar excelsa (Sutomo & Sari, 2019). It is 
native to Bhutan, Assam, Myanmar, Peninsular 
Malaysia, Sumatra, and Java. Growing at the ele- 
vation of 550‒1,700 m asl (Vink, 1957). In P1CS 
it had D= 3/ha, BA= 0.07 m

2
 and IV= 2.89% (Ap- 

pendix 1). In Bodogol, it was recorded by Ismail 
et al. (2000), Helmi et al. (2009), Gunawan et al. 
(2011), Sadili & Alhamd (2012), and Sadili 
(2014). In Cibodas, grew on the submontane to 
montane forests (Meijer, 1959; Yamada, 1975; 
Abdulhadi et al., 1998; Arrijani et al., 2006; 
Rozak et al., 2016). Local people informed us that 
seedlings and saplings of A . excelsa were hard to 
find in the natural forests at Bodogol. Similarly, 
the planted forest of A . excelsa in Bodogol, which 
according to informants in the village (pers. 
comm., 2022) was planted in 1918. Sadili (2014) 

Fig. 9.  The scattered and dispersed tree distribution of trees with DBH  ≥ 10 in the P3CP at the lowland 
natural forest Bodogol. A relatively large gap  (dark green colour) resulting from fallen trees was present. 



 

  REINWARDTIA  14                                [VOL.22 

Table 7. Comparison of the number of species and number of trees in one-hectare plots in montane forests 
of  Java and  Papua and  the lowland forests of Sumatra and Kalimantan. 

Elevation 
(m) 

Plot size 
(ha) 

Density 
(trees/ha) 

Number 
of species 

Source Locality  

WEST JAVA        

Gunung Gede pangrango National Park       

Bodogol P1CS 713 1 283 59 Present study 

 P2CS 767 1 385 64 Present study 

 P3CP 843 1 376 74 Present study 

 Mean 713-843 1 348 66 Present study 

Bodogol  806 1 352 70 Helmi et al. 
(2009)  

Cibodas  1600 1 427 57 Yamada (1975)  

Gunung Halimun Salak National Park       

Gunung Kendeng  1000 1 406 64 Suryanti (2006)  

Gunung Malang  1000 1 421 69 Suryanti (2006)  

Gunung Panenjoan  1000 1 405 69 Suryanti (2006)  

Purabakti  900 1 441 69 Yusuf (2004) 

KALIMANTAN       

Malinau  200 1 759 205 Sheil et al. 
(2010)  

SUMATRA       

Batang Gadis National 
Park 

 660 1 583 182 Kartawinata et 
al. (2004)  

Bukit Lawang  297 1 453 216 Polosakan 
(2001)  

PAPUA       

Foja Mountains  1710 1 693 59 Sadili et al. 
(2018)  



SADILI et al.: Variation composition and structure of natural lowland forest 

 

2023]                                    15 

found only two saplings (diameter= 8.62 cm and 
9.39 cm), indicating that the species had a poor 
regenerating capability. An officer of the Halimun-
Salak National Park (pers. comm., 2022) informed 
that seedlings and saplings of A . excelsa could be 
found only in secondary growth on small 
landslides near mature trees. Qualitative 
observation revealed that the absence of 
regeneration in the old  A . excelsa planted in 
Bodogol could be related to the unsuitable 
elevation of less than 1,000 m asl for growth and 
reproduction. It could be inferred that planted A . 
excelsa had a low ability to sustain itself with the 
implication that the species may not be a good 
candidate to be used in ecological restoration but 
acceptable for rehabilitation of degraded lands. 

Native tree species that are potentially good for 
ecological restoration is S. wallichii. It is a variable 
species, consisting of nine subspecies and five 
varieties (Bloembergen, 1952), including S. walli- 
chii subsp. noronhae. In Java, it is spreading from 
300 m to 2,600 m asl, which comprised two 
varieties (Backer & Bakhuizen van den Brink, 
1963). Many pioneer species inhabiting the low- 
land to montane forests are amazingly long-lived 
(Whitmore, 1986) and S. wallichii could be placed 
in this category, as can be seen, it lived in the 
primary montane forest of GGPNP (Kartawinata & 
Sudarmonowati, 2022; Yamada, 1974, 1976). In 
the present study, it occurred in all plots (Table 3, 
Table 4, and Appendix 1). Vertically (Table 6) 
filled up the B stratum (height 20‒30 m) and C 
stratum (height 4‒20 m). Gunawan et al. (2011) 
noted that its distribution was clustered and based 
on high IV it was predicted that S. wallichii could 
become dominant in the A gathis dammara planta- 
tion. In the Kawah Ratu (Halimun-Salak National 
Park), Hilwan & Rahman (2021) reported good 
regenerations of S. wallichii. Rozak et al. (2016) in 
GGPNP, S. wallichii occurred from the submon- 
tane to the subalpine forests.  

Lauraceae, Fagaceae, and Euphorbiaceae are 
common families in the submontane forests 
(Steenis et al., 2006; Purwaningsih & Polosakan, 
2016), hence, the forest is often designated as 
Lauro-Fagaceous forest (Steenis & Shippers-
Lammertse, 1965; Steenis et al., 2006). In the 
present study, families in the submontane forest 
with a high number of species (> 5) were Laurace- 
ae, Fagaceae, and Euphorbiaceae (Table 5). Eu- 
phorbiaceae contained the highest number of 
species (eight species) in P3CP, which  was related 
to high adaptability to the environment (Kartawi- 
nata, 1977; Riswan, 1987). Based on the number of 
species, in Malesia, Euphorbiaceae is listed as one 
of the four big family groups (Whitmore, 1995). 
The existence of Euphorbiaceae in three plots 
could be implied that the habitat was once 
disturbed, such as fallen trees creating gaps, which 
in turn stimulated seeds to germinate. 

Structure 
Species distribution in each plot varied 

(Appendix 1). The number recorded in three plots 
accounted for 29 species (27.10%), in two plots 31 
species (28.97%), and only in one plot 47 species 
(43.93%). It is implied that each species had 
different characteristics in its regeneration and sur- 
vival. The species that had the widest distribution 
were tolerant to the varied environment of dif- 
ferent forests (Group 1 in Appendix 1). Magnolia 
montana (IV= 0.62%) and  Neesia altissimo (IV= 
0.62%) were species with the lowest IV and occur- 
red only in P3CP, which could be due to the 
presence of the highest number of exotic species in 
the plot. It needs further research to clarify the 
phenomenon. 

Forest profile showing the vertical structures 
(Figs. 5 and 6), containing ten species with varied 
highest diversity in each stratum of each plot 
(Table 6). The A stratum (height > 30 m) occurred  
in P2CS (5 trees/ha) and P3CP (1 tree/ha). Further- 
more, the correlation between diameter class and 
tree height of < 20 m (C Stratum), and in general 
diameters are correlated with tree height, implying 
that the bigger the diameters the taller the trees, 
hence the forest canopy. Fig. 5, illustrating the 
profile of the P2CS, revealed the presence of trees 
with small diameters but with very tall trunks, 
implying that the trees optimally utilized the light 
along with the others. This phenomenon could be 
observed in Lithocarpus korthalsii. Figs. 7–9 show 
the uneven distribution of all trees in the plots. The 
distribution of Maesopsis eminii was concentrated 
on the more or less flat ridges of the hills and 
decreased towards the sloping sides. It should be 
pointed out that in some subplots with open 
canopies and in such openings, many species of 
young trees, shrubs and lianas grew profusely, 
including Bambusa sp., Calamus sp., Dendrocnide 
stimulans, Dinochloa scandens, Melicope latifolia, 
Ficus sp., Pinanga sp., and Piper aduncum. Forest 
structure in Bodogol is comparable to those at 
1,600 m asl (Kartawinata & Sudarmonowati, 
2022; Yamada, 1975). 
 
Successional status of the forest 
We checked the species listed in Appendix 1 to 
identify the successional status of species using the 
following references, Kramer (1926, 1933), 
Backer & Bakhuizen van den Brink, Jr. (1963‒
1968), Steenis et al. (1972), Riswan (1984), 
Whitmore (1986), Sriyanto (1987), Sunarno & 
Rugayah (1992), Keβler et al. (2000), and 
Kartawinata & Sudarmonowati (2022). Appendix 
1 recorded the following 32 secondary forest spe- 
cies in the plots i.e. Liquidambar excelsa, 
Artocarpus elastica, Bellucia pentamera, 
Blumeodendron tokbrai, Glochidion rubrum var. 
rubrum, Calliandra houstoniana var. calothyrsus, 
Castanopsis argentea, C. tungurrut, Cecropia pel-



 

  REINWARDTIA  16                                [VOL.22 

tata, Decaspermum fruticosum, Dendrocnide 
stimulans, Melicope latifolia, Ficus tinctoria 
subsp. gibbosa, Ficus fistulosa, Ficus padana, 
Ficus variegata, Polyspora excelsa, Knema 
laurina, Litsea noronhae, Maesopsis eminii, 
Mallotus paniculatus, Neonauclea lanceolata, 
Homalanthus populneus, Falcataria falcata, Pinus 
merkusii, Podocarpus neriifolius, Pometia pinata, 
Schima wallichii, Sterculia chrysodasys, Swietenia 
mahagoni, Strobocalyx arborea and Oreocnide 
rubescens. The fact that they constituted 29.9% of 
the total species recorded in the three plots, 
combined with many open subplots and the 
presence of gaps in the three plots (Figs. 7‒9),   
pointed to the somewhat secondary nature of the 
lowland forests of Bodogol. It was resulted from 
human disturbances and natural disruptions such 
as landslides and thunderstorms, which occasion- 
ally took place in the area. Structural charac- 
teristics showing low forest heights (Fig. 5 and 
Table 6) support this contention. It can be inferred 
that the forests in the plots were regenerating after 
disturbances in the past.  

 
CONCLUSION 
 

The forests investigated contained a total of 107 
species recorded in three one-hectare plots. 
Lowland  species  were  prevalent,  thus  forming  
the transition between lowland and lower montane 
forests, with relatively poor species richness. It 
was much poorer than the typical lowland rain 
forest of Kalimantan and Sumatra but  comparable  
to  those  of  the  montane forests  of Java. Based 
on two dominant species, the forest could be 
designated as the Maesopsis eminii-Syzygium acu-
minatissimum association and Syzygium acumina-
tissimum-Lithocarpus korthalsii association. Be-
fore M. eminii invasion the Syzygium acuminatis-
simum-Lithocarpus korthalsii association could 
have  been prevalent in lowland forests at 
Bodogol. The trees native to Mt. Gede-Pangrango 
recorded in  the present studies are the potential 
species for ecological restoration undertaken 
around the  GGPNP. 

This study strongly confirmed that the one-
hectare area could be considered a minimal area to 
reflect the representativeness of the floristic 
composition. The dominance of M. eminii, point- 
ed to a strong aggressive, and invasive species, 
which in no time will frighteningly take over the 
dominance of the lowland to subalpine forests of 
GGPNP. It, therefore, is very urgent to totally 
eradicate it at all costs from the natural forests,  
the plantations, and community forests adjacent to 
the GGPNP. Structurally and floristically the fo- 
rest represented a developing and regenerating 
disturbed forest, and very low frequency and  

density in the majority of the species reflected 
species heterogenity. Investigations,  similar to the 
present study, should be extended to other un- 
described natural lowland forests of other resorts 
for better management, including ecological resto-
ration. 

  
ACKNOWLEDGEMENTS 
 

We are grateful to the Head of the Research 
Center for Ecology and Ethnobiology, National 
Research and Innovation (BRIN) for the research 
permission. We also thank the Head of the 
GGPNP, the Head of the Bodogol Resort of 
GGPNP, Director of Scientific Collection Mana- 
gement – BRIN, and other staff members of the 
GGPNP for the provision of various facilities.  
Our special gratitudes go to Pak Ae and Pak 
Syarif for their remarkable assistance in the field.      

 
REFERENCES 
 
ABDULHADI, R., SRIJANTO, A. &  

KARTAWINATA, K. 1998. Composition, 
structure, and changes in a montane rain forest 
at the Cibodas Biosphere Reserve, West Java, 
Indonesia. In: DALLMEIER, F. & COMIS-
KEY, J. A. (Eds.). Forest Biodiversity Re- 
search, Monitoring, and Modeling: Concep- 
tual Background and Old World Case Studies. 
Man and the Biosphere Series 20. Pp. 601‒
612.  

ANDILA, P. S. & WARSENO, T.  2019. Study 
potential of kayu suji (Dracaena angustifolia) 
as a medicine: A review. W idya Biologi 10(2): 
148‒158. 

ARRIJANI,  SETIADI,  D., GUHARDJA, E. & 
QAYIM, I. 2006. Analisis vegetasi hulu DAS  
Cianjur Taman Nasional Gunung Gede-
Pangrango. Biodiversitas 7(2): 147‒153. 

ARRIJANI. 2008. Struktur dan komposisi 
vegetasi Zona Montana Taman Nasional 
Gunung Gede Pangrango. Biodiversitas 9(2): 
134‒141. 

ASHTON, P. S. 1965. Some problems arising in 
the sampling of mixed rain forest  communities 
for floristic studies. In: KOSTERMANS, A. J. 
G. H. & FOSBERG, F. R. (Eds.), Symposium 
on Ecological Research in Humid Tropics 
Vegetation, Sarawak 1963. UNESCO Science 
Cooperation Office for S. E. Asia, Jakarta. Pp. 
235–240. 

BBTNGGP (Balai Besar Taman Nasional Gunung 
Gede Pangrango). 2020. Zona Pengelolaan 
Taman Nasional Gunung Gede Pangrango. 
Balai Besar Taman Nasional Gunung Gede 
Pangrango, Kementerian Lingkungan Hidup 
dan Kehutanan. Direktorat Jenderal Konservasi 
Sumber Daya Alam dan Ekosistem. Cibodas. 



SADILI et al.: Variation composition and structure of natural lowland forest 

 

2023]                                    17 

BACKER, C. A. & BAKHUIZEN VAN DEN 
BRINK, JR. R. C. 1963‒1968. Flora of Java. 
Vol. 1‒3. P . Noordhoff,  Groningen.  

BRAMBACH, F., LEUSCHNER, C., TJOA, A., 
CULMSEE, H. 2017. Diversity, endemism, and 
composition of tropical mountain forest 
communities in Sulawesi, Indonesia, in relation 
to elevation and soil properties. Perspectives in 
Plant Ecology, Evolution and Systematics 27: 
68–79. DOI: 10.1016/j.ppees.2017.06.003. 

BREARLEY, F. Q., ADINUGROHO, W. C.,  
CÁMARA-LERET, R., KRISNAWATI, H., 
ALICIA LEDO, A., QIE, L., SMITH, T. E. L., 
AINI, F., GARNIER, F., NURUL, S., LES- 
TARI, N. S., MANSUR, M., MURDJOKO, A., 
OKTARITA, S., SORAYA, E., TATA, H. L., 
TIRYANA, T., TRETHOWAN, L. A., WHEE- 
LER, C. E., ABDULLAH, M., ASWANDI, 
BUCKLEY, B. J. W., CANTARELLO, E., 
DUNGGIO, I., GUNAWAN, H., HEATUBUN, 
C. D., ARINI, D. I. D., ISTOMO, KOMAR, T. 
E., KUSWANDI, R., MUTAQIEN, Z., PA- 
NGALA, S. R., RAMADHANIL, PRAYOTO, 
ANTUN PUSPANTI, A., QIROM, M. A., 
ROZAK, A. H., SADILI, A., SAMSOEDIN, I., 
SULISTYAWATI, E., SUNDARI, S., SUTO- 
MO, TAMPUBOLON, A. P.  &  WEBB, C. O. 
2019. Opportunities and challenges for an 
Indonesian forest monitoring network. A nnals 
of Forest Science 76: 54. DOI: 10.1007/s13595-
019-0840-0. 

BLOEMBERGEN, S. 1952. A critical study in the 
complex-polymorphous genus Schima (Thea- 
ceae). Reinwardtia 2(1): 133‒183.  

CONNELL, J. H. 1978. Diversity in tropical rain 
forests and coral reefs-high diversity of trees 
and corals is maintained only in a non-
equilibrium state. Science 199: 1302–1310. 

COX, W. G. 1967. Laboratory Manual of General 
Ecology. 7

th
 ed. Wm. C. Brown Publishing Ltd. 

Co., Dubuque. 
DOCTERS VAN LEEUWEN, W. M. 1933. 

Biology of plants and animals occurring in the 
higher parts of Mount Pangrango-Gede in West 
Java. V erh. Kon. A kad. W et. A ’dam, Afd. II, 
31: 1‒278.   

DJARWANINGSIH, T., SUPRIATNA, A. & 
AMIR, M. 2010. Flora Cagar A lam Gunung 
Tukung Gede, Serang-Banten. Jakarta. LIPI 
press.  

EFENDI, M., CAHYANTO, T.  & RAMDAN, D. 
M. 2022. Keanekaragaman tumbuhan berbiji di 
Cagar Alam Gunung Tilu. Jawa Barat. Jurnal 
Penelitian Hutan & Konservasi Alam 19(1): 1‒
31. 

GREIG-SMITH, P. 1983. Quantitative Plant 
Ecology. Blackwell Scientific Publication. 
Oxford. 

GUNAWAN, W., BASUNI, S., INDRAWAN,  A., 
PRASETYO, L. B. & SOEDJITO, H. 2011. 

Analysis of vegetation structure and composi- 
tion toward restoration efforts of Gunung Gede 
Pangrango National Park. Journal of Natural 
Resources and Environmental Management 1
(2):  93‒105.  

HELMI, N., KARTAWINATA, K., SAMSOE- 
DIN, I. 2009. An undescribed lowland natural 
forest at Bodogol, at the Gunung Gede-
Pangrango National Park, Cibodas Biosphere 
Reserve, West Java, Indonesia. Reinwardtia 13
(1): 33‒44. 

HILWAN, I. & RAHMAN, S. N. A. 2021.  
Penyebaran jenis puspa (Schima wallichii 
(DC.) Korth.) di Resort Kawah Ratu, Taman 
Nasional Halimun Salak, Jawa Barat. Jurnal 
Silvikultur Tropika 12(2): 86‒94. 

ISMAIL, ERMAYANTI & HASIBUAN, H. 
2000. Studi Keanekaragaman Flora di 
Kawasan Pusat Pendidikan Konservasi Alam 
(PPKAB), Taman Nasional Gunung Gede-
Pangrango. In: WAHYONO, E. H. & ARIO, A. 
(Eds.), Flora and Fauna: A n Inventory and 
Research Technical Practice in Bodogol 
Center of Education and Conservation. Taman 
Nasional Gunung Gede-Pangrango & 
Conservation International Indonesia 
Programme, Jakarta.  

ISTOMO &  SARI, P. N. 2019. Penyebaran dan 
karakteristik habitat jenis rasamala (A ltingia 
excelsa Noronha) di Taman Nasional Gunung 
Halimun Salak. Journal of Natural Resources 
and Environmental Management 9(3): 608‒
625. DOI: 10.29244/jpsl.9.3.608-625.  

JUNAEDI, D. I., HANDAYANI, A., SUHEN- 
DRI, Y. & RUSTANDI. 2020. Sub-population 
survey of Dipterocarpus retusus Blume in 
Mount Gede Pangrango National Park. Prosi- 
ding Earth and Environmental Science. IOP 
Publishing. DOI: 10.1088/1755-1315/457/1/ 
012003. 

JUNGHUHN, F. 1845. Topographische und Na- 
turwissenschaftliche Reisen durch Java: 
Magdeburg.  

KARTAWINATA, K. 1977. Structure and 
composition of the forest in some nature 
reserves in West Java, Indonesia.  In: LIPI, 
Papers Presented at the 13

th
 Pacific Science 

Congress, Vancouver, Canada-1975. LIPI. Pp. 
59‒68. 

KARTAWINATA, K., SAMSOEDIN, I., 
HERIYANTO, M. N. & AFRIASTINI, J. J. 
2004. A tree species inventory in a one-hectare 
plot at the Batang Gadis National Park, North 
Sumatra, Indonesia. Reinwardtia 12(2): 145‒
157.  

KARTAWINATA, K., PURWANINGSIH, PAR- 
TOMIHARDJO, T., YUSUF, R., ABDUL- 
HADI, R. & RISWAN, S. 2008. Floristics and 
structure of a lowland dipterocarp forest at 
Wanariset Samboja, East Kalimantan, Indone- 

http://dx.doi.org/10.29244/jpsl.9.3.608-625


 

  REINWARDTIA  18                                [VOL.22 

sia. Reinwardtia 12(4): 301–323. 
KARTAWINATA, K. 2013. Diversitas Ekosis- 

tem Alami Indonesia. Yayasan Obor & LIPI 
Press. Jakarta.   

KARTAWINATA, K. & SUDARMONOWATI, 
E. 2022. Keragaman V egetasi A lami Cagar 
Biosfer Cibodas. BRIN. Jakarta. 

KERSHAW, K. A. 1964. Quantitative and Dyna- 
mic Ecology. Edward Arnold Publishing Co. 
Ltd. London.  

LUDWIG, J. A. & REYNOLDS, J. F. 1988. 
Statistical Ecology: A Primer on Methods and 
Computing. Wiley-Interscience Pub., New 
York. 

MAY, R. M., LAWTON, J. H. & STORK, N. E. 
1995. Assesing Extinction Rates. In: Extinction 
Rates. In: LAWTON, J. H. & MAY, R. M. 
(Eds.). Oxford. University Press. Oxford. Pp. 1
‒24.  

MEIJER, W. 1959. Plant sociological analysis of 
montane rain forest near Tjibodas, West Java. 
Acta Botanica Neerlandica 8: 277‒291. 

MIRMANTO, E. 2014. Fitososiologi hutan 
pegunungan di lereng tenggara Gunung Salak. 
Jurnal Biologi Indonesia 10(1): 27‒38.  

MUELLER-DOMBOIS, D. & ELLENBERG, H. 
1974. Aims and Methods of Vegetation 
Ecology.  John Wiley & Sons, New York.  

MUELLER-DOMBOIS, D. & ELLENBERG, H. 
2016. Ekologi Vegetasi: Tujuan dan Metode. 
KARTAWINATA, K. & ABDULHADI, R 
(alih bahasa). LIPI Press & Yayasan Pustaka 
Obor Indonesia, Jakarta.  

OGAWA, H., YODA, K., OGINO, T., SHIDEI, 
D., RATNAWONGSE & APA SUTAYA, C. 
1965. Comparative ecological study on three 
main types in S.E. Asia of forest vegetation in 
Thailand. structure and floristic composition. 
Nature and Life in Southeast Asia 4: 13‒48. 

OOSTING, H. J. 1956. The Study of Plant 
Communities – An Introduction to Plant Eco-
logy. 2

nd
 Eds. W. H. Freeman and Company. 

San Francisco  
PIMM, S. L. & RAVEN, P. 2000. Biodiversity: 

extinction by numbers. Nature 403: 843‒845. 
DOI: 10.1038/35002708. 

PLOTKIN, J. B., POTTS, M. D., LESLIE, N., 
MANOKARAN, N., LAFRANKIE, J. & 
ASHTON. P. S. 2000. Species-area curves, 
spatial aggregation, and habitat specialization 
in tropical forests. J. Theor. Biol. 207: 81‒99. 

PURWANINGSIH. 2004. Sebaran ekologi Dipte-
rocarpaceae di Indonesia. Biodiversitas 5(2): 
89‒95. 

PURWANINGSIH & YUSUF, R. 2008. Analisa 
vegetasi hutan pegunungan di Taman Nasional 
Gunung Ciremai, Majalengka, Jawa Barat. 
Jurnal Biologi Indonesia 4(5): 385‒399. 

PURWANINGSIH & POLOSAKAN. R. 2016. 
Keanekaragaman jenis dan sebaran Fagaceae di 
Indonesia. Ethos (Jurnal Penelitian dan Pe-

ngabdian Masyarakat) 4(1): 85‒92. 
PURWANINGSIH, POLOSOKAN, R., YUSUF, 

R. & KARTAWINATA, K. 2017. Phytosoci-
ological study of the montane forest on the 
south slope of Mt. Wilis, East Java. Indonesia. 
Reinwardtia 16(1): 31‒45.  

RAHMAH, KARTAWINATA, K., NISYAWATI, 
WARDHANA, W. & NURDIN, E. 2016. Tree 
species diversity in the lowland forest of the 
core zone of the Bukit Dua Belas National Park, 
Jambi, Indonesia. Reinwardtia 15(1): 11‒26. 

RISWAN, S. 1987. Structure and floristic compo-
sition of a mixed Dipterocarp forest at Lempa-
ke, East Kalimantan. In: Kostermans, A. J. G. 
H. (Ed). Proceedings of the Third Round Table 
Conference on Dipterocarps, Universitas Mula-
warman, Samarinda, 1985. UNESCO Regional 
Office for Science and Technology for South 
East Asia, Jakarta. Pp. 16‒20. 

ROLLET, B., SUKARDJO, S. & NOERTA. 1976. 
Preliminary Analysis of A Survey in The Lower 
Montane Rainforest of Cibodas. UNESCO 
Regional Office for Science and Technology for 
South East Asia, Jakarta (Unpublished Report).  

ROZAK, A. H., ASTUTIK,  S., MUTAQIEN, Z., 
WIDYATMOKO, D. & SULISTYAWATI, E. 
2016. Kekayaan jenis pohon di hutan Taman 
Nasional Gunung Gede Pangrango, Jawa Barat. 
Jurnal Penelitian Hutan dan Konservasi Alam 
13(1): 1‒14. 

SADILI, A. 2014. Dinamika vegetasi pada petak 
permanen rasamala (A ltingia excelsa Noronha) 
di Bodogol, Taman Nasional Gunung Gede 
Pangrango, Jawa Barat. Jurnal Biologi 
Indonesia 10(1): 1‒9.  

SADILI, A. & ALHAMD, L. 2012. Struktur dan 
komposisi tumbuhan pada hutan rasamala 
(Altingia excelsa Noronha) di Bodogol, Taman 
Nasional Gunung Gede Pangrango, Jawa Barat. 
Jurnal Teknik Lingkungan (Edisi Khusus “Hari 
Bumi”). April 2012. 61–66. 

SADILI, A. KARTAWINATA, K., SOEDJITO, H. 
& SAMBAS, E. N. 2018. Tree species diversity 
in a pristine montane forest previously un-
touched by human activities in Foja Mountains, 
Papua, Indonesia. Reinwardtia 17(2): 133‒154. 

SADILI, A., KARTAWINATA, K., KARTONE-
GORO, A., SOEDJITO, H. &  SUMADIJAYA, 
A. 2008. Floristic composition and structure of 
subalpine summit habitats on Mt. Gede-Pang-
rango complex, Cibodas Biosphere Reserve, 
West Java, Indonesia. Reinwardtia 12(5): 391–
404. 

SAMSOEDIN, I.,  SUKIMAN, H., WARDANI M. 
& HERIYANTO, N. M. 2016. Pendugaan 
biomassa dan kandungan karbon kayu afrika di 
Kabupaten Sukabumi, Jawa Barat. Jurnal 
Penelitian Hutan Tanaman 13(1): 73‒81. 

SCHABEL, H. G.  & LATIFF, A. 1997. Maesopsis 
eminii Engler. In:  FARIDAH HANUM, I. &  
VAN DER MAESEN, L. G. J. (Eds.). Plant 



SADILI et al.: Variation composition and structure of natural lowland forest 

 

2023]                                    19 

Resources of Southeast Asia. No. 11. Auxiliary 
Plants. Backhuys Publishers, Leiden. Pp. 184‒
187. 

SEIFRIZ, W. 1923. The altitudinal distribution of 
plants on Mt. Gedeh, West Java. Bulletin of the 
Torrey Botanical Club 50: 283–306.  

SEIFRIZ, W. 1924. The altitudinal distribution of 
lichens and moses on Mt. Gedeh, Java. The 
Journal of Ecology 12(2): 307–313.  

SHEIL, D. & BURSLEM, D. F. R. P. 2003. 
Disturbing hypotheses in tropical forests. 
Trends in Ecology & Evolution 18(1): 18–26. 

SHEIL, D., KARTAWINATA, K., SAMSOEDIN, 
I., PRIYADI, H. & AFRIASTINI, J. J. 2010. 
The lowland forest tree community in Malinau, 
Kalimantan (Indonesian Borneo): Results from 
a one-hectare plot. Plant Ecology and Diversity 
3: 59‒66. 

SLIK, J. W. F., BERNARD, C. S., BREMAN, F. 
C., VAN BEEK, M., SALIM, A. & SHEIL, D. 
2008. Wood density as a conservation tool: 
quantification of disturbance and identification 
of conservation priority areas in tropical forests. 
Conservation Biology 22: 1299–1308. 

SRIJANTO, A. 1987. Pengaruh Rumpang Terha-
dap Permudaan Alam dan Struktur Tegakan di 
Hutan Hujan Tropika Pegunungan. Fakultas 
Pasca Sarjana, IPB. Bogor. [Thesis]. 

SUNARNO, B. &  RUGAYAH. 1992. Flora 
Taman Nasional Gede Pangrango. Herbarium 
Bogoriense, Puslitbang Biologi – LIPI. Bogor.  

SUNARYO, UJI, T. & TIHURUA, E. F. 2012.  
Jenis tumbuhan asing invasif mengancam 
ekosistem di Taman Nasional Gunung Gede 
Pangrango, Resort Bodogol, Jawa Barat.  
Berkala   Hayati 17: 147–152.  

SURYANTI, T. 2006 Ekologi Lanskap dalam 
Manajemen dan Konservasi Habitat Owa Jawa 
(Hylobates moloch Audebert 1797) di Taman 
Nasional Gunung Halimun. Universitas Indone-
sia. Depok. [Dissertation]. 

TRETHOWAN, L. A.,  EISERHARDT, W. L.,  
GIRMANSYAH, D., KINTAMANI, E., M. A.,  
UTTERIDGE, T. M. A. & BREARLEY, F. Q. 
2020. Floristics of forests across low nutrient 
soils in Sulawesi, Indonesia. Biotropica 52(6): 
1309–1318. DOI: 10.1111/btp.12838. 

VAN STEENIS, C. G. G. J. & SCHIPPERS-
LAMMERTSE, A. F. 1965.  Concise plant geo-

graphy of Java. In: BACKER C. A. & 
BAKHUIZEN VAN DEN BRINK Jr, R. C. 
Flora of Java. Vol. 2. Noordhoff, Groningen. 
Pp. 3‒72. 

VAN STEENIS, C. G. G. J., HAMZAH, A. & 
TOHA, M. 1972.  Mountain Flora of Java. E. J. 
Brill, Leiden. 

VAN STEENIS, C. G. G. J., HAMZAH,  A. &  
TOHA, M.  2006.  Flora pegunungan Jawa. 
KARTAWINATA, J. A. (Penerjemah), Pusat 
Penelitian Biologi-LIPI. 

VINK, W.  1957. Hamamelidaceae. In: VAN 
STEENIS, C. G. G. J. (Ed.), Flora Malesiana I 
5:  363‒379. 

WIHERMANTO. 2004. Dispersi asosiasi dan 
status populasi tumbuhan terancam punah di 
zona sub montana dan montana Taman Nasional 
Gunung Gede-Pangrango. Biodiversitas  5(1):  
17‒22. 

YAMADA, I. 1975. Forest ecological studies of 
the mountain forest of Mt. Pangrango, West 
Java. I. Stratification and floristic composition 
of the montane rain forest near Cibodas. The 
Southeast Asian Studies 13: 402‒426.  

YAMADA, I. 1976a. Forest ecological studies of 
the mountain forest of Mt. Pangrango, West 
Java. II. Stratification and floristic composition 
of the forest vegetation of the higher part of Mt. 
Pangrango. The Southeast A sian Studies 13: 
513‒534. 

YAMADA, I. 1976b. Forest ecological studies of 
the mountain forest of Mt. Pangrango, West 
Java. III. Litter fall of the tropical montane 
forest near Cibodas. The Southeast A sian 
Studies 14: 194‒229. 

YAMADA, I. 1977. Forest ecological studies of 
the mountain forest of Mt. Pangrango, West 
Java. IV. Floristic along the altitude. The 
Southeast Asian Studies 15: 226‒254. 

YUSUF, R. 2004. Keanekaragaman jenis pohon 
pada hutan terganggu di daerah koridor Taman 
Nasional Gunung Halimun. Berita Biologi 7(1): 
41‒50. 

ZUHRI, M. & MUTAQIEN, Z. 2011.  Perubahan 
komposisi vegetasi dan struktur pohon pada plot 
Meijer (1959-2009) di Gunung Gede, Jawa 
Barat. Buletin Kebun Raya 14(1): 37‒45.    

 
 



 

  REINWARDTIA  20                                [VOL.22 

Appendix 1. Species present in the plots of the lowland natural forests at Bodogol GGPNP with their 
parameters on Density  (D=trees/ha),  Basal area (BA= m

2
), and Importance Value (IV= %)  The NSR and 

NH are considered lowland species   following Backer & Bakhuizen van den Brink (1963-1968).   
Note; L= lowland; M=Montane; A=Alien; NSR=Non Sunarno & Rugayah (1992); NH=Non Helmi et al. 
(2009):  

 
 

No  

 
 

Species  

 
 

Family  

P1CS  P2CS  P3CP   
 

Note  D 
(Ha) 

BA 
(m2/
ha) 

IV (%) D 
(Ha) 

BA 
(m2/
ha) 

IV (%) D 
(Ha) 

BA 
(m2/
ha) 

IV (%) 

1 2 3 4 5 6 7 8 9 10 11 12 13 

GROUP 1             

1 Maesopsis eminii 
Engl.  

Rham. 69 2.68 56.46 7 0.69 6.48  51 6.54 55.93 L.M.A.N
H 

2 Syzygium 
acuminatissimum 
(Blume) DC.  

Myrt.  19 1.20 23.10 61 3.81 43.67 21 1.46 17.15 M.NH 

3 Lithocarpus 
pseudomoluccus 
(Blume) Rehder 

Fag.  16 1.41 21.32 22 1.85 19.40 13 0.49 9.34 M.NH 

4 Lithocarpus 
korthalsii (Endl.) 
Soepadmo 

Fag.  11 1.55 18.74 25 2.32 22.68 16 0.78 1.84 M.NH 

5 Castanopsis 
tungurut (Blume) 
A.DC. 

Fag.  12 0.59 13.50 4 0.26 3.33 11 0.34 7.46 M.NH 

6 Neoscortechinia 
kingii (Hook.f.) 
Pax & K.Hoffm  

Euph.  10 0.27 9.55 17 0.72 11.38 4 0.10 2.81 M.NSR.N
H 

7 Schima wallichii 
(DC.) Korth.  

Thea.  6 0.64 9.03 11 2.72 16.38 20 1.43 16.77 L.M.NH 

8 Pometia pinnata 
J.R.Forst. & 
G.Forst.  

Sapin.  7 0.34 8.09 8 0.22 5.40 7 0.41 6.09 L.M.NSR.
NH 

9 Macaranga 
denticulata 
(Blume) 
Müll.Arg.  

Euph. 9 0.17 7.56 12 0.27 7.01 12 0.23 6.88 M.NSR.N
H 

10 Nephelium 
juglandifolium 
Blume  

Sapin. 6 0.29 6.90 25 1.53 18.58 4 0.22 3.07 M.NSR.N
H. 

11 Ficus 
padana  Burm.f. 

Mor. 7 0.15 6.25 1 0.02 0.66 1 0.10 1.07 L.M.NSR.
NH 

12 Strobocalyx 
arborea (Buch.-
Ham.) Sch.Bip.  

Astera. 3 0.24 4.17 1 0.01 0.61 2 0.04 1.39 M.NH 

13 Knema 
cinerea (Poir.) 
Warb.  

Myrist. 4 0.08 3.80 2 0.21 1.93 6 0.33 5.13 L.M.NSR.
NH 

14 Melicope latifo-
lia (DC.)
T.G.Hartley  

Rut. 4 0.05 3.60 3 0.18 2.44 4 0.25 3.55 M.NSR 



SADILI et al.: Variation composition and structure of natural lowland forest 

 

2023]                                    21 

15 Sandoricum 
koetjape 
(Burm.f.) Merr.  

Melia. 1 0.36 3.42 12 0.36 8.01 8 0.47 6.68 L.M.NSR.
NH 

16 Gynotroches 
axillaris Blume  

Rhiz. 3 0.10 3.17 7 0.35 5.08 4 0.09 2.80 M 

17 Persea venosa 
Nees & Mart.  

Laur.  2 0.15 2.68 1 0.03 0.70 1 0.12 1.16 M.NH 

18 Cecropia 
pachystachya 
Trécul 

Urt.  3 0.03 2.65 4 0.04 1.53 1 0.01 5.44 L.A.NH 

19 Dalrympelea 
sphaerocarpa 
(Hassk.) Nor-
Ezzaw.  

Staph  3 0.08 2.57 8 0.45 6.08 1 0.01 0.64 M 

20 Myristica sp.  Myrist.  2 0.12 2.48 9 0.16 5.78 1 0.02 0.66 M.NH 

21 Aglaia elliptica 
(C.DC.) Blume  

Melia.  2 0.09 2.25 2 0.22 2.02 5 0.54 5.56 M.NSR.N
H 

22 Litsea resinosa 
Blume  

Laur.  2 0.04 1.87 7 0.24 4.98 6 0.11 4.05 M.NH 

23 Mallotus 
paniculatus 
(Lam.) Müll.Arg.  

Euph.  2 0.03 1.85 1 0.04 0.75 3 0.14 2.45 M.NSR 

24 Symplocos 
acuminata 
(Blume) Miq.  

Sympl.  2 0.02 1.77 2 0.12 1.61 6 0.08 3.28 M.NH 

25 Dendrocnide 
stimulans (L.f.) 
Chew  

Urt.  2 0.02 1.30 9 0.17 5.82 5 0.05 3.17 M.NH 

26 Quercus 
gemelliflora 
Blume  

Fag.  1 0.06 1.25 1 0.03 0.70 1 0.01 0.66 M.NSR.N
H 

27 Antidesma 
velutinosum 
Blume  

Euph.  1 0.02 0.97 1 0.09 0.93 1 0.01 0.64 L.NGPF 

28 Castanopsis 
argentea (Blume) 
A.DC.  

Fag.  1 0.02 0.96 4 0.15 2.27 2 0.42 3.22 M.NH 

29 Oreocnide 
rubescens 
(Blume) Miq.  

Urt. 1 0.01 0.88 9 0.13 4.73 7 0.12 4.06 L.M 

GROUP 2              

30 Beilschmiedia 
madang (Blume) 
Blume  

Laur.  7 0.31 7.42 6 0.22 4.33    M.NSR 

31 Syzygium 
koghianum 
Petitm. & Bonati  

Myrt.  6 0.21 6.35 4 0.13 2.81    M.NH 

32 Astronia 
macrophylla 
Blume  

Melast.  3 0.19 3.81 1 0.07 0.87    M.NSR 

33 Lithocarpus 
pallidus (Blume) 
Rehder  

Fag.  2 0.10 2.35 5 0.69 5.32    M.NH 



 

  REINWARDTIA  22                                [VOL.22 

34 Glochidion 
rubrum  Blume 
var. rubrum  

Euph.  2 0.05 1.96 3 0.04 1.89    M.NSR.N
H 

35 Unidentified Uni-
dent. 

2 0.04 1.90 2 0.02 0.63    M.NH 

36 Litsea ligustrina 
(Nees) Fern.-Vill.  

Laur. 1 0.08 1.40 1 0.16 1.20    M.NH 

37 Ficus ribes 
Reinw. ex Blume  

Mor. 1 0.01 0.87 3 0.03 1.82    L.M 

38 Urophyllum 
arboreum 
(Reinw. ex 
Blume) Korth.  

Rub. 1 0.01 0.87 3 0.03 1.84    M.NSR 

GROUP 3              

39 Prasoxylon 
alliaceum 
(Blume) M. 
Roem.  

Melia. 6 0.25 6.60    1 0.02 0.66 M.NH 

40 Polyspora 
excelsa (Blume) 
Orel, Peter G. 
Wilson, Curry & 
Luu  

Thea. 3 0.06 2.83    2 0.03 1.30 M 

41 Barringtonia 
racemosa (L.) 
Spreng  

Lecyth.  3 0.04 2.27    1 0.03 0.71 M.NSR.N
H 

42 Machilus rimosa 
Blume  

Euph.  2 0.05 1.98    3 0.05 2.01 M.NH 

43 Lannea 
coromandelica 
(Houtt.) Merr.  

Anac. 1 0.13 1.75    3 0.12 2.36 M.NSR.N
H 

44 Cinnamomum sp.  Laur. 1 0.11 1.57    2 0.03 1.00 M.NH 

45 Litsea noronhae 
Blume  

Laur. 1 0.02 0.97    1 0.08 0.97 M.NH 

GROUP 4              

46 Chisocheton 
ceramicus Miq.  

Melia.    2 0.97 5.05 3 0.07 1.80 M.NSR.N
H 

47 Didymocheton 
nutans Blume  

Melia.    14 0.79 9.94 7 0.42 5.83 M 

48 Syzygium 
antisepticum 
(Blume) Merr. & 
L.M.Perry   

Myrt.     13 0.37 7.67 31 1.24 20.05 M. NH 

49 Symplocos 
acuminata 
(Blume) Miq.  

Sympl.     8 0.18 5.29 9 0.12 5.23 M.NSR.N
H 

50 Myrsine hasseltii 
Blume ex. Scheff.  

Myrs.     7 0.11 4.44 1 0.11 1.13 M.NH 

51 Elaeocarpus 
angustifolius 
Blume  

Elaeoc.     2 0.71 4.00 2 0.06 1.48 M.NSR.N
H 



SADILI et al.: Variation composition and structure of natural lowland forest 

 

2023]                                    23 

52 Lithocarpus 
korthalsii (Endl.) 
Soepadmo  

Fag.     3 0.52 3.82 1 0.02 0.70 M.NH 

53 Knema laurina 
(Blume) Warb.  

Myrist.     3 0.23 2.35 1 0.03 0.72 L.NSR.N
H 

54 Nauclea subdita 
(Korth.) Steud.  

Rub.    3 0.14 2.28 3 0.30 3.20 M.NSR.N
H 

55 Cinnamomum 
parthenoxylon 
(Jack) Meisn. 

Laur.    3 0.11 2.15 2 0.19 2.08 M.NSR.N
H 

56 Ostodes 
paniculata Blume  

Euph.    1 0.08 0.89 1 0.06 0.87 M.NH 

57 Ficus tinctoria 
subsp. gibbosa 
(Blume) Corner   

Mor.    1 0.04 0.73 3 0.03 1.57 M.NSR.N
H 

58 Ficus fistulosa 
Reinw. ex Blume  

Mor.    1 0.03 0.70 3 0.03 1.93 L.M 

59 Mangifera 
laurina Blume  

Anac.    1 0.01 0.61 1 0.06 0.90 M.NSR.N
H 

60 Mangifera sp.  Anac.    1 0.01 0.61 1 0.17 1.40 M.NH 

GROUP 5              

61 Neonauclea 
lanceolata 
(Blume) Merr.  

Rub. 7 0.32 7.98       M 

62 Myrsine affinis 
A.DC.  

Myrs. 5 0.11 4.39       M 

63 Donella 
lanceolata 
(Blume) Aubrév  

Sapot. 1 0.37 3.50       M.NSR.N
H 

64 Litsea 
brachystachya 
(Blumea) Fern.-
Vill.  

Laur. 3 0.10 3.16       M.NSR.N
H 

65 Liquidambar 
excelsa 
(Noronha) Oken  

Ham. 3 0.07 2.89       M 

66 Actinodaphne 
glomerata 
(Blume) Nees  

Laur. 2 0.07 2.10       M.NSR.N
H 

67 Semecarpus 
heterophylla 
Blume  

Anac. 2 0.07 1.87       L.NSR.N
H 

68 Adina trichotoma 
(Zoll. & Moritzi) 
Benth. & Hook.f. 
ex B.D.Jacks  

Rub. 1 0.04 1.52       L.NSR.N
H 

69 Litsea glutinosa 
(Lour.) C.B.Rob.  

Laur. 1 0.04 1.11       M.NSR.N
H 

70 Litsea sp.  Laur. 1 0.04 0.90       M.NH 

71 Gironniera 
subaequalis 
Planch.  

Cann. 1 0.04 0.89       M.NSR.N
H 



 

  REINWARDTIA  24                                [VOL.22 

72 Saurauia 
bracteosa DC.  

Acthin. 1 0.03 0.89       M.NH 

73 Symplocos 
fasciculata Zoll.  

Sympl. 1 0.01 0.88       M 

74 Ficus 
grossularioides 
Burm.f.  

Mor. 1 0.01 0.87       M.NH 

GROUP 6              

75 Spondias 
pinnata (L.f.) 
Kurz  

Anac.    3 0.98 5.65    M.NSR.N
H 

76 Flacourtia sp.  Flacour
. 

   5 0.13 3.38    M.NH 

77 Ficus 
glandulifera 
(Miq.) Wall. ex 
King  

Mor.    2 0.32 2.45    M.NSR.N
H 

78 Sterculia 
chrysodasys 
Miq.   

Ster.    2 0.03 1.26    M.NSR.N
H 

79 Diospyros 
frutescens 
Blume  

Ebena.    1 0.09 0.94    L.NGPF 

80 Artocarpus 
elasticus Reinw. 
ex Blume  

Mor.    1 0.05 0.94    L.M.NSR.
NH 

81 Podocarpus 
neriifolius 
D.Don  

Pod.    1 0.05 0.76    M.NH 

82 Magnolia 
macklottii 
(Korth.) Dandy 

Mag.    1 0.04 0.73    M.NSR.N
H 

83 Litsea 
sphaerocarpa 
Blume  

Laur.    1 0.02 0.66    M.NSR 

84 Leptospermum 
polygalifolium 
Salisb.  

Laur.    1 0.02 0.64    M.NSR.N
H 

           GROUP 7    

85 Calliandra 
houstoniana 
var. calothyrsus 
(Meisn.) Barne-
by 

Leg.       28 0.33 14.18 L.A.NH 

86 Decaspermum 
fruticosum 
J.R.Forst. & 
G.Forst.  

Myrt.       3 0.40 3.72 M.NH 

87 Swietenia 
mahagoni (L.) 
Jacq.  

Melia.       4 0.31 3.55 L.A.NH 



SADILI et al.: Variation composition and structure of natural lowland forest 

 

2023]                                    25 

88 Falcataria falca-
ta (L.) Greuter & 
R.Rankin 

Leg.        3 0.35 3.45 L.A.NH 

89 Pinus merkusii 
Jungh. & de 
Vriese  

Pin.       4 0.11 2.90 L.A.NH 

90 Ficus variegata 
Blume  

Mor.       4 0.08 2.39 L.N.H 

91 Cryptocarya 
ferrea Blume 

Laur.       3 0.08 2.14 L.N.H 

92 Bellucia pentam-
era Naudin 

Melast.       3 0.05 1.99 M.A.NH 

93 Quercus lineata 
Blume  

Fag.       2 0.13 1.80 M.NSR.N
H 

94 Artocarpus 
heterophyllus 
Lam. 

Mor.       2 0.09 1.62 L.A.NH 

95 Garcinia 
cambogioides 
(Murray) 
Headland var. 
cambogioides  

Clusia.       2 0.06 1.45 M.NSR.N
H 

96 Syzygium sp.  Myrt.       1 0.15 1.32 M.NH 

97 Blumeodendron t
okbrai (Blume) 
Kurz    

Euph.       1 0.05 0.82 L.M.NSR.
NH 

98 Dracaena 
angustifolia 
(Medik.) Roxb.   

Aspar.       1 0.04 0.79 L.A.NH 

99 Ficus virens 
Aiton var. virens  

Mor.       1 0.04 0.78 M.NSR.N
H 

100 Magnolia 
sumatrana var. gl
auca (Blume) 
Figlar & Noot. 

Mag.       1 0.03 0.72 M.NH 

101 Aporosa 
spaeridophora 
Merr. 

Euph.       1 0.02 0.71 M.NSR.N
H 

102 Pavetta montana 
Reinw. ex Blume  

Rub.       1 0.01 0.65 M.NSR.N
H 

103 Homalanthus 
populneus (Geisel
er) Kuntze  

Euph.       1 0.01 0.64 L.M.NH 

104 Elaeocarpus 
angustifolius Blu
me 

Elaeoc.       1 0.01 0.63 M.NH 

105 Sterculia sp.  Ster.       1 0.01 0.63 M.NH 

106 Magnolia 
montana (Blume) 
Figlar 

Mag.       1 0.01 0.62 L.M.NH 

107 Neesia 
altissima (Blume) 
Blume   

Bomb.       1 0.01 0.62 M.NSR 



 

  REINWARDTIA  26                                [VOL.22