LIPI A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY 12(4) REINWARDTIA A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY Vol. 12(4): 261 - 337, 31 March 2008 Editors ELIZABETH A. WIDJAJA, MIEN A. RIFAI, SOEDARSONO RISWAN, JOHANIS P. MOGEA Correspondece on The Reinwardtia journal and subscriptions should be addressed to HERBARIUM BOGORIENSE, BIDANG BOTANI, PUSAT PENELITIAN BIOLOGI - LIPI, BOGOR, INDONESIA FLORISTICS AND STRUCTURE OF A LOWLAND DIPTEROCARP FOREST AT WANARISET SAMBOJA, EAST KALIMANTAN, INDONESIA Received November 3, 2007; accepted January 20, 2008. KUSWATA KARTAWINATA Herbarium Bogoriense, Research Center for Biology - LIPI, Cibinong, Bogor, Indonesia; UNESCO Jakarta Office, Jakarta, Indonesia; Botany Department, Field Museum, Chicago, Illinois 60605-2496, USA. E-mail: kkjak@indo.net.id (author for correspondence). PURWANINGSIH, TUKIRIN PARTOMIHARDJO, RAZALI YUSUF, ROCHADI ABDULHADI & SOEDARSONO RISWAN Herbarium Bogoriense, Research Center for Biology - LIPI, Cibinong, Bogor, Indonesia ABSTRACT. KARTAWINATA, K., PURWANINGSIH, PARTOMIHARDJO, T., YUSUF, R., ABDULHADI, R. & RISWAN, S. 2008. Floristics and structure of a lowland dipterocarp forest at Wanariset Samboja, East Kalimantan, Indonesia. Reinwardtia 12(4): 301– 323. — The results of a floristic inventory of trees with DBH < 10 cm in a lowland dipterocarp forest in East Kalimantan show that 553 species of 192 genera in 62 families, represented by 5847 individuals, with the total basal area of 350.01 m2 occurred in the plot of 10.5 hectare sampled. The two leading families in terms of number of species were Myrtaceae and Lauraceae while according to the total sum of importance values for families were Dipterocarpaceae and Euphorbiaceae. The forest had the second highest species richness in Indonesia. We recorded 25 species of dipterocarps , constituting 4.53 % of total species with basal area of 85.53 m2. or 24.44 % of the total basal area in the plot. Shorea laevis (a diptererocarp) and Pholidocarpus majadum, (a palm) were the most prominent species occurring here and were two of the ten leading species. The species-area curve rose steadily even up to an area of 10.5 hectare, with a very slight indication of levelling off at about five hectares, indicating high heterogeneity of the forest. Three largest trees were Shorea pauciflora (DBH = 196.50 cm) Dipterocarpus cornutus (DBH = 170.90 cm), and Alstonia scholaris (DBH = 170.00 cm) , Some species could be identified as fruit trees and medicinal plants. Key words: Composition, structure, dipterocarp forest, species richness, East Kalimantan REINWARDTIA Vol 12, Part 4, pp: 301 - 323 301 mmkkkmmkkkk KARTAWINATA, K., PURWANINGSIH, PARTOMIHARDJO, T., YUSUF, R., ABDULHADI, R. & RISWAN, S. 2008. Floristik dan struktur hutan pamah dipterocarpa di Wanariset Samboja, Kalimantan , Indonesia. Reinwardtia 12(4): 301– 323. — Hasil inventarisasi pohon dengan DBH (diameter setinggi dada) > 10 cm menunjukkan bahwa 553 spesies dari 192 marga dalam 62 suku, yang diwakili oleh 5847 batang pohon dengan luas bidang dasar total 350.01 m2, terdapat dalam plot cuplikan 10.5 hektare. Berdasarkan jumlah spesies dua suku utama adalah Myrtaceae dan Lauraceae, sedangkan menurut nilai penting suku adalah Dipterocarpaceae dan Euphorbiaceae. Hutan di sini mempunyai kekayaan spesies pohon tertinggi kedua di Indonesia. Spesies Dipterocarpaceae tercatat 25 spesies atau 4.53 % dari jumlah total spesies dengan luas bidang dasar 85.53 m2 atau 24.44 % dari luas bidang dasar total seluruh pohon dalam petak Shorea laevis (diptererokarpa) dan Pholidocarpus majadum ( palem) adalah spesies pohon paling menonjol di sini dan merupakan dua dari sepuluh jenis pohon utama. Kurva spesies-luas menanjak tajam bahkan sampai 10.5 hektare, dan agak mendatar pada luasan lima hektare, yang menunjukkan heterogenitas hutan yang tinggi. Tiga pohon terbesar adalah Shorea pauciflora (DBH = 196.50 cm) Dipterocarpus cornutus (DBH = 170.90 cm), dan Alstonia scholaris (DBH = 170.00 cm) Beberapa jenis dapat diidentifikasi sebagai pohon buah-buahan dan tumbuhan obat Kata kunci: Komposisi, struktur, hutan dipterokarpa, kekayaan jenis, Kalimantan Timur. INTRODUCTION Borneo is widely acknowledged as one of the most important centers of plant diversity in the world as well as the center of distribution and species diversity for a large number of families and genera within the Malesian archipelago (Whitmore, 1986; Soepadmo, 1995). The most widespread forest ecosystem in Borneo is the mixed dipterocarp forest, mainly characterised by a 40-60 m tall canopy dominated by an association of species of the Dipterocarpaceae family. This forest shows the greatest number of species of any rain forest ecosystem in Malesia (Whitmore, 1986; Philips et al., 1994). Mixed dipterocarp forests are also one of the most productive in the tropics and have been extensively logged during the last 30 years. Harvesting rates range from 80 to100 m3 ha-1 whereas in other parts of the tropics they do not exceed 30 to 50 m3 ha-1 (Sist, 2000). In Kalimantan, most of the lowland dipterocarp forests have been heavily logged and now the hill forests of the interior constitute the remaining primary forest and the main source of timber. Current knowledge of the ecology, floristics, structure and species richness of the lowland mixed dipterocarps forests is mainly based on studies carried out in Sabah, Brunei and Sarawak (e.g. Burgess,1961; Ashton, 1964; Nicholson, 1965; Bruenig, 1969, 1970, 1973; Proctor et al., 1983; Baillie et al., 1987; Ashton et al., 1992; Newberry et al., 1992; Davies & Becker, 1996). For Kalimantan, the studies remain few (Kartawinata et al., 1981; Riswan, 1982; Guhardja et al., 2000; Riswan, 1987a & b; Suselo & Riswan, 1987; Partomihardjo et al., 1987; Soekardjo et al., 1990; Setiadi et al., 1996; Soedjito, 1990; Soedjito & Kartawinata, 1995; Sist & Saridan, 1999; Tanuwijaya et al., 1996). A floristic analysis of the lowland dipterocarp forests of Borneo found that on a regional scale, diversity is highest in south- east Borneo and central Sarawak with Dipterocarpaceae as the most common family followed by Euphorbiaceae and several geographically distinct floristic regions could be detected. (Slik et al. 2003). Based on data from Northern Borneo, mainly Sarawak, Brunei and Sabah, it was suggested that forests of western Borneo were significantly richer in dipterocarp species than those of eastern Borneo (Ashton, 1989; Davies & Becker, 1996). The richness of the lowland rainforest of Sarawak and Brunei might be linked to the higher climatic stability of North- western Borneo which experiences less dramatic and severe drought periods attributed to El Niño- Southern Oscillation (ENSO) events than the eastern part of the island, especially Sabah (Ashton, 1989; Goldammer et al. 1996; Walsh; 1996,) and East Kalimantan (Guhardja et al. 2000; Leighton & Wirawan 1986; ). However, Sist & Saridan (1999) recently reported that the species richness of the mixed dipterocarp forest of Berau in East Kalimantan, in spite of its eastern location and its proximity to Sabah was much higher than that of the forest of Sabah and similar to that recorded in Sarawak. Similarly, the forest at Wanariset Samboja, was reported to be the richest in Borneo and even in the world (Kartawinata et al. 1981, Whitmore 1986). These facts clearly show that our knowledge of the floristic richness and variability of the mixed dipterocarp forest of Kalimantan is still limited. During the last two decades, the forest of Kalimantan has been depleted and is disappearing at an alarming rate. The main causes are intensive and uncontrolled logging, and conversion into industrial plantations. Successive fires following land clearing affected million of hectares during El Nino events (Sunderlin and Resosudarmo, 1996; Dennis, 1999). Regeneration after fires in East Kalimantan was mainly through seedbank germination in lowland dipterocarp forest and through repsrouting in kerangas ( Riswan 1982; Riswan & Kartawinata 1988a, 1989) and dipterocarp forests. The regeneration developed better in the twice-burnt area than that in the area burnt once and the density of young trees was higher and even exceeded that of primary forest (Eichhorn 2006). Furthermore, in the burnt forest, the survival and sprouting capacity of primary forest trees and seedling establishment of pioneer trees and shrubs suppressed the establishment of non-forest species and post fire vegetation was found to be less resilient than it was presumed (Nieuwstadt 2002; Nieuwstadts et al. 2001,). Fires resulted in changes of forest structure and composition, loss of tree species diversity and invasion of pioneer species. In sum, forest recovery was not only affected by burning but also by environmental changes resulting from fire (Simbolon et al. 2005) A better knowledge of basic ecological information, including floristic composition and structure of the forest, are necessary for development of a sustainable forest management scheme. To date, there are still very few detailed descriptions and quantitative assessments of forest floristics and structure from a huge area of the Malesian rain forests (Whitmore & Sidiyasa 1986) and for Indonesia. Kartawinata (2005) reviewed the state of quantitative vegetation studies from 1960’s 302 REINWARDTIA [VOL.12 onwards and recommended a list of future actions on the subject. The Lembaga Biologi Nasional (National Biological Institute), now known as Pusat Penelitian Biologi (Research Center for Biology) noted such needs and in the mid 1970s initiated and integrated the vegetation analysis project into its overall biological research program (Kartawinata 2005). The present study was a part of this program presenting a basic descriptive account of the structure and floristic composition of a 10.5 ha permanent plot set up in a lowland mixed ditperocarp forest in Wanariset Samboja in East Kalimantan. It was intended for use by various future studies in order to provide a permanent basis for long-term study of forest dynamics and floristic changes. In this paper, analysis of the species inventory data collected in the plots will be limited to the description of the forest in terms of the main structural parameters (basal area and density), species richness, pattern of relative abundance and family composition, integrating also data from a 1.6 ha section of this plot reported earlier by Kartawinata et al. (1981) and on forest gaps by Partomihardjo et al. (1987). STUDY SITE AND METHODS The study area is located within a 500-ha research forest managed by the Wanariset (Field Research Station) of the Forest Research and Development Agency (FORDA) of the Ministry of Forestry of Indonesia at Samboja, District of Kutai Kertanegara, East Kalimantan, Indonesia at 0o 59’ Lat. and 116o 57’ Long, about 38 km north of Balikpapan (Figure 1). The physiography is undulating to flat. The forest is lowland dipterocarp forest on dryland with small patches of seasonally swampy ground. The elevation varies between 3 to about 50 m above sea level. The climate is everwet and belongs to the rainfall type A with the ratio between dry and wet months (Q) of 4.4 (Schmidt and Ferguson, 1951). The mean annual rainfall recorded at the nearest meteorological station (Balikpapan BP (Woods and Bower, 1982)) was 2425 mm for the period of 1927-1980. The mean monthly rainfall ranged from126 mm in October to 236 mm in March (Figure 1) and the mean annual number of raindays was 145 with the mean number of monthly raindays ranging from 9 to 14. The forest is situated on the Red Yellow Podsolic Soil and occurs on an alluvial plain of upper Miocene sedimentary rocks (Soeprapto- hardjo, 1972). A block of 150m x 700 m was set up in 1979 in an undisturbed location within a lowland dipterocarp forest about 50 m to the north of Km 1.6 of the now Semboja-Semoi-Sepaku road. It was constructed by sequentially placing a series of 10 m x 10 m plots, first along the width of the block, thus forming a 150 m x 10 m transect consisting of 15 plots; with the surface of each plot was parallel to the ground. The second, third ….. and 70th transects were laid down adjacent to one another along the 700-m length of the block Thus 1050 plots were established . The 700-m length of the plot stretched roughly South to North and the 150- m width from East to West. The habitat of each plot with reference to topography, whether it is located on a swampy site, a flat dry land, a slope or a ridge was noted qualitatively. In each plot, all the trees with DBH (Diameter at Breast Height) > 10 cm were mapped, numbered with aluminum tags, identified, and measured for DBH. Important features of the forest were also recorded qualitatively. The gaps within the plot were mapped and a profile diagram of a 15 x 60 m2 subplot was made as reported by Partomihardjo (1987). Voucher specimens or fallen leaves (if a leafy twig was not accessible) from each tree was collected for identification at the Herbarium Bogoriense, Bogor. The authority of botanical names of plants in the plot followed Whitmore et al. (1989, 1990), Keßler & Sidiyasa (1994) and Keßler et al. (2000) The inventory was carried out between 1979 and 1981. RESULTS AND DISCUSSION Floristic characteristics and diversity The results of the inventory of trees with DBH > 10 cm showed that 553 species of 192 genera in 62 families, represented by 5847 individuals, with the total basal area of 350.01 m2 (Table 1) occurred in the 10.5 hectare plot. Of 550 species recorded, we were able to name 425 species. Appendix 1 lists all species of trees with DBH > 10 cm by family and reports absolute densities, relative densities, frequencies, relative frequencies, basal areas, relative basal areas and Importance Values (IV). These parameters were calculated following the standard procedure as discussed by Mueller- Dombois & Ellenberg (1974). The Total Species Importance Values for a Family (TSIVF) indicates the family importance value based on the sum of IVs of all species in a family (Kartawinata et al. 2008] KARTAWINATA et al:: Wanariset dipterocarp forest structure 303 2004). It is evident that the forest had a high species richness compared to other areas within the region. No single species was dominant, instead dominance was shared by several common species. The forest was characterized by uneven species composition, certain species were represented by large number of individuals, while the majority of species were represented by only a few individuals and often only by one specimen. (Appendix 1). The ten richest families in terms of number of species are shown in Table 3. Ranked by number of species present, Myrtaceae, Lauraceae, Euphorbiaceae and Myristicaceae were the top four families and Dipterocarpaceae occupied the 5th ranking. In small plots in Borneo and Sumatra, BALIKPAPAN (3 M) MM 2425 MM STUDY AREA Figure 1. The location of the study area at Wanariset Samboja, East Kalimantan 304 REINWARDTIA [VOL.12 Lauraceae constitutes one of the top three most common families (Whitmore & Sidiyasa 1986). In the lowland forests of West Malesia, Euphorbiaceae is by far the richest family (cf Abdulhadi 1991, Davies & Becker 1996, Poore 1968, Riswan 1982, Sist & Saridan1999, Suselo & Riswan 1987, Whitmore 1986, Whitmore & Sidiyasa 1986). As in the present study, Annonaceae, Burseraceae, Dipterocarpaceae, Moraceae, Myristicaceae and Rubiaceae are also in the top ten families ranked by species richness in Borneo and Sumatra (Kartawinata et al. 1981, Table 1). In terms of the Total Sum of Important Values for Families (TSIVF), the ten most important amilies show different order. Dipterocarpaceae and Euphor- Table 2. Density and number of species of trees with DBH > 10 cm in selected plots of different forest types in Kalimantan, Sumatra and Sulawesi (Extracted from Kartawinata 2006) Locality Alt. (m) Plot size (ha) Mean Density (Trees/ha) Number of Species Reference EAST KALIMANTAN Wanariset Samboja Malinau 1 Malinau 2 Malinau 3 Berau Lempake Bukit Bangkirai < 100 100 100 <100 <100 <100 110 10.5 2 x1.0 4 x 1.0 1,0 3 x 4.0 1.6 1.0 557 413 759 567 521 445 445 552 240 404 225 538 209 141 Present Study Yusuf (2003) Samsoedin (2005) Kartawinata (unpublished) Sist & Saridan (1999) Riswan, (1987a Simbolon et al. (2005) NORTH SUMATRA Leuser National Park Ketambe 1 Ketambe 2 Ketambe 3 Batang Gadis National Park Aek Nauli 450-670 350-450 350-450 660 1.6 1.6 1.6 1.0 538 420 475 583 116 94 127 182 Abdulhadi et al. (1989) Abdulhadi (1991) Abdulhadi et al. (1991) Kartawinata et al. (2004) RIAU Bukit Tigapuluh National Park Bukit Lawang 297 1.0 453 216 Polosakan (2001) 2008] KARTAWINATA et al: Wanariset dipterocarp forest structure 305 Table 1. Floristic and structural characteristics biaceae had the first and second highest values (Table 3). The high value for Dipterocarpaceae was attributed to the presence of large trees in the plots (Annex 1). It is interesting to note that although it contains only three species, Arecaceae had a high TSIVF value, resulting from the high number of individuals of Pholidocarpus majadum and Borassodendron borneensis. In order to determine whether the 550 species recorded in the 10.5-ha plot represent the total number of species in the area studied, a species-area curve was constructed (Figure 2). The 1050 subplots of 10x10 m each were examined to determine the number of additional species recorded each time a subplot was Stand Characteristics Dipterocarps Non- Dipterocarps Total Number of Species 25 (4.53 %) 527 (95.47 %) 552 Number of trees 575 (9.83) 5272 (90.17 %) 5847 Mean Density (Trees/Ha) 54.76 502.10 556.86 Basal area (M2) 85.53 (24.44 %) 264.48 (75.56 %) 350.01 Mean Basal Area/Ha (M2) 8.48 25.19 33.33 added. A considerable number of additional and it continued to rise steeply even up to 10.5 hectare. There was a very slight indication of leveling off at about five hectares. This implies that a minimum area can not be determined for this forest. This is similar to lowland tropical rain forests elsewhere in Borneo and the Malay Peninsula as reported by various authors (Kartawinata 2006, Kartawinata et al. 1981; Sist & Saridan 1999, Riswan 1982; Whitmore 1986; Wyatt-Smith 1966, etc.), but it is less dramatic compared to lowland forests of Sulawesi (Kartawinata 2005; Whitmore & Sidiyasa 1986). N o . S p e c i e s F a m i l y I V 1 S h o r e a l a e v i s D i p t e r o c a r p a c e a e 1 1 . 9 4 1 2 P h o l i d o c a r p u s m a j a d u m A r e c a c e a e 1 0 . 6 5 6 3 D i o s p y r o s b o r n e e n s i s E b e n a c e a e 6 . 5 1 2 4 E u s i d e r o x y l o n z w a g e r i L a u r a c e a e 6 . 1 3 9 5 S c a p h i u m m a c r o p o d u m S t e r c u l i a c e a e 5 . 8 0 0 6 P o l y a l t h i a s u m a t r a n a A n n o n a c e a e 5 . 1 9 0 7 G a n u a m o t l e y a n a S a p o t a c e a e 5 . 0 7 1 8 B o r a s s o d e n d r o n b o r n e e n s i s A r e c a c e a e 4 . 9 1 8 9 D i p t e r o c a r p u s c o r n u t u s D i p t e r o c a r p a c e a e 4 . 5 6 8 1 0 S h o r e a o v a l i s D i p t e r o c a r p a c e a e 4 . 1 5 5 The forest of the present study is the second most species rich in East Kalimantan after that in Malinau, which constitutes the richest forest in Indonesia (Kartawinata 2005). It can be seen from Table 2 that if the number of species in one hectare is extrapolated from the number in 10.5 ha plot, as is shown also in the species-area curve (Figure 2, and see also data of Abdulhadi et al. 1981), the total species richness may be comparable to that of Lempake (E. Kalimantan), Gunung Mulu (Sarawak) Belalong and Andulau (Brunei), Bukit Lawang (Riau), Bukit Lagong (Penisular Malaysia), and higher than that of Aek Nauli and Ketambe (Sumatra) and Toraut (Sulawesi). The species richness was however lower than at Malinau 3 (East Kalimantan), at least partly due to different plot design. The calculation of species frequencies was based on the species data from the 70 transects, each consisting of 15 subplots with the total area of 1500 m2. The majority of species had frequencies of less than 50 % and species with frequencies greater than 50 % are shown in Table 5. Interestingly, among dipterocarps only Shorea ovalis and S. laevis howed relatively high frequency, suggesting that most dipterocarps species apparently grow in clumps in this forest. Simple ordination of the plots did not produce a recognizable pattern of grouping the plots that warrants the separation of swampy habitat on flat lands from dry habitat on slopes and ridges. Field observations concurred that the composition of the forest on swampy sites was not much different from that on dryland, although the following species were 306 REINWARDTIA [VOL.12 Table 3. Ten important families in terms of the Total Sum of Importance Values (TSIVF) and number of species arranged in descending order indicating the rank Figure 2. Species-area curve in a lowland dipterocarp f o r e s t a t Wa n a r i s e t S a m b o j a , E a s t Kalimantan 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 0 5 1 0 1 5 A rea (HA ) N um be r o f s pe ci es Table 4. Ten most important species in decending order of Importance Value (IV) Order Family No of species Order Family TS IV F (%) 1 Myrtaceae 59 1 Dipterocarpaceae 44.272 2 Lauraceae 51 2 Euphorbiaceae 29.277 3 Euphorbiaceae 45 3 Myrtaceae 18.592 4 Myristicaceae 33 4 Lauraceae 17.999 5 Dipterocarpaceae 25 5 Myristicaceae 17.982 6 Annonaceae 24 6 Arecaceae 16.608 7 Rubiaceae 22 7 Sapotaceae 15.336 8 Burseraceae 21 8 Annonaceae 13.061 9 Moraceae 21 9 Ebenaceae 12.164 10 Fabaceae 19 10 Burseraceae 9.316 mostly found in or were restricted to the swampy sites:Actynodaphne procera, Cratoxylum laevifolius, Dialium hydnocarpoides, Diospyros elliptica, D. laevifolia, D. maingayi, D. pentaphylla, D. sumatrana, Elipanthus beccarii, Elmerillia tsiampacca, Eugenia accuminatissima, E. beccarii, E. densiflora, E. densinervia, E. lineata, E. oleosa, Ganua motleyana, Horsfieldia crassifolia, Litsea noronhae, Mammea 2008] KARTAWINATA et al:: Wanariset dipterocarp forest structure 307 Table 5. Ten species with highest frequency obovata , Urophyllum corymbosum and Xanthophyllum adenotum. Three species of tree palms were prominent in the forest and two of them, Oncosperma horridum and Pholydocarpus majadum, mainly occurred on swampy habitats, while the other, Borassodendron borneensis, was present mainly on dryland. Certain other species which occurred at lower densities were also characteristic of swampy habitats: Anthocephalus cadamba, Knema laurina, Neesia altissima and Pometia pinnata.. The total number of individuals recorded is indicated in Appendix. 1. The area of the swampy sites was difficult to quantify precisely because they were patchy, but they occurred mainly on the northern part of the plot and there was no ambiguity in assigning trees to this habitat type. No. Species Family Frequency (%) 1 Diospyros borneensis Eben 87.14 2 Polyalthia sumatrana Anno 87.14 3 Eusideroxylon zwageri Laur 78.57 4 Borassodendron borneensis Arec 74.29 5 Pholidocarpus majadum Arec 67.14 6 Madhuca sericea Sapo 62.86 7 Mallotus leptophyllus Euph 61.43 8 Shorea laevis Dipt 60.00 9 Dacryodes rugosa Burs 60.00 10 Shorea ovalis Dipt 57.14 Some species could be identified as (potential) fruit trees and medicinal plants, including the followings: (1) Fruit trees: Anacardiaceae (Bouea macrophylla, Mangifera caesia, M. foetida, M. pajang). Bombacaceae ( Durio acutifolius, D. dulcis, D. graveolens, D. kutejensis, D. lanceolatus, D. oxleyanus), Burseraaceae ( Canarium dichotomum, C. denticulatum, D. littorale, D. patentinervium, D. pilosum, D. rugosum), Clusiaceae ( Garcinia celebica, G. littorale, G. nervosa), Euphorbiaceae (Baccaurea deflexa, B. kunstleri, B. racemosa, B. rumphii, B. sumatrana), Fabaceae (Parkia roxburghii, P. speciosa), Meliaceae (Sandoricum borneensis) and Sapindaceae (Nephelium lappaceum, Pometia pinnata) , and (2) Medicinal plants: Apocynaceae (Alstonia angustifolia, A. scholaris, Dyera costulata), Thymelaeaceae (Aquilaria malacensis) and Annonaceae ( Cananga odorata). Structure The basal area of each tree recorded in the plot was calculated. Appendix 1 shows these data grouped by family, as well as for individual species, along with other measures. The total basal area of trees recorded in the plot was 350.01 m2, resulting in a mean basal area of 33.33 m2/ha (Table 1). Ten species with the highest basal areas are presented in Table 4, in which Shorea laevis, Pholidocarpus adum and Scaphium macropodum were the most prominent. It was also evident that ten dipterocarp species were prevalent, with a total basal area of 53.86 m2 (46.74%) As a whole, the dipterocarps were the largest trees and dominated the forest with 25 species (representing 4.47% of the total species richness) occupying a total basal area of 85.53 m2 (24.96 %). Most species had basal areas of less than 1.0 m2 and only 71 species (12.90 %) had basal areas greater than 1.0 m2, of which the highest basal areas of 10-31 m2 were shared by three species (Figure 3), i.,e. Shorea laevis, Pholidocarpus majadum and Scaphium macropodum (Table 6). Table 6. Ten species with highest BA in a 10.5-ha plot No. Species Family BA (M2) 1 Shorea laevis Dipt 30.455 2 Pholidocarpus majadum Arec 16.534 3 Scaphium macropodum Ster 16.500 4 Anthocephalus cadamba Rubi 9.734 5 Eusideroxylon zwageri Laur 9.379 6 Dipterocarpus cornutus Dipt 9.315 7 Ganua motleyana Sapo 9.223 8 Shorea parvifolia Dipt 7.242 9 Shorea ovalis Dipt 6.844 10 Shorea pauciflora Dipt 6.499 121.725 Figure 4 shows the diameter class distribution of trees with DBH > 10 cm in the 10.5-ha plot. The data show more or less a typical size class distribution of tropical undisturbed primary forest. This reveals that 79.13% of the total trees had DBH of less than 30 cm and only 20.87 % occurred in the diameter class greater than 30 cm. The trees with large DBH were mainly dipterocarps. Three largest tree species were Shorea pauciflora ( DBH =196.50 cm), Dipterocarpus cornutus (170.90 cm ) and Alstonia scholaris (170.0 cm). It is interesting to note that a pioneer species, Anthocephalus cadamba, developed well in this forest, where trees were distributed in all diameter classes and reached a maximum DBH of 128 cm. In contrast, Alstonia scholaris, another pioneer species, demonstrated a disjunct size distribution (Table 7) disjunct size distribution (Table 7) with only two large individuals of DBH 140 cm and 170 cm (Appendix 1). A. cadamba is a light-demanding species (Whitmore 1986) and, in this study, had a large number of individuals with big diameters and a low number of small individuals. This pattern contrasts that of shade-demanding species, such as Dipterocarpus cornutus, which had a higher number of individuals of small sizes (Figure 5). Other secondary forest species present in a relatively high number of individuals in the plot are shown in Table 7, but none were as large as A. cadamba and Alstonia scholaris. These species appeared to occur on sites previously occupied by gaps. An earlier study on this plot (Partomihardjo et al. 1987) (Figure 6) reported that gaps covered a total area of 17, 399 m2 (16.6 % of the canopy) and gap formation was estimated to be 1,187 m2 (1.05 % of the canopy opening annually) and the recovery rate was about 16 years. Meanwhile, a man-made gap of 0.5 ha in a lowland dipterocarp forest at Lempake, about 100 km north east of Wanariset Samboja (Riswan 1982; Riswan & Kartawinata 1989) was immediately occupied by secondary forest species after clearing. The primary forest species arrived later and achieved a 50% proportion of all species after 18 months. The primary forest arrivals included dipterocarps, Hopea rudiformis, Shorea parvifolia and Shorea leprosula, which were present also in the present study (Appendix 1) and have been reported to behave like pioneer species (Riswan 1982; Riswan & Kartawinata 1989, 1991). Furthermore, in a 35 year old 0.8-ha gap at Lempake the large trees were dominated by secondary forest species, primarily Macaranga spp. (Riswan 1982; Riswan &Kartawinata 1988a). 308 REINWARDTIA [VOL.12 33 45 99 101 207 533 1260 1202 2367 0 500 1000 1500 2000 2500 100-200 80-99.9 60-79.9 50-59.9 40-49.90 30-39.90 20-29.9 15-19.90 10-14.90 D IA M E T E R C LA S S ( C M ) NUMBER OF TREES Figure 4. Diameter class distribution and number of tree species with DBH > 10 cm in a 10.5-ha plot in a lowland dipterocarp forest at Wanariset Samboja, E. Kalimantan. 0 5 10 15 20 25 30 10-19.9 20-29.9 30-39.9 40-49.9 50-59.9 > 60 DIAMETER CLASS (CM) N U M B E R O F T R E E S /1 0. 5 H A Dipterocarpus cornutus Athocephalus cadamba Figure 5. Number of individuals of a light-demander (Anthocephalus cadamba) and shade-de- mander (Dipterocarpus cornutus) according to diameter-class in a 10.5-ha plot of a low- land dipterocarp forest at Wanariset Samboja, Kalimantan Timur 1 3 8 1 2 8 8 4 6 1 3 6 2 2 1 0 3 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 0 . 0 0 1 - 0 . 0 3 0 0 . 0 3 0 - 0 . 0 9 9 0 . 1 - 0 . 4 9 0 . 5 - 0 . 9 9 1 . 0 - 2 . 9 9 2 . 0 - 4 . 9 9 5 . 0 - 9 . 9 0 1 0 . 0 - 3 1 . 0 B A S A L A R E A ( S Q . M . ) N U M B E R O F S P E C IE S Figure 3. Basal area class distribution and number of tree species with DBH > 10 cm in a 10.5-ha plot in a lowland dipterocarp forest at Wanariset Samboja, E. Kalimantan Table 7. Number of trees of major secondary forest species according to diameter class in the 10.5-ha plot of lowland dipterocarp forest at Wanariset Samboja, East Kalimantan. 2008] KARTAWINATA et al:: Wanariset dipterocarp forest structure 309 15 10 5 0 GAP BUILDING MATURE BUILDING MATURE GAP 30M 0 12 M 10 20 30 40 50 60 M MATURE Figure 6. Canopy phases and a profile diagram of a portion of the 10.5-ha plot within a lowland dipterocarp forest at Wanariset Samboja, East Kalimantan. D – Dysoxylum sp., Dl – Drypetes laevis, Dr – Dacryodes rostrata, Gb – Gonystylus bancanus, H – Horsfieldia sp., Kc – Knema cinerea, Km – Koompasia malaccensis, Madhuca sp., Mc – Microcos crassifolia, Ml – Mallotus leptophyllus, Ms – Madhuca sericea, Nk – Neoscortechinia kingii, P – Polyalthia sp., Pl – Polyalthia rumphii, Sl – Shorea laevis, So – Shorea ovalis, Sp – Shorea parvifolia, Vu – Vatica umbonata. (After Partomihardjo et al. 1987) DIAMETER CLASS SPECIES 10 -1 9. 9 20 -2 9. 9 30 -3 9. 9 40 -4 9. 9 50 -5 9. 9 60 -6 9. 9 70 -7 9. 9 80 -8 9. 9 90 .9 9. 9 10 0- 10 9. 9 11 0- 12 9. 9 13 0- 17 0 Anthocephalus cadamba 8 1 1 3 2 3 3 2 3 2 Alstonia scholaris 5 3 1 2 Alstonia angustifolia 4 2 1 Artocarpus anisophyllus 12 2 2 1 Artocarpus rigidus 13 2 1 Buchanania sessifolia 3 12 7 Dillenia excelsa 15 2 3 1 Endospermum diadenum 2 1 1 Porterandia anisophylla 8 1 Macaranga gigantea 2 3 2 2 Macaranga hypoleuca 4 1 Macaranga tanarius 14 1 Parinari oblongifolia 7 1 3 1 1 2 Schima wallichii 2 2 1 ACKNOWLEDGEMENT We thank the Forest Research and Development Agency for allowing us to undertake the study at the forest at the Wanariset Samboja. We are also grateful to Mrs. J.J. Affriastini and Mr. Ismail Rahman of the Herbarium Bogoriense for assisting us in field identification and identifying voucher specimens, as well as to others who have in many ways helped us in the field. REFERENCES ABDULHADI, R., 1991. A Meliaceae forest in Ketambe, Gunung Leuser National Park, Sumatra with special reference to the status of Dipterocarp species. In Soerianegara, S.S. Tjitrosomo, R.C.Umaly & I. Umboh (Eds.). Proceedings of the Fourth Round- table Conference on Dipterocarps. Bogor, Indonesia, 12-15 December 1989. BIOTROP Special Publication No. 41: 307-315, ABDULHADI, R., MIRMANTO, E. & YUSUF, R.1989. S t r u k t u r d a n k o m p o s i s i p e t a k h u t a n Dipterocarpaceae di Ketambe, Taman Nasional G. Leuser, Aceh. Ekologi Indonesia 1: 29-36. ABDULHADI, R. , YUSUF, R, & KARTAWINATA, K. 1991. A riverine tropical rain forest in Ketambe, Gunung Leuser National Park, Sumatra, Indonesia. In Soerianegara, S.S. Tjitrosomo, R.C.Umaly & I. Umboh (Eds.). Proceedings of the Fourth Round- table Conference on Dipterocarps. Bogor, Indonesia, 12-15 December 1989. BIOTROP Special Publication No. 41: 247-255. ASHTON, P.S. 1964. Ecological studies in the mixed dipterocarp forests of Brunei state. Clarendon Press, Oxford. 75 pp ASHTON, P. S. 1989. Dipterocarp reproductive biology. In Lieth, H. and Werger, M.J.A. (Eds.). Tropical rain forest ecosystems: biogeographical and ecological studies. : 219-240. Elsevier, Amsterdam. ASHTON, P. S. & HALL, P. 1992. Comparison of structure among mix dipterocarp forests of North West Borneo. Journal of Ecology 80 : 459-481. BAILLIE, I.C. & ASHTON, P.S. 1983. Some soil aspects of the nutrient cycle in mixed dipterocarp forests in Sarawak. In Sutton, S.I., Whitmore, T.C. & Chadwick, A.C. (Eds.), Tropical Rain Forest: Ecology and Management. :347-356. Blackwell Scientific Publications, Oxford. . BAILLIE, I.C., ASHTON, P.S., COURT, M.N., ANDERSON, J.A.R., FITZPATRICK, E.A. & TINSLEY, J. 1987. Site characteristics and the distribution of tree species in mixed dipterocarp forest on tertiary sediments in central Sarawak, Malaysia. Journal of Tropical Ecology 3: 201-220. BRUENIG, E.F. 1969. The classification of forests types in Sarawak. Malayan Forester 32: 143-179. BRUENIG, E.F. 1970. Stand structure, physiognomy and environmental factors in some lowland forests in Sarawak. Tropical Ecology 11 (1) : 26-43. BRUENIG, E.F. 1973. Species richness and stand diversity in relation to site and succession of forests in Sarawak and Brunei. Amazoniana 4 (3): 293-320 BURGESS, P.F. 1961. The structure and composition of lowland tropical rainforest in North Borneo. Malaysian Forester 24: 66-80. DAVIES, S.J. & BECKER, P. 1996. Floristic composition and stand structure of mixed dipterocarp and heath forests in Brunei Darussalam. Journal of Tropical Forest Science 8 (4): 542-569. DENNIS, R. 1999. A review of fire projects in Indonesia (1982-1998). CIFOR Publication, 105 pages. EICHHORN, K. (2006). Plant diversity after rain-forest fires in Borneo. Blumea Suplement 18: 1-140 GOLDAMMER, J.G., SEIBERT & SCHINDELE, W. 1996. Fire in dipterocarp forests. In Schulte A. & Schöne D. (Eds) . Dipterocarp Forest Ecosystems, Towards Sustainable Management. :155-185. World Scientific Publishing, Singapore. GUHARDJA, E., FATAWI, M., SUTISNA, M., MORI, T., OHTA, S. (Eds.), 2000. Rainforest ecosystems of East Kalimantan: El Niño, drought, fire and human impacts. Ecological Studies 140:1-330. Springer-Verlag, Tokyo. KARTAWINATA, K. 2005. Six decades of natural vegetation studies in Indonesia. In Soemodihardjo, S. & S.D. Sastrapradja (Eds.), Six Decades of Science and Scientists in Indonesia. :95-140. Naturindo, Bogor. KARTAWINATA, K. ROCHADI, A. & PARTOMIHARDJO, J. 1981. Composition and structure of a lowland dipterocarp forest at Wanariset, East Kalimantan (Indonesia). Malaysian Forester 44, 2/3 : 397-406. K A RTAW I N ATA , K . , S A M S O E D I N , I . HERIYANTO, M. & AFRIASTINI, J.J. 2004. A tree species inventory in a one hectare plot at the Batang Gadis National Park, North Sumatra, Indonesia. Reinwardtia 12: 145-157. KEßLER, P.J.A. & SIDIYASA, K. 1994. Trees of the Balikpapan-Samarinda area, East Kalimantan, Indonesia: A manual to 280 selected species. Tropenbos Series 7. The Tropenbos Foundation, Wageningen. KEßLER, P.J.A., PELSER, P.B., RIDSDALE, C.E. & SIDIYASA, K. 2000. Secondary forest trees of Kalimantan, Indonesia – A manual to 300 selected species. Tropenbos-Kalimantan Series 3. MOFFEC-Tropenbos-Kalimantan Project, Wanariset Samboja, Balikpapan. LEIGHTON, M. & WIRAWAN, N. 1986. Catastrophic drought and fire in Borneo tropical rain forest associated with the 1982-1983 El Niño Southern Ocilation event. In Prance, G.T. (Ed.) . Tropical Rain Forest and the World Athmosphere. :75-102 Westview, Bopulder, Colorado. . MANOKARAN, N. & SWAINE, M.D. 1994. Population dynamics of trees in dipterocarps forests of Malaysia. Malaysian Forest Record . 41. Forest 310 REINWARDTIA [VOL.12 2008] KARTAWINATA et al:: Wanariset dipterocarp forest structure 311 Research Institute Malaysia, Kepong. MUELLER-DOMBOIS, D. & ELLENBERG, H. 1974. Aims and Methods of Vegetation Ecology. John Wiley & Sons, New York NEWBERY,D (MC C.), CAMPBELL, E.J.F., LEE, Y.F., RIDSDALE, C.E. & STILL, M.J. 1992. Primary lowland dipterocarp forest at Danum Valley, Sabah, Malaysia : structure, relative abundance and family composition. Philosophical Transactions of the R.oyal Society B 335 : 341-356. NICHOLSON, D.I. 1965. A study of virgin forest near Sandakan, North Borneo. In Proceedings of the Symposium on Humid Tropics Vegetation. :67-87. Kuching, UNESCO, Paris. NIEUWSTADT, M. G. L .VAN., D. SHEIL, & K. KARTAWINATA. 2001. The ecological consequences of logging in the burned forest of East Kalimantan, Indonesia. Conservation Biology 15:1183-1186 NIEUWSTADT, M. G. L .VAN, 2002. Trial by fire: Positive development of a tropical dipterocarp forest. Ph. D. dissertation, Utrecht University, Utrecht PARTOMIHARDJO, T.,YUSUF, R. SUNARTI, S., PURWANINGSIH, ABDULHADI, R. AND KARTAWINATA , K. 1987. A preliminary notes on gaps in a lowland dipterocarp forest in Wanariset, East Kalimantan. In Kostermanns, A.J.G.H. (Ed): Proceedings of the Third International Round Table on Dipterocarps. :241-253. UNESCO, Jakarta, Indonesia. PHILIPS, O.L., HALL, P., GENTRY, A.H., SAWYER, S.A. & VASQUEZ, R. 1994. Dynamics and species richness of tropical rain forests. Proceedings of the National Academy of Sciences 91: 2805-2809. POLOSAKAN, R. 2001. Komposisi jenis pohon di hutan kawasan Taman Nasional Bukit Tigapuluh, Propinsi Riau. In Sunaryo and Six Others (Eds.). Laporan Teknik 2001: 31-40. Proyek Inventarisasi dan Karakterisasi Sumberdaya Hayati, Pusat Penelitian Biologi, LIPI, Bogor. POULSEN, A.D., NIELSEN, I.C., TAN, S. & BALSLEV, H. 1996. A quantitative inventory of trees in one hectare of mixed dipterocarp forest in Temburong, Brunei Darussalam. In Edwards, D.S., Booth, W.E., & Choy, S.C. (Eds). Tropical Rain Forest Research - Current Issues. Dordrecht, the Netherland’s Kluwer Academic Press.(In Press cited by Davies & Becker 1996) POORE, M.E.D. 1968. Studies in Malaysian rainforests. I. The forest on triassic sediments in Jengka forest reserve. Journal of Ecology 56 : 143-196. PROCTOR, J., ANDERSON, J.M., CHAI, P. & WALLACK, H.W. 1983. Ecological studies in four contrasting lowland rain forests in Gunung Mulu national park. I. Forest environment, structure and floristics. Journal of Ecology 71 : 237-260. RISWAN, S. 1982. Ecological studies on primary, secondary and experimentally cleared mixed dipterocarp forest and kerangas forest in East Kalimantan, Indonesia. Ph.D. thesis, University of Aberdeen. Aberdeen. RISWAN, S. 1987a. Structure and floristic composition of mixed dipterocarp forest at Lempake, East Kalimantan In Kostermanns, A.J.G.H. (Ed): Proceedings of The third International Round Table on Dipterocarps. :435-457. UNESCO, Jakarta, Indonesia. RISWAN, S. 1987b. Kerangas forest at Gunung Pasir, Samboja, E. Kalimantan. In Kostermans, A.J.G..H. (Ed). Proceedings of The third International Round Table on Dipterocarps. :471-494. UNESCO, Jakarta, Indonesia. RISWAN, S. & . KARTAWINATA, K. 1988a. Regeneration after disturbance in a kerangas (heath) forest in East Kalimantan, Indonesia. In Soemodihardjo, S. (Ed.). Some ecological aspects of tropical forest of east kalimantan: a collection of research reports. MAB Indonesia Contribution No. 48: 61-85. RISWAN, S. & KARTAWINATA, K. 1988b. A lowland dipterocarp forest 35 years after pepper plantation in East Kalimantan, Indonesia. In Soemodihardjo, S. (Ed.). Some ecological aspects of tropical forest of East Kalimantan: A collection of Research Reports. MAB Indonesia Contribution No. 48: 1- 39. RISWAN, S. &. KARTAWINATA, K. 1989. Regeneration after disturbance in a lowland mixed dipterocarp forest in East Kalimantan, Indonesia. Ekologi Indonesia 1: 9 28. RISWAN, S. & KARTAWINATA, K. 1991. Regeneration after disturbance in a lowland mixed dipterocarp forest in East Kalimantan, Indonesia. In Gomez Pompa, A., Whitmore, T.C. & Hadley, M. (Ed.). Rain Forest Regeneration and Management. Man and the Biosphere Series Vol. 6: 295-301. UNESCO, Paris and Parthenon Publishing Group Park Ridge.. SAMSOEDIN, I. 2005. Biodiversity and sustainability in the Bulungan Research Forest, East Kalimantan, Indonesia: The response of plant species to logging. Ph. D. Thesis, University of Stirling. Stirling. SCHMIDT, F.H. & J.H. FERGUSON (1951). Rainfall types based on wet and dry period ratios for Indonesia with Western New Guinea.. Verhandelingen Djawatan Meteorolgi dan Geofisika, Djakarta 42. SETIADI, Y. , PERT, D.R., WEBB, C.O. & LEIGHTON, M. 1996. Abundance and spatial distribution of seedling recruitment around adult treess of five Shorea species in the Gunung Palung National Park, West Kalimantan, Indonesia. Tropical Biodiversity 3: 169-179. SIMBOLON, H., SIREGAR, M., WAKIYAMA, S., SUKIGARA, N., ABE, Y. & SHIMIZU, H. 2005. Impacts of forest fires on tree diversity in tropical rain forest of East Kalimantan, Indonesia. Phyton 45: 551-559. 312 REINWARDTIA [VOL.12 SIST, P. 2000. Reduced impact logging in the tropics: objectives, principles and impacts. International Forestry Review 2: 3-10. SIST, P. & SARIDAN, A. 1999. Stand structure and floristic composition of a primary lowland dipterocarp forest in East Kalimantan. Journal of Tropical Forest Science, 11: 704-722. SLIK, J.F.F. and 16 others, 2003. A floristic analysis of the lowland dipterocarp forests of Borneo. Journal of Biogeography 30: 1517-1531. SOEDJITO, H. 1990. Root systems of successional mand old growth forest species and its role on nutrient dynamics within a tropical rainforest in Indonesia. Ph.D. dissertation, Rutgers, University, New Brunswick. SOEDJITO, H. & KARTAWINATA, K. 1995. Long- term ecological research in Indonesia : achieving sustainable forest management. In Primack R.B. & Lovejoy, T.E. (Eds) “Ecology, Conservation and Management of South East Asian Rainforests”. :129-139. Yale University Press, USA. SOEKARDJO, S, HAGIHARA, A., YAMAKURA, T., OGAWA, H. 1990. Floristic composition of a tropical rainforest in Indonesian Borneo. Bull.. Nagoya University For. 10: 1- 43. (Quoted by Ruslim, Y, Matius, P. & Sutisna, M. 2000. In Guhardja et al.. (Eds.). Rainforest Ecosystems of East Kalimantan: El Niño, Drought, Fire and Human Impacts. Ecological Studies Vol. 49. Springer- Verlag, Tokyo. SOEPADMO, E. 1995. Plant diversity of the Malesian tropical rainforest and its phytogeographical and economic significance. In Primack R.B. & Lovejoy, T.E. (Eds). Ecology, Conservation and Management of South East Asian Rainforests. :19-40. Yale University Press, USA. SOEPRAPTOHARDJO, M. 1972. Generalized soil map, Indonesia. Scale 1: 2,500,000. 3rd Ed. Soil Research Institute, Bogor SUNDERLIN, W.D., RESOSUDARMO, I. A. P. 1996. Rate and causes of deforestation In indonesia: towards a resolution of the ambiguities. CIFOR occasional paper n° 9, 19 pp. SUSELO, T.B, & RISWAN, S. 1987. Compositional and structural pattern of lowland mixed dipterocarp forest in the Kutai National park, East Kalimantan. In KOSTERMANS, A.J.G.H. (Ed). Proceedings of the Third International Round Table on Dipterocarps. :459-470. UNESCO, Jakarta, Indonesia. TANUWIJAYA, S.M., ALIMUDIN, R.H., PERT, D.RA., WEBB, C.O. & LEIGHTON, M. 1996. Population structure and regeneration in two potentially valuable leguminous rain forest tree species, Sindora coriacea and Dialium platysepalum in Gunung Palung National Park, Indonesia. Tropical biodiversity 3: 157-168. WALSH, R.P.D. 1996. Drought frequency changes in Sabah and adjacent parts of northern Borneo since the late nineteenth century and possible implications for tropical rain forest dynamics. J. Trop. Ecol. 12: 385-407. WHITMORE, T. C. 1986. Tropical rain forests of the Far East . English Language Book Society/ Oxford University Press, Oxford, 1st edition. WHITMORE, T.C. & K. SIDIYASA. 1986. Composition and structure of a lowland rain forest at Toraut, northern Sulawesi. Kew Bulletin 41: 747-756. WHITMORE, T.C., TANTRA, I.G.M. AND SUTISNA, U. 1989. Tree flora of Indonesia. Check List for Kalimantan. Part I. Forest Research and Development Centre, Bogor. WHITMORE, T.C., TANTRA, I.G.M. AND SUTISNA, U. 1990. Tree flora of Indonesia. Check List for Kalimantan, Part II. Forest Research and Development Centre, Bogor. WOODS, T.N. & BOWER, R.P. 1982. Rainfall records, East Kalimantan - Catatan curah hujan Kalimantan Timur. Report: Analysis summaries and histograms. Transmigration Area Development Project, Dinas Pekerjaan Umum Propinnsi Daerah Tingkat I, Kalimantan Timur. Samarinda. 2008] KARTAWINATA et al:: Wanariset dipterocarp forest structure 313 Appendix 1. Number of Species in a Family (in parenthesis), Number of occurrence, Frequency (%), Number of trees, Basal Area ( cm2), Relative Basal Area (%), Relative Frequency (%), Relative Density (%, ) Importance Value in a 10.5 ha plot of lowland dipterocarp forest at Wanariset Semboja, East Kalimantan, Indonesia. The Family Importance Value is the Total Spesies Importance Values for a Family (TSIVF). Number of Frequency Number of Basal Area Relative Relative Relative Importance No. Family and Species Occurrence (%) Trees (Cm2) Basal Area Frequency Density Value in plots (in 10.5 Ha) (%) (%) (%) 1 Actinidiaceae (2 spp.) 1 Saurauia sp. 1 1 1.43 1 132.73 0.004 0.027 0.017 0.048 2 Saurauia sp. 2 1 1.43 1 196.07 0.006 0.027 0.017 0.050 Family Importance Value 0.098 2 Alangiaceae (1 sp.) 3 Alangium ebenaceum 20 28.57 26 6,899.50 0.201 0.538 0.446 1.186 Family Importance Value 1.186 3 Anacardiaceae ( 15) 4 Bouea oppositifolia 7 10.00 8 2,910.34 0.085 0.188 0.137 0.411 5 Buchanania sessifolia 17 24.29 23 6,344.42 0.185 0.457 0.395 1.037 6 Campnosperma coriaceum 2 2.86 2 1,005.31 0.029 0.054 0.034 0.117 7 Koordersiodendron pinnatum 1 1.43 1 426.38 0.012 0.027 0.017 0.057 8 Mangifera caesia 10 14.29 10 9,984.09 0.291 0.269 0.172 0.732 9 Mangifera foetida . 9 12.86 10 2,646.81 0.077 0.242 0.172 0.491 10 Mangifera indica 1 1.43 1 84.95 0.002 0.027 0.017 0.047 11 Mangifera macrocarpa 1 1.43 1 343.07 0.010 0.027 0.017 0.054 12 Mangifera pajang 4 5.71 4 4,616.66 0.135 0.108 0.069 0.311 13 Melanochyla bracteata 4 5.71 4 716.21 0.021 0.108 0.069 0.197 14 Melanochyla fulvinervis 7 10.00 8 1,873.00 0.055 0.188 0.137 0.380 15 Parishia maingayi 2 2.86 2 7,853.05 0.229 0.054 0.034 0.317 16 Semecarpus bunburyanus 1 1.43 1 271.72 0.008 0.027 0.017 0.052 17 Semecarpus forstenii 3 4.29 3 1,740.21 0.051 0.081 0.051 0.183 18 Semecarpus glauca 1 1.43 1 4,185.39 0.122 0.027 0.017 0.166 Family Importance Value 4.552 4 Annonaceae (24) 19 Cananga odorata 5 7.14 6 8,079.85 0.236 0.134 0.103 0.473 20 Cyathocalyx sumatrana 1 1.43 3 1,359.32 0.040 0.027 0.051 0.118 21 Goniothalamus macrophylla 4 5.71 4 637.27 0.019 0.108 0.069 0.195 22 Meiogyne virgata 5 7.14 5 1,111.89 0.032 0.134 0.086 0.253 23 Mitrephora polypyrena 1 1.43 1 132.73 0.004 0.027 0.017 0.048 24 Monocarpia marginalis 9 12.86 13 7,056.34 0.206 0.242 0.223 0.671 25 Oxymitra sp. 1 1.43 1 122.72 0.004 0.027 0.017 0.048 26 Polyalthia lateritica 2 2.86 2 753.94 0.022 0.054 0.034 0.110 27 Polyalthia glauca 1 1.43 1 109.36 0.003 0.027 0.017 0.047 28 Polyalthia lateriflora 31 44.29 78 29,839.03 0.871 0.834 1.339 3.043 29 Polyalthia rumphii 19 27.14 26 6,745.95 0.197 0.511 0.446 1.154 30 Polyalthia sp. 1 1 1.43 1 426.38 0.012 0.027 0.017 0.057 31 Polyalthia sp. 2 1 1.43 1 124.69 0.004 0.027 0.017 0.048 32 Polyalthia sp. 3 1 1.43 1 116.90 0.003 0.027 0.017 0.047 33 Polyalthia sp. 4 1 1.43 1 692.79 0.020 0.027 0.017 0.064 34 Polyalthia sp. 5 1 1.43 1 829.58 0.024 0.027 0.017 0.068 35 Polyalthia sumatrana 61 87.14 143 37,494.99 1.094 1.641 2.455 5.189 36 Popowia hirta 6 8.57 6 1,025.05 0.030 0.161 0.103 0.294 37 Popowia sp. 1 1 1.43 1 162.86 0.005 0.027 0.017 0.049 38 Popowia sp. 2 1 1.43 1 95.03 0.003 0.027 0.017 0.047 39 Popowia tomentosa 2 2.86 2 276.78 0.008 0.054 0.034 0.096 40 Xylopia ferruginea 2 2.86 2 979.93 0.029 0.054 0.034 0.117 41 Xylopia malayana 13 18.57 16 5,242.90 0.153 0.350 0.275 0.777 42 Xylopia sp. 1 1 1.43 1 86.59 0.003 0.027 0.017 0.047 Family Importance Value 13.061 5 Apocynaceae (5) 43 Alstonia angustifolia 6 8.57 7 2,778.12 0.081 0.161 0.120 0.363 44 Alstonia scholaris 11 15.71 11 41,046.72 1.198 0.296 0.189 1.683 45 Dyera sp. 1 1.43 1 1,231.63 0.036 0.027 0.017 0.080 314 REINWARDTIA [VOL.12 Number of Frequency Number of Basal Area Relative Relative Relative Importance No. Family and Species Occurrence (%) Trees (Cm2) Basal Area Frequency Density Value in plots (in 10.5 Ha) (%) (%) (%) 46 Dyera lowii 1 1.43 1 1,063.62 0.031 0.027 0.017 0.075 47 Willughbeia firma 3 4.29 4 3,277.67 0.096 0.081 0.069 0.245 Family Importance Value 2.445 6 Aquifoliaceae (1) 48 Ilex cymosa 4 5.71 4 17,262.70 0.504 0.108 0.069 0.680 Family Importance Value 0.680 7 Arecaceae (3 ) 49 Borassodendron borneensis 52 74.29 120 49,993.30 1.459 1.399 2.060 4.917 50 Oncosperma horridum 13 18.57 25 8,783.28 0.256 0.350 0.429 1.035 51 Pholidocarpus majadum 47 67.14 266 165,336.91 4.825 1.264 4.566 10.655 Family Importance Value 16.608 8 Bombacaceae (7) 52 Durio acutifolius 17 24.29 28 13,674.62 0.399 0.457 0.481 1.337 53 Durio dulcis 9 12.86 9 27,197.65 0.794 0.242 0.154 1.190 54 Durio graveolens 16 22.86 17 7,520.90 0.220 0.430 0.292 0.942 55 Durio kutejensis 1 1.43 1 314.16 0.009 0.027 0.017 0.053 56 Durio lanceolatus 12 17.14 16 3,490.79 0.102 0.323 0.275 0.699 57 Durio oxleyanus 17 24.29 22 11,462.90 0.335 0.457 0.378 1.169 58 Neesia synandra 12 17.14 13 12,072.47 0.352 0.323 0.223 0.898 Family Importance Value 6.289 9 Burseraceae (21) 59 Canarium decumanum 1 1.43 1 143.14 0.004 0.027 0.017 0.048 60 Canarium denticulatum 1 1.43 1 224.32 0.007 0.027 0.017 0.051 61 Canarium dichotomum 3 4.29 4 765.21 0.022 0.081 0.069 0.172 62 Canarium hirsutum 6 8.57 6 1,248.98 0.036 0.161 0.103 0.301 63 Canarium littorale 6 8.57 6 965.46 0.028 0.161 0.103 0.293 64 Canarium patentinervum 1 1.43 1 232.35 0.007 0.027 0.017 0.051 65 Canarium pilosum 3 4.29 5 1,618.41 0.047 0.081 0.086 0.214 66 Dacryodes laxa 1 1.43 1 193.59 0.006 0.027 0.017 0.050 67 Dacryodes rostrata 39 55.71 62 21,663.10 0.632 1.049 1.064 2.745 68 Dacryodes rubiginosa 1 1.43 1 535.02 0.016 0.027 0.017 0.060 69 Dacryodes rugosa 42 60.00 66 17,259.69 0.504 1.130 1.133 2.766 70 Haplolobus moluccanus 7 10.00 7 1,833.09 0.053 0.188 0.120 0.362 71 Santiria griffithii 14 20.00 19 5,495.28 0.160 0.377 0.326 0.863 72 Santiria laevigata 1 1.43 1 3,067.96 0.090 0.027 0.017 0.134 73 Santiria megaphylla 6 8.57 6 1,003.10 0.029 0.161 0.103 0.294 74 Santiria sp. 1 1 1.43 1 502.73 0.015 0.027 0.017 0.059 75 Santiria sp. 2 1 1.43 1 730.62 0.021 0.027 0.017 0.065 76 Santiria sp. 3 1 1.43 1 165.13 0.005 0.027 0.017 0.049 77 Santiria sp. 4 1 1.43 1 103.87 0.003 0.027 0.017 0.047 78 Santiria tomentosa 7 10.00 7 2,042.89 0.060 0.188 0.120 0.368 79 Trioma malaccensis 6 8.57 7 1,540.18 0.045 0.161 0.120 0.326 Family IV 9.316 10 Celastraceae (3 ) 80 Bhesa paniculata 16 22.86 22 6,563.37 0.192 0.430 0.378 1.000 81 Euonymus javanicus 2 2.86 2 460.45 0.013 0.054 0.034 0.102 82 Lophopetalum javanicum 1 1.43 1 91.61 0.003 0.027 0.017 0.047 Family Importance Value 1.148 11 Chrysobalanaceae (6 ) 83 Atuna racemosa ssp. excelsa 7 10.00 7 7,044.01 0.206 0.188 0.120 0.514 84 Licania splendens 19 27.14 27 27,448.19 0.801 0.511 0.463 1.776 85 Maranthes corymbosa 2 2.86 3 1,596.52 0.047 0.054 0.051 0.152 86 Parastemon urophyllus 4 5.71 4 4,844.15 0.141 0.108 0.069 0.318 87 Parinari oblongifolia 13 18.57 15 15,568.71 0.454 0.350 0.257 1.061 88 Parinari sp. 1 1.43 1 84.95 0.002 0.027 0.017 0.047 Family Importance Value 3.867 12 Clusiaceae (19 ) 89 Calophyllum pulcherrimum 3 4.29 3 1,347.71 0.039 0.081 0.051 0.172 90 Calophyllum soulattri 11 15.71 11 42,461.00 1.239 0.296 0.189 1.724 91 Garcinia celebica 8 11.43 10 6,005.72 0.175 0.215 0.172 0.562 2008] KARTAWINATA et al::Wanariset dipterocarp forest structure 315 Number of Frequency Number of Basal Area Relative Relative Relative Importance No. Family and Species Occurrence (%) Trees (Cm2) Basal Area Frequency Density Value in plots (in 10.5 Ha) (%) (%) (%) 92 Garcinia dioica 2 2.86 2 642.71 0.019 0.054 0.034 0.107 93 Garcinia lateriflora 1 1.43 1 114.99 0.003 0.027 0.017 0.047 94 Garcinia nervosa 4 5.71 4 1,002.63 0.029 0.108 0.069 0.206 95 Garcinia parvifolia 2 2.86 2 3,808.13 0.111 0.054 0.034 0.199 96 Garcinia rigida 2 2.86 2 1,093.09 0.032 0.054 0.034 0.120 97 Garcinia sp. 1 3 4.29 3 1,589.75 0.046 0.081 0.051 0.179 98 Garcinia sp. 2 2 2.86 2 569.29 0.017 0.054 0.034 0.105 99 Garcinia sp. 3 2 2.86 2 1,328.64 0.039 0.054 0.034 0.127 100 Garcinia sp. 4 1 1.43 1 390.57 0.011 0.027 0.017 0.055 101 Garcinia tetrandra 4 5.71 4 538.77 0.016 0.108 0.069 0.192 102 Kayea macrantha 11 15.71 14 4,794.23 0.140 0.296 0.240 0.676 103 Mammea acuminata 1 1.43 1 143.14 0.004 0.027 0.017 0.048 104 Mesua borneensis 1 1.43 1 320.63 0.009 0.027 0.017 0.053 105 Mesua caroidea 1 1.43 1 298.50 0.009 0.027 0.017 0.053 106 Mesua sp. 1 1 1.43 1 102.07 0.003 0.027 0.017 0.047 107 Mesua sp. 2 1 1.43 1 95.03 0.003 0.027 0.017 0.047 Family Importance Value 4.719 13 Combretaceae (3 ) 108 Terminalia foetidissima 4 5.71 4 1,342.12 0.039 0.108 0.069 0.215 109 Ellipanthus beccarii 1 1.43 1 314.16 0.009 0.027 0.017 0.053 110 Mastixia tricholoma 3 4.29 4 689.22 0.020 0.081 0.069 0.169 Family Importance Value 0.438 14 Crypteroniaceae (1 ) 111 Crypteronia cumingii 13 18.57 15 59,833.97 1.746 0.350 0.257 2.353 Family Importance Value 2.353 15 Ctenolophonaceae (1 ) 112 Ctenolophon parviflorus 3 4.29 2 495.60 0.014 0.081 0.034 0.129 Family Importance Value 0.129 16 Dilleniaceae (4 ) 113 Dillenia excelsa 18 25.71 21 7,974.88 0.233 0.484 0.360 1.077 114 Dillenia grandiflora 12 17.14 13 5,501.57 0.161 0.323 0.223 0.706 115 Dillenia obovata . 6 8.57 7 8,360.12 0.244 0.161 0.120 0.526 116 Dillenia pentagyna 1 1.43 1 116.90 0.003 0.027 0.017 0.047 Family Importance Value 2.357 17 Dipterocarpaceae (25 ) 117 Anisoptera costata 1 1.43 1 3,903.63 0.114 0.027 0.017 0.158 118 Dipterocarpus cornutus 33 47.14 56 93,147.45 2.719 0.888 0.961 4.567 119 Dipterocarpus gracilis 15 21.43 18 22,960.57 0.670 0.403 0.309 1.383 120 Dipterocarpus humeratus 8 11.43 9 2,949.50 0.086 0.215 0.154 0.456 121 Hopea dryobalanoides 10 14.29 11 1,602.06 0.047 0.269 0.189 0.505 122 Hopea mengerawan 9 12.86 24 9,409.26 0.275 0.242 0.412 0.929 123 Hopea rudiformis 1 1.43 1 1,320.25 0.039 0.027 0.017 0.083 124 Parashorea malaanonan 5 7.14 6 2,822.65 0.082 0.134 0.103 0.320 125 Shorea acuminatissima 2 2.86 2 2,255.07 0.066 0.054 0.034 0.154 126 Shorea almon 7 10.00 11 8,868.85 0.259 0.188 0.189 0.636 127 Shorea gibbosa 6 8.57 6 4,801.37 0.140 0.161 0.103 0.404 128 Shorea johorensis 1 1.43 1 226.98 0.007 0.027 0.017 0.051 129 Shorea kunstleri 1 1.43 1 555.71 0.016 0.027 0.017 0.060 130 Shorea laevis 42 60.00 112 304,547.17 8.888 1.130 1.922 11.940 131 Shorea lamellata 20 28.57 26 64,794.59 1.891 0.538 0.446 2.875 132 Shorea leprosula 17 24.29 29 27,590.48 0.805 0.457 0.498 1.760 133 Shorea ovalis 40 57.14 63 68,438.42 1.997 1.076 1.081 4.155 134 Shorea palembanica 8 11.43 8 5,381.47 0.157 0.215 0.137 0.510 135 Shorea parvifolia 29 41.43 42 72,416.11 2.114 0.780 0.721 3.614 136 Shorea pauciflora 5 7.14 7 64,986.79 1.897 0.134 0.120 2.151 137 Shorea smithiana . 17 24.29 18 38,451.69 1.122 0.457 0.309 1.888 138 Upuna borneensis 1 1.43 1 615.75 0.018 0.027 0.017 0.062 139 Vatica macrantha 22 31.43 48 20,564.74 0.600 0.592 0.824 2.016 140 Vatica rassak . 12 17.14 18 10,256.16 0.299 0.323 0.309 0.931 141 Vatica umbonata 39 55.71 56 22,428.86 0.655 1.049 0.961 2.665 Family Importance Value 44.272 316 REINWARDTIA [VOL.12 Number of Frequency Number of Basal Area Relative Relative Relative Importance No. Family and Species Occurrence (%) Trees (Cm2) Basal Area Frequency Density Value in plots (in 10.5 Ha) (%) (%) (%) 18 Ebenaceae (12) 142 Diospyros borneensis 61 87.14 195 52,219.17 1.524 1.641 3.347 6.512 143 Diospyros buxifolia 2 2.86 2 1,755.56 0.051 0.054 0.034 0.139 144 Diospyros elliptica 5 7.14 8 11,884.09 0.347 0.134 0.137 0.619 145 Diospyros macrocarpa 12 17.14 18 7,307.95 0.213 0.323 0.309 0.845 146 Diospyros maingayi 19 27.14 48 20,940.24 0.611 0.511 0.824 1.946 147 Diospyros malayana 1 1.43 1 510.71 0.015 0.027 0.017 0.059 148 Diospyros oblonga 15 21.43 26 5,646.10 0.165 0.403 0.446 1.015 149 Diospyros sp 1 1 1.43 1 111.22 0.003 0.027 0.017 0.047 150 Diospyros sp. 2 1 1.43 1 191.18 0.006 0.027 0.017 0.050 151 Diospyros sp. 3 2 2.86 3 287.15 0.008 0.054 0.051 0.114 152 Diospyros sumatrana 5 7.14 6 677.98 0.020 0.134 0.103 0.257 153 Diospyros wallichii 8 11.43 12 4,804.86 0.140 0.215 0.206 0.561 Family Importance Value 12.164 19 Elaeocarpaceae (5) 154 Elaeocarpus glaber 12 17.14 12 6,224.44 0.182 0.323 0.206 0.710 155 Elaeocarpus obtusus 2 2.86 2 701.87 0.020 0.054 0.034 0.109 156 Elaeocarpus oxypyrens 1 1.43 2 545.17 0.016 0.027 0.034 0.077 157 Elaeocarpus polystachyus 9 12.86 11 6,417.47 0.187 0.242 0.189 0.618 158 Sloanea javanica 1 1.43 1 346.36 0.010 0.027 0.017 0.054 Family Importance Value 1.568 20 Euphorbiaceae (45) 159 Antidesma neurocarpum 1 1.43 1 706.86 0.021 0.030 0.017 0.068 160 Aporusa elmeri 27 38.57 29 5,017.06 0.146 0.726 0.498 1.370 161 Aporusa falcifera 16 22.86 24 5,683.79 0.166 0.430 0.412 1.008 162 Aporusa lucida 5 7.14 6 2,450.46 0.072 0.134 0.103 0.309 163 Aporusa lunata 2 2.86 2 478.95 0.014 0.054 0.034 0.102 164 Aporusa maingayi 4 5.71 5 2,271.45 0.066 0.108 0.086 0.260 165 Aporusa nitida 1 1.43 2 184.92 0.005 0.027 0.034 0.067 166 Aporusa sp. 8 11.43 8 1,368.64 0.040 0.215 0.137 0.392 167 Aporusa sphaeridophora 8 11.43 8 1,368.64 0.040 0.215 0.137 0.392 168 Baccaurea costulata 18 25.71 23 5,928.13 0.173 0.484 0.395 1.052 169 Baccaurea kunstleri 3 4.29 3 493.87 0.014 0.081 0.051 0.147 170 Baccaurea macrocarpa 28 40.00 42 13,486.93 0.394 0.753 0.721 1.868 171 Baccaurea minor 4 5.71 4 553.61 0.016 0.108 0.069 0.192 172 Baccaurea parviflora 1 1.43 1 113.10 0.003 0.027 0.017 0.047 173 Baccaurea racemosa 7 10.00 7 12,883.86 0.376 0.188 0.120 0.684 174 Baccaurea sp. 1 1 1.43 1 615.75 0.018 0.027 0.017 0.062 175 Baccaurea sp. 2 1 1.43 1 136.85 0.004 0.027 0.017 0.048 176 Baccaurea sp. 3 1 1.43 1 188.69 0.006 0.027 0.017 0.050 177 Baccaurea sp. 4 1 1.43 1 408.28 0.012 0.027 0.017 0.056 178 Baccaurea sp. 5 1 1.43 3 436.76 0.013 0.027 0.051 0.091 179 Baccaurea sumatrana 9 12.86 9 1,814.82 0.053 0.242 0.154 0.450 180 Blumeodendron elatriospermum 3 4.29 3 488.67 0.014 0.081 0.051 0.146 181 Blumeodendron tokbrai 3 4.29 3 1,188.70 0.035 0.081 0.051 0.167 182 Chaetocarpus castanocarpus 21 30.00 25 14,811.69 0.432 0.565 0.429 1.426 183 Cleistanthus maingayi 1 1.43 1 95.03 0.003 0.027 0.017 0.047 184 Croton oblongus 16 22.86 24 4,227.28 0.123 0.430 0.412 0.966 185 Drypetes crassipes 3 4.29 1 900.26 0.026 0.081 0.017 0.124 186 Drypetes laevis 33 47.14 78 56,120.60 1.638 0.888 1.339 3.864 187 Drypetes littoralis 1 1.43 1 95.03 0.003 0.027 0.017 0.047 188 Drypetes longifolia 8 11.43 11 3,770.41 0.110 0.215 0.189 0.514 189 Drypetes minahasae 22 31.43 38 17,926.66 0.523 0.592 0.652 1.767 190 Drypetes sp. 1 1.43 1 201.06 0.006 0.027 0.017 0.050 191 Endospermum diadenum 3 4.29 4 1,701.44 0.050 0.081 0.069 0.199 192 Fahrenheitia pendula 6 8.57 6 1,317.20 0.038 0.161 0.103 0.303 193 Glochidion philippicum 7 10.00 7 1,510.91 0.044 0.188 0.120 0.353 194 Glochidion rubrum 4 5.71 5 1,294.68 0.038 0.108 0.086 0.231 195 Macaranga gigantea 8 11.43 9 6,069.00 0.177 0.215 0.154 0.547 196 Macaranga hypoleuca 5 7.14 5 1,181.77 0.034 0.134 0.086 0.255 197 Macaranga lowii 3 4.29 5 669.15 0.020 0.081 0.086 0.186 198 Macaranga tanarius 12 17.14 15 2,836.33 0.083 0.323 0.257 0.663 199 Macaranga winkleri 2 2.86 2 250.65 0.007 0.054 0.034 0.095 200 Mallotus penangensis 38 54.29 69 12,328.46 0.360 1.022 1.184 2.566 201 Mallotus leptophyllus 43 61.43 104 15,928.22 0.465 1.157 1.785 3.407 202 Neoscortechinia kingii 30 42.86 39 10,504.88 0.307 0.807 0.669 1.783 2008] KARTAWINATA et al::Wanariset dipterocarp forest structure 317 Number of Frequency Number of Basal Area Relative Relative Relative Importance No. Family and Species Occurrence (%) Trees (Cm2) Basal Area Frequency Density Value in plots (in 10.5 Ha) (%) (%) (%) 203 Pimeleodendron griffithianum 23 32.86 28 8,699.46 0.254 0.619 0.481 1.353 204 Ptychopyxis bacciformis 1 1.43 1 201.06 0.006 0.027 0.017 0.050 Family Importance Value 29.824 21 Fabaceae (19) 205 Archidendron clypearia 5 7.14 5 1,420.93 0.041 0.134 0.086 0.262 206 Archidendron microcarpum 5 7.14 5 6,417.90 0.187 0.134 0.086 0.408 207 Crudia reticulata 2 2.86 2 168.27 0.005 0.054 0.034 0.093 208 Crudia ripicola 1 1.43 1 962.11 0.028 0.027 0.017 0.072 209 Dialium hydnocarpoides 1 1.43 1 547.39 0.016 0.027 0.017 0.060 210 Dialium indum 7 10.00 9 2,909.06 0.085 0.188 0.154 0.428 211 Dialium platysepalum 5 7.14 5 3,675.24 0.107 0.134 0.086 0.328 212 Dialium sp. 1 1.43 1 2,436.69 0.071 0.027 0.017 0.115 213 Koompassia excelsa 13 18.57 15 14,019.13 0.409 0.350 0.257 1.016 214 Koompassia malaccensis 32 45.71 76 42,828.62 1.250 0.861 1.304 3.415 215 Milletia sericea 2 2.86 2 193.22 0.006 0.054 0.034 0.094 216 Parkia speciosa 1 1.43 2 4,964.70 0.145 0.027 0.034 0.206 217 Parkia timoriana . 5 7.14 5 29,722.22 0.867 0.134 0.086 1.088 218 Phitecelobium sp. 1 1.43 1 141.03 0.004 0.027 0.017 0.048 219 Pithecellobium microcarpum 3 4.29 3 988.22 0.029 0.081 0.051 0.161 220 Saraca declinata 3 4.29 3 431.36 0.013 0.081 0.051 0.145 221 Sindora leiocarpa 2 2.86 2 254.63 0.007 0.054 0.034 0.096 222 Sindora velutina 12 17.14 17 8,645.59 0.252 0.323 0.292 0.867 223 Uittienia modesta 2 2.86 2 228.97 0.007 0.054 0.034 0.095 Family Importance Value 8.995 22 Fagaceae 12) 224 Castanopsis costata 2 2.86 2 995.29 0.029 0.054 0.034 0.117 225 Castanopsis javanica 1 1.43 1 1,116.28 0.033 0.027 0.017 0.077 226 Castanopsis lucida 1 1.43 2 732.57 0.021 0.027 0.034 0.083 227 Castanopsis sp. 1 1.43 1 452.39 0.013 0.027 0.017 0.057 228 Lithocarpus blumeanus 18 25.71 29 15,863.89 0.463 0.484 0.498 1.445 229 Lithocarpus conocarpus 5 7.14 5 1,545.08 0.045 0.134 0.086 0.265 230 Lithocarpus hystrix 2 2.86 2 2,133.34 0.062 0.054 0.034 0.150 231 Lithocarpus sp. 1 1 1.43 1 186.27 0.005 0.027 0.017 0.049 232 Lithocarpus sp. 2 1 1.43 1 769.45 0.022 0.027 0.017 0.067 233 Lithocarpus sundaicus 4 5.71 4 3,680.77 0.107 0.108 0.069 0.284 234 Quercus argentata 8 11.43 10 7,462.50 0.218 0.215 0.172 0.605 235 Quercus gemelliflora 2 2.86 2 475.36 0.014 0.054 0.034 0.102 Family Importance Value 3.301 23 Flacourtiaceae (1) 236 Hydnocarpus polypetala 23 32.86 32 5,820.27 0.170 0.619 0.549 1.338 Family Importance Value 1.338 24 Hypericaceae (2) 237 Cratoxylon cochinchinense 1 1.43 1 1,075.21 0.031 0.027 0.017 0.075 238 Cratoxylon hypericinum 5 7.14 5 4,156.45 0.121 0.134 0.086 0.342 Family Importance Value 0.417 26 Icacinaceae (1) 239 Stemonurus sp. 1 1.43 1 229.66 0.007 0.027 0.017 0.051 Family Importance Value 0.051 27 Lauraceae (51) 240 Actinodaphne glomerata 1 1.43 1 283.53 0.008 0.027 0.017 0.052 241 Actinodaphne procera 4 5.71 6 1,347.67 0.039 0.108 0.103 0.250 242 Alseodaphne sp. 1 1 1.43 1 138.93 0.004 0.027 0.017 0.048 243 Alseodaphne sp. 2 8 11.43 9 4,093.17 0.119 0.215 0.154 0.489 244 Alseodaphne oblanceolata 9 12.86 11 4,027.09 0.118 0.242 0.189 0.548 245 Alseodaphne umbelliflora 9 12.86 9 8,616.86 0.251 0.242 0.154 0.648 246 Beilschmiedia glabra 7 10.00 7 1,734.66 0.051 0.188 0.120 0.359 247 Beilschmiedia maingayi 20 28.57 24 5,837.79 0.170 0.538 0.412 1.120 248 Beilschmiedia sp. 1 1 1.43 1 349.67 0.010 0.027 0.017 0.054 249 Beilschmiedia sp. 2 1 1.43 1 206.12 0.006 0.027 0.017 0.050 250 Cryptocarya crassifolia 1 1.43 1 314.16 0.009 0.027 0.017 0.053 251 Cryptocarya crassinervia 3 4.29 3 892.88 0.026 0.081 0.051 0.158 252 Cryptocarya cumingii 1 1.43 1 193.59 0.006 0.027 0.017 0.050 253 Cryptocarya ferrea 1 1.43 1 219.04 0.006 0.027 0.017 0.050 318 REINWARDTIA [VOL.12 Number of Frequency Number of Basal Area Relative Relative Relative Importance No. Family and Species Occurrence (%) Trees (Cm2) Basal Area Frequency Density Value in plots (in 10.5 Ha) (%) (%) (%) 254 Dehaasia borneensis 1 1.43 1 444.88 0.013 0.027 0.017 0.057 255 Dehaasia caesia 5 7.14 5 3,377.01 0.099 0.134 0.086 0.319 256 Dehaasia firma 1 1.43 1 136.85 0.004 0.027 0.017 0.048 257 Dehaasia incrassata 2 2.86 2 255.64 0.007 0.054 0.034 0.096 258 Dehaasia sp. 1 1.43 1 404.71 0.012 0.027 0.017 0.056 259 Endiandra beccariana 5 7.14 6 1,140.00 0.033 0.134 0.103 0.271 260 Endiandra rubescens 18 25.71 19 7,708.87 0.225 0.484 0.326 1.035 261 Eusideroxylon zwageri 55 78.57 112 93,791.11 2.737 1.479 1.922 6.139 262 Litsea accendens 2 2.86 2 487.39 0.014 0.054 0.034 0.102 263 Litsea angulata 1 1.43 1 397.61 0.012 0.027 0.017 0.056 264 Litsea crassifolia 1 1.43 1 459.96 0.013 0.027 0.017 0.057 265 Litsea elliptica 11 15.71 13 6,147.83 0.179 0.296 0.223 0.698 266 Litsea ferruginea 10 14.29 12 8,534.30 0.249 0.269 0.206 0.724 267 Litsea firma 2 2.86 2 712.37 0.021 0.054 0.034 0.109 268 Litsea grandis 9 12.86 10 3,329.13 0.097 0.242 0.172 0.511 269 Litsea lancifolia 2 2.86 2 308.14 0.009 0.054 0.034 0.097 270 Litsea mappacea 1 1.43 1 390.57 0.011 0.027 0.017 0.055 271 Litsea noronhae 4 5.71 4 1,672.54 0.049 0.108 0.069 0.225 272 Litsea resinosa 11 15.71 16 10,845.73 0.317 0.296 0.275 0.887 273 Litsea robusta 1 1.43 1 314.16 0.009 0.027 0.017 0.053 274 Litsea sp. 1 1 1.43 1 346.36 0.010 0.027 0.017 0.054 275 Litsea sp. 2 1 1.43 1 637.94 0.019 0.027 0.017 0.063 276 Litsea sp. 3 1 1.43 1 89.92 0.003 0.027 0.017 0.047 277 Litsea sp. 4 1 1.43 1 102.07 0.003 0.027 0.017 0.047 278 Litsea sp. 5 1 1.43 1 118.82 0.003 0.027 0.017 0.048 279 Litsea sp. 6 1 1.43 1 183.85 0.005 0.027 0.017 0.049 280 Litsea sp. 7 1 1.43 1 452.39 0.013 0.027 0.017 0.057 281 Litsea sp. 8 1 1.43 1 471.44 0.014 0.027 0.017 0.058 282 Litsea sp. 9 1 1.43 1 539.13 0.016 0.027 0.017 0.060 283 Litsea sp. 10 1 1.43 1 725.83 0.021 0.027 0.017 0.065 284 Litsea sp. 11 1 1.43 1 1,152.09 0.034 0.027 0.017 0.078 285 Litsea tomentosa 1 1.43 1 98.52 0.003 0.027 0.017 0.047 286 Litsea wallichii 1 1.43 1 84.95 0.002 0.027 0.017 0.047 287 Neolitsea cesiaefolia 4 5.71 4 505.50 0.015 0.108 0.069 0.191 288 Notaphoebe sp. 1 1.43 1 237.79 0.007 0.027 0.017 0.051 289 Notaphoebe umbelliflora 8 11.43 10 10,307.36 0.301 0.215 0.172 0.688 290 Phoebe laevis 4 5.71 4 1,922.09 0.056 0.108 0.069 0.232 Family Importance Value 17.408 28 Lecythidaceae (5) 291 Barringtonia acutangula 1 1.43 1 286.52 0.008 0.027 0.017 0.052 292 Barringtonia lanceolata 7 10.00 9 4,867.72 0.142 0.188 0.154 0.485 293 Barringtonia macrostachya 15 21.43 19 5,246.79 0.153 0.403 0.326 0.883 294 Barringtonia sp. 1 1.43 1 95.03 0.003 0.027 0.017 0.047 295 Planchonia valida 3 4.29 3 1,047.29 0.031 0.081 0.051 0.163 Family Importance Value 1.630 29 Loganiaceae (1) 296 Strychnos lucida 1 1.43 1 188.69 0.006 0.027 0.017 0.050 Family Importance Value 0.050 30 Lythraceae (1) 297 Lagerstroemia floribunda 6 8.57 9 6,505.05 0.190 0.161 0.154 0.506 Family Importance Value 0.506 31 Magnoliaceae (4) 298 Elmerillia tsiampacca 2 2.86 3 430.96 0.013 0.054 0.051 0.118 299 Magnolia candollii 1 1.43 1 122.72 0.004 0.027 0.017 0.048 300 Magnolia elegans 2 2.86 2 367.57 0.011 0.054 0.034 0.099 301 Magnolia sp. 4 5.71 4 663.21 0.019 0.108 0.069 0.196 Family Importance Value 0.460 32 Melastomataceae (14) 302 Memecylon beccarianum 6 8.57 6 2,593.09 0.076 0.161 0.103 0.340 303 Memecylon costatum 2 2.86 2 320.27 0.009 0.054 0.034 0.097 304 Memecylon lilacinum 7 10.00 8 2,081.88 0.061 0.188 0.137 0.386 305 Memecylon ovatum 6 8.57 8 1,263.34 0.037 0.161 0.137 0.336 306 Pternandra azurea 3 4.29 3 357.79 0.010 0.081 0.051 0.143 307 Pternandra caerulescens 32 45.71 60 11,172.08 0.326 0.861 1.030 2.217 2008] KARTAWINATA et al::Wanariset dipterocarp forest structure 319 Number of Frequency Number of Basal Area Relative Relative Relative Importance No. Family and Species Occurrence (%) Trees (Cm2) Basal Area Frequency Density Value in plots (in 10.5 Ha) (%) (%) (%) 308 Pternandra cordata 26 37.14 57 10,460.75 0.305 0.699 0.978 1.983 309 Pternandra galeata 21 30.00 25 4,376.10 0.128 0.565 0.429 1.122 310 Pternandra latifolia 2 2.86 2 254.01 0.007 0.054 0.034 0.096 311 Pternandra rostrata 14 20.00 21 2,786.40 0.081 0.377 0.360 0.818 312 Pternandra sp. 1 1 1.43 1 130.70 0.004 0.027 0.017 0.048 313 Pternandra sp. 2 1 1.43 1 86.59 0.003 0.027 0.017 0.047 314 Pternandra sp. 3 1 1.43 1 186.27 0.005 0.027 0.017 0.049 315 Pternandra sp. 4 1 1.43 1 136.85 0.004 0.027 0.017 0.048 Family Importance Value 3.519 33 Meliaceae (17) 316 Aglaia macrocarpa 6 8.57 13 2,514.29 0.073 0.161 0.223 0.458 317 Aglaia odorata 2 2.86 2 221.24 0.006 0.054 0.034 0.095 318 Aglaia silvestris 26 37.14 32 6,969.66 0.203 0.699 0.549 1.452 319 Aglaia sp. 1 1.43 1 109.36 0.003 0.027 0.017 0.047 320 Aphanamixis polystachya 12 17.14 15 4,866.39 0.142 0.323 0.257 0.722 321 Chisocheton cumingianus 1 1.43 1 143.14 0.004 0.027 0.017 0.048 322 Chisocheton medusae 5 7.14 6 2,331.40 0.068 0.134 0.103 0.306 323 Chisocheton sp. 5 7.14 1 246.06 0.007 0.134 0.017 0.159 324 Chisocheton patens 1 1.43 1 86.59 0.003 0.027 0.017 0.047 325 Dysoxylum arborescens 1 1.43 1 881.41 0.026 0.027 0.017 0.070 326 Dysoxylum densiflorum 2 2.86 2 364.57 0.011 0.054 0.034 0.099 327 Dysoxyllum excelsum 16 22.86 25 5,843.87 0.171 0.430 0.429 1.030 328 Dysoxylum macrocarpum 4 5.71 4 3,081.34 0.090 0.108 0.069 0.266 329 Dysoxylum pachyrache 4 5.71 4 598.12 0.017 0.108 0.069 0.194 330 Kokoona littoralis 3 4.29 3 1,641.02 0.048 0.081 0.051 0.180 331 Lansium domesticum 21 30.00 21 4,071.20 0.119 0.565 0.360 1.044 332 Sandoricum borneense 6 8.57 7 2,706.12 0.079 0.161 0.120 0.361 Family Importance Value 6.576 34 Monimiaceae (1) 333 Kibara coriacea 4 5.71 4 670.89 0.020 0.108 0.069 0.196 Family Importance Value 0.196 35 Moraceae (21) 334 Artocarpus altilis 6 8.57 6 2,939.32 0.086 0.161 0.103 0.350 335 Artocarpus anisophyllus 13 18.57 17 6,330.02 0.185 0.350 0.292 0.826 336 Artocarpus champeden 1 1.43 2 1,719.72 0.050 0.027 0.034 0.111 337 Artocarpus dadah 5 7.14 14 5,363.16 0.157 0.134 0.240 0.531 338 Artocarpus kemando 6 8.57 9 3,150.37 0.092 0.161 0.154 0.408 339 Artocarpus longifolius 1 1.43 1 235.06 0.007 0.027 0.017 0.051 340 Artocarpus nitidus 27 38.57 38 11,924.51 0.348 0.726 0.652 1.726 341 Artocarpus rigidus 12 17.14 16 3,729.70 0.109 0.323 0.275 0.706 342 Artocarpus sp. 1 8 11.43 9 7,243.06 0.211 0.215 0.154 0.581 343 Artocarpus sp.2 1 1.43 1 174.37 0.005 0.027 0.017 0.049 344 Artocarpus tamara 1 1.43 1 664.10 0.019 0.027 0.017 0.063 345 Ficus ampelas 1 1.43 1 130.70 0.004 0.027 0.017 0.048 346 Ficus aurata 2 2.86 2 211.76 0.006 0.054 0.034 0.094 347 Ficus crassiramica 1 1.43 1 136.85 0.004 0.027 0.017 0.048 348 Ficus sp. 1 2 2.86 2 295.98 0.009 0.054 0.034 0.097 349 Ficus sp. 2 2 2.86 2 463.40 0.014 0.054 0.034 0.102 350 Ficus sumatrana 3 4.29 3 327.63 0.010 0.081 0.051 0.142 351 Ficus sundaica 2 2.86 2 335.08 0.010 0.054 0.034 0.098 352 Ficus variegata 1 1.43 1 160.61 0.005 0.027 0.017 0.049 353 Ficus xanthophylla 4 5.71 4 3,609.92 0.105 0.108 0.069 0.282 Family Importance Value 6.363 36 Myristicaceae (33) 354 Gymnacranthera contracta 36 51.43 69 21,616.58 0.631 0.968 1.184 2.784 355 Gymnacranthera sp. 1 1 1.43 1 363.05 0.011 0.027 0.017 0.055 356 Gymnacranthera sp. 2 1 1.43 1 498.76 0.015 0.027 0.017 0.059 357 Gymnacranthera sp. 3 1 1.43 1 257.30 0.008 0.027 0.017 0.052 358 Horsfieldia bracteosa 18 25.71 27 10,393.08 0.303 0.484 0.463 1.251 359 Horsfieldia crassifolia 1 1.43 1 2,463.01 0.072 0.027 0.017 0.116 360 Horsfieldia glabra 20 28.57 32 14,414.24 0.421 0.538 0.549 1.508 361 Horsfieldia grandis 10 14.29 12 1,783.58 0.052 0.269 0.206 0.527 362 Horsfieldia irya 2 2.86 4 1,863.20 0.054 0.054 0.069 0.177 363 Horsfieldia punctatifolia 13 18.57 25 9,126.34 0.266 0.350 0.429 1.045 320 REINWARDTIA [VOL.12 Number of Frequency Number of Basal Area Relative Relative Relative Importance No. Family and Species Occurrence (%) Trees (Cm2) Basal Area Frequency Density Value in plots (in 10.5 Ha) (%) (%) (%) 364 Horsfieldia sp. 1 1 1.43 1 254.47 0.007 0.027 0.017 0.051 365 Horsfieldia sp. 2 1 1.43 1 206.12 0.006 0.027 0.017 0.050 366 Horsfieldia sp. 3 1 1.43 1 153.94 0.004 0.027 0.017 0.049 367 Horsfieldia sp. 4 1 1.43 1 176.71 0.005 0.027 0.017 0.049 368 Knema cinerea 28 40.00 72 21,642.47 0.632 0.753 1.236 2.621 369 Knema conferta 24 34.29 42 10,594.10 0.309 0.646 0.721 1.676 370 Knema latericia 19 27.14 24 5,754.04 0.168 0.511 0.412 1.091 371 Knema latifolia 4 5.71 6 1,248.47 0.036 0.108 0.103 0.247 372 Knema laurina 9 12.86 13 2,643.36 0.077 0.242 0.223 0.542 373 Knema lunduensis 23 32.86 29 7,643.17 0.223 0.619 0.498 1.339 374 Knema percoriacea 8 11.43 13 2,975.00 0.087 0.215 0.223 0.525 375 Knema sp. 1 1 1.43 1 283.53 0.008 0.027 0.017 0.052 376 Knema sp. 2 1 1.43 1 467.59 0.014 0.027 0.017 0.058 377 Knema sp. 3 1 1.43 1 514.72 0.015 0.027 0.017 0.059 378 Knema sp. 4 1 1.43 1 376.68 0.011 0.027 0.017 0.055 379 Knema sp. 5 1 1.43 1 452.39 0.013 0.027 0.017 0.057 380 Knema sp. 6 1 1.43 1 174.37 0.005 0.027 0.017 0.049 381 Myristica gaulterifolia 19 27.14 25 10,447.70 0.305 0.511 0.429 1.245 382 Myristica iners 2 2.86 2 286.07 0.008 0.054 0.034 0.096 383 Myristica lanceifolia 1 1.43 1 339.79 0.010 0.027 0.017 0.054 384 Myristica maxima 4 5.71 5 1,198.73 0.035 0.108 0.086 0.228 385 Myristica sp. 1 1.43 1 176.71 0.005 0.027 0.017 0.049 386 Myristica villosa 3 4.29 4 583.19 0.017 0.081 0.069 0.166 Family Importance Value 7.572 37 Myrsinaceae (1) 387 Ardisia sp. 1 1.43 1 105.68 0.003 0.027 0.017 0.047 Family Importance Value 0.047 38 Myrtaceae (59) 388 Cleistocalyx operculata 1 1.43 1 441.15 0.013 0.027 0.017 0.057 389 Eugenia acuminatissima 7 10.00 12 3,825.07 0.112 0.188 0.206 0.506 390 Eugenia acutangula 35 50.00 62 22,772.72 0.665 0.941 1.064 2.670 391 Eugenia albidiramea 10 14.29 15 9,549.71 0.279 0.269 0.257 0.805 392 Eugenia aquea 3 4.29 4 884.95 0.026 0.081 0.069 0.175 393 Eugenia beccarii 2 2.86 2 2,140.21 0.062 0.054 0.034 0.151 394 Eugenia boerlagei 6 8.57 9 4,743.91 0.138 0.161 0.154 0.454 395 Eugenia bruneorhamea 5 7.14 6 1,066.18 0.031 0.134 0.103 0.269 396 Eugenia corymbosa 21 30.00 38 15,267.54 0.446 0.565 0.652 1.663 397 Eugenia decipiens 4 5.71 8 2,846.91 0.083 0.108 0.137 0.328 398 Eugenia densiflora 1 1.43 1 176.71 0.005 0.027 0.017 0.049 399 Eugenia densinervia 2 2.86 2 745.47 0.022 0.054 0.034 0.110 400 Eugenia excelsa 1 1.43 1 706.86 0.021 0.027 0.017 0.065 401 Eugenia fastigiata 25 35.71 40 17,213.92 0.502 0.672 0.687 1.861 402 Eugenia jamboloides 8 11.43 9 4,955.50 0.145 0.215 0.154 0.514 403 Eugenia lanceolata 1 1.43 1 191.18 0.006 0.027 0.017 0.050 404 Eugenia lineata 7 10.00 7 1,151.49 0.034 0.188 0.120 0.342 405 Eugenia ochneocarpa 17 24.29 25 10,150.70 0.296 0.457 0.429 1.183 406 Eugenia oleosa F. Muell. 9 12.86 20 11,454.01 0.334 0.242 0.343 0.920 407 Eugenia opaca K. & V. 13 18.57 16 5,807.38 0.169 0.350 0.275 0.794 408 Eugenia operculata 1 1.43 1 441.15 0.013 0.027 0.017 0.057 409 Eugenia rostrata Bedd. ex Dut 2 2.86 2 617.52 0.018 0.054 0.034 0.106 410 Eugenia sp. 1 4 5.71 4 854.31 0.025 0.108 0.069 0.201 411 Eugenia sp. 2 3 4.29 6 2,111.62 0.062 0.081 0.103 0.245 412 Eugenia sp. 3 7 10.00 10 5,842.20 0.171 0.188 0.172 0.530 413 Eugenia sp. 4 1 1.43 2 465.31 0.014 0.027 0.034 0.075 414 Eugenia sp. 5 4 5.71 1 394.28 0.012 0.108 0.017 0.136 415 Eugenia sp. 6 1 1.43 1 83.32 0.002 0.027 0.017 0.046 416 Eugenia sp. 7 1 1.43 1 98.52 0.003 0.027 0.017 0.047 417 Eugenia sp. 8 1 1.43 1 109.36 0.003 0.027 0.017 0.047 418 Eugenia sp. 9 1 1.43 1 124.69 0.004 0.027 0.017 0.048 419 Eugenia sp. 10 1 1.43 1 136.85 0.004 0.027 0.017 0.048 420 Eugenia sp. 11 1 1.43 1 143.14 0.004 0.027 0.017 0.048 421 Eugenia sp. 12 1 1.43 1 151.75 0.004 0.027 0.017 0.048 422 Eugenia sp. 13 1 1.43 1 206.12 0.006 0.027 0.017 0.050 423 Eugenia sp. 14 1 1.43 1 268.80 0.008 0.027 0.017 0.052 424 Eugenia sp. 15 1 1.43 1 352.99 0.010 0.027 0.017 0.054 425 Eugenia sp. 16 1 1.43 1 397.61 0.012 0.027 0.017 0.056 426 Eugenia sp. 17 1 1.43 1 452.39 0.013 0.027 0.017 0.057 2008] KARTAWINATA et al::Wanariset dipterocarp forest structure 321 Number of Frequency Number of Basal Area Relative Relative Relative Importance No. Family and Species Occurrence (%) Trees (Cm2) Basal Area Frequency Density Value in plots (in 10.5 Ha) (%) (%) (%) 427 Eugenia sp. 18 1 1.43 1 530.93 0.015 0.027 0.017 0.060 428 Eugenia sp. 19 1 1.43 1 660.52 0.019 0.027 0.017 0.063 429 Eugenia sp. 20 1 1.43 1 730.62 0.021 0.027 0.017 0.065 430 Eugenia sp. 21 1 1.43 1 764.54 0.022 0.027 0.017 0.066 431 Eugenia sp. 22 1 1.43 1 907.92 0.026 0.027 0.017 0.071 432 Eugenia sp. 23 1 1.43 1 907.92 0.026 0.027 0.017 0.071 433 Eugenia sp. 24 1 1.43 1 951.15 0.028 0.027 0.017 0.072 434 Eugenia sp. 25 1 1.43 1 1,029.22 0.030 0.027 0.017 0.074 435 Eugenia sp. 26 1 1.43 1 1,640.30 0.048 0.027 0.017 0.092 436 Eugenia sp. 27 1 1.43 1 83.32 0.002 0.027 0.017 0.046 437 Eugenia sp. 28 1 1.43 1 98.52 0.003 0.027 0.017 0.047 438 Eugenia sp. 29 1 1.43 1 109.36 0.003 0.027 0.017 0.047 439 Eugenia sp. 30 1 1.43 1 124.69 0.004 0.027 0.017 0.048 440 Eugenia suringariana 19 27.14 43 22,042.61 0.643 0.511 0.738 1.892 441 Rhodamnia cinerea 7 10.00 8 3,765.40 0.110 0.188 0.137 0.435 442 Rhodamnia sp. 1 1 1.43 1 172.03 0.005 0.027 0.017 0.049 443 Syzygium aqueum 1 1.43 1 114.99 0.003 0.027 0.017 0.047 444 Syzygium corymbosum 1 1.43 1 226.98 0.007 0.027 0.017 0.051 445 Tristaniopsis obovata 1 1.43 1 260.16 0.008 0.027 0.017 0.052 446 Tristanopsis whiteana 4 5.71 7 3,347.54 0.098 0.108 0.120 0.325 Family Importance Value 14.918 38 Ochnaceae (1) 447 Gomphia serrata 3 4.29 4 3,252.70 0.095 0.081 0.069 0.244 Family Importance Value 0.244 39 Olacaceae (5) 448 Anacolosa frutescens 1 1.43 1 201.06 0.006 0.027 0.017 0.050 449 Ochanostachys amentacea 40 57.14 72 25,596.86 0.747 1.076 1.236 3.059 450 Scorodacarpus borneensis 12 17.14 17 7,612.93 0.222 0.323 0.292 0.837 451 Strombosia ceylanica 2 2.86 2 535.05 0.016 0.054 0.034 0.104 452 Strombosia javanica 4 5.71 4 1,298.09 0.038 0.108 0.069 0.214 Family Importance Value 4.263 40 Oxalidaceae (1) 453 Sarcotheca glauca 1 1.43 1 498.76 0.015 0.027 0.017 0.059 Family Importance Value 0.059 41 Podocarpaceae (1) 454 Nageia wallichiana 3 4.29 4 1,208.91 0.035 0.081 0.069 0.185 Family Importance Value 0.185 42 Polygalaceae (8) 455 Xanthophyllum adenotus 1 1.43 1 263.02 0.008 0.027 0.017 0.052 456 Xanthophyllum affine 2 2.86 2 571.78 0.017 0.054 0.034 0.105 457 Xanthophyllum scortechinii 10 14.29 12 7,025.07 0.205 0.269 0.206 0.680 458 Xanthophyllum sp.1 1 1.43 1 1,562.28 0.046 0.027 0.017 0.090 459 Xanthophyllum sp. 2 1 1.43 1 143.14 0.004 0.027 0.017 0.048 460 Xanthophyllum sp. 3 1 1.43 1 598.28 0.017 0.027 0.017 0.062 461 Xanthophyllum sp. 4 1 1.43 1 3,631.68 0.106 0.027 0.017 0.150 462 Xanthophyllum stipitatum 11 15.71 13 4,704.18 0.137 0.296 0.223 0.656 Family Importance Value 1.842 43 Proteaceae (2) 463 Helicia robusta 1 1.43 1 224.32 0.007 0.027 0.017 0.051 464 Heliciopsis incisa 1 1.43 1 229.66 0.007 0.027 0.017 0.051 Family Importance Value 0.101 44 Rhamnaceae (1) 465 Zizyphus angustifolius 4 5.71 4 4,146.51 0.121 0.108 0.069 0.297 Family Importance Value 0.297 45 Rhizophoraceae (3) 466 Carallia brachiata 6 8.57 8 7,184.41 0.210 0.161 0.137 0.508 467 Pelacalyx axilaris 4 5.71 5 3,632.48 0.106 0.108 0.086 0.299 468 Pellacalyx lobbii 5 7.14 1 804.25 0.023 0.134 0.017 0.175 Family Importance Value 0.983 322 REINWARDTIA [VOL.12 Number of Frequency Number of Basal Area Relative Relative Relative Importance No. Family and Species Occurrence (%) Trees (Cm2) Basal Area Frequency Density Value in plots (in 10.5 Ha) (%) (%) (%) 46 Rosaceae (4) 469 Licania splendens 27 38.57 27 27,448.19 0.801 0.726 0.463 1.991 470 Prunus arborea 10 14.29 10 4,280.74 0.125 0.269 0.172 0.566 471 Prunus beccarii 13 18.57 15 3,070.82 0.090 0.350 0.257 0.697 472 Prunus sp. 1 1 1.43 240.53 0.007 0.027 0.000 0.034 473 Prunus sp. 2 1 1.43 1 3,216.99 0.094 0.027 0.017 0.138 Family Importance Value - 1.434 47 Rubiaceae (22) 474 Adina minutiflora 5 7.14 5 6,614.45 0.193 0.134 0.086 0.413 475 Anthocephalus cadamba 20 28.57 28 98,044.19 2.861 0.538 0.481 3.880 476 Gardenia forsteniana 4 5.71 4 1,163.60 0.034 0.108 0.069 0.210 477 Gardenia sp. 1 1.43 1 349.67 0.010 0.027 0.017 0.054 478 Gardenia tubifera . 1 1.43 1 268.80 0.008 0.027 0.017 0.052 479 Ixora .grandifolia 3 4.29 4 395.95 0.012 0.081 0.069 0.161 480 Lasianthus sp. 1 1.43 1 145.27 0.004 0.027 0.017 0.048 481 Nauclea junghuhnii 2 2.86 2 516.50 0.015 0.054 0.034 0.103 482 Nauclea sp. 1 1.43 1 201.06 0.006 0.027 0.017 0.050 483 Nauclea subdita 1 1.43 2 714.43 0.021 0.027 0.034 0.082 484 Petunga sp. 1 1.43 1 196.07 0.006 0.027 0.017 0.050 485 Porterandia anisophylla . 10 14.29 10 2,952.47 0.086 0.269 0.172 0.527 486 Randia sp. 1 1.43 1 314.16 0.009 0.027 0.017 0.053 487 Tarenna winkleri 3 4.29 3 1,075.01 0.031 0.081 0.051 0.164 488 Timonius flavescens 7 10.00 7 1,664.09 0.049 0.188 0.120 0.357 489 Timonius sericeus 2 2.86 2 1,082.48 0.032 0.054 0.034 0.120 490 Tricalysia malaccensis 1 1.43 1 93.31 0.003 0.027 0.017 0.047 491 Tricalysia singularis 3 4.29 3 320.17 0.009 0.081 0.051 0.142 492 Urophyllum arboreum 5 7.14 5 1,119.94 0.033 0.134 0.086 0.253 493 Urophyllum borneensis 2 2.86 2 282.03 0.008 0.054 0.034 0.096 494 Urophyllum corymbosum 2 2.86 2 268.05 0.008 0.054 0.034 0.096 495 Urophyllum polyneurum 12 17.14 23 2,867.25 0.084 0.323 0.395 0.801 Family Importance Value 7.759 48 Sabaiaceae (1) 496 Meliosma sumatrana 5 7.14 5 2,767.26 0.081 0.134 0.086 0.301 Family Importance Value 0.301 49 Santalaceae (1) 497 Scleropyrum wallichianum 5 7.14 5 1,237.81 0.036 0.134 0.086 0.256 Family Importance Value 0.256 50 Sapindaceae (13) 498 Allophylus cobe 1 1.43 1 162.86 0.005 0.027 0.017 0.049 499 Didymocarpus sp. 1 1.43 1 226.98 0.007 0.027 0.017 0.051 500 Didymocarpus longan 7 10.00 7 930.20 0.027 0.188 0.120 0.336 501 Guioa sp. 1 1.43 1 183.85 0.005 0.027 0.017 0.049 502 Nephelium cuspidatum 4 5.71 4 539.34 0.016 0.108 0.069 0.192 503 Nephelium lappaceum 4 5.71 4 635.56 0.019 0.108 0.069 0.195 504 Nephelium maingayi 1 1.43 1 122.72 0.004 0.027 0.017 0.048 505 Nephelium ramboutan-ake 5 7.14 5 2,089.81 0.061 0.134 0.086 0.281 506 Paranephelium sp. 1 1.43 1 141.03 0.004 0.027 0.017 0.048 507 Pometia pinnata 14 20.00 17 3,697.80 0.108 0.377 0.292 0.776 508 Rhysotoechia acuminata 1 1.43 1 543.25 0.016 0.027 0.017 0.060 509 Xerospermum laevigatum 2 2.86 2 613.26 0.018 0.054 0.034 0.106 510 Xerospermum xanthophyllum 3 4.29 4 1,460.11 0.043 0.081 0.069 0.192 Family Importance Value 2.383 51 Sapotaceae (16) 511 Chrysophyllum lanceolatum 1 1.43 1 576.80 0.017 0.027 0.017 0.061 512 Ganua motleyana 24 34.29 101 92,233.50 2.692 0.646 1.734 5.071 513 Madhuca ligulata 1 1.43 2 2,116.49 0.062 0.027 0.034 0.123 514 Madhuca magnifolia 6 8.57 7 8,087.12 0.236 0.161 0.120 0.518 515 Madhuca malaccensis ( 1 1.43 3 1,620.98 0.047 0.027 0.051 0.126 516 Madhuca motleyana 3 4.29 4 3,721.56 0.109 0.081 0.069 0.258 517 Madhuca sericea 44 62.86 80 21,007.02 0.613 1.183 1.373 3.170 518 Madhuca sessiliflora 1 1.43 1 130.70 0.004 0.027 0.017 0.048 519 Palaquium calophyllum 10 14.29 14 6,978.71 0.204 0.269 0.240 0.713 520 Palaquium dasyphyllum 22 31.43 32 9,954.55 0.291 0.592 0.549 1.432 521 Palaquium ferox 10 14.29 12 9,806.05 0.286 0.269 0.206 0.761 2008] KARTAWINATA et al::Wanariset dipterocarp forest structure 323 in plots (in 10.5 Ha) (%) (%) (%) 522 Palaquium rostratum 26 37.14 41 12,565.50 0.367 0.699 0.704 1.770 523 Palaquium sericeum 3 4.29 3 413.71 0.012 0.081 0.051 0.144 524 Palaquium sp. 1 1.43 1 1,590.43 0.046 0.027 0.017 0.090 525 Payena lucida 15 21.43 20 8,807.83 0.257 0.403 0.343 1.004 526 Payena sericea 1 1.43 1 107.51 0.003 0.027 0.017 0.047 Family Importance Value 15.335 52 Simarubaceae (1) 527 Irvingia malayana 5 7.14 5 4,917.83 0.144 0.134 0.086 0.364 Family Importance Value 53 Sonneratiaceae (1) 528 Duabanga moluccana 1 1.43 1 122.72 0.004 0.027 0.017 0.048 Family Importance Value 0.048 54 Sterculiaceae (9) 529 Heritiera javanica 1 1.43 1 176.71 0.005 0.027 0.017 0.049 530 Heritiera littoralis 8 11.43 8 3,001.48 0.088 0.215 0.137 0.440 531 Heritiera simplicifolia 6 8.57 6 3,826.99 0.112 0.161 0.103 0.376 532 Pterocymbium tubulatum 8 11.43 8 1,943.91 0.057 0.215 0.137 0.409 533 Pterygota sp. 2 2.86 2 3,079.08 0.090 0.054 0.034 0.178 534 Scaphium macropodum 20 28.57 26 165,001.32 4.816 0.538 0.446 5.800 535 Sterculia gilva 4 5.71 5 2,058.76 0.060 0.108 0.086 0.253 536 Sterculia rubiginosa 7 10.00 7 2,062.43 0.060 0.188 0.120 0.369 537 Sterculia sp.1 1 1.43 1 136.85 0.004 0.027 0.017 0.048 Family Importance Value 7.923 55 Symplocaceae (1) 538 Symplocos odorartissima 1 1.43 1 100.29 0.003 0.027 0.017 0.047 Family Importance Value 0.047 56 Theaceae (3) 539 Schima wallichii 5 7.14 5 4,723.370 0.138 0.134 0.086 0.358 540 541 Tetramerista glabra 8 11.43 11 18,722.63 0.546 0.215 0.189 0.950 Thea sp. 1 1.43 1 80.12 0.002 0.027 0.017 0.046 Family Importance Value 1.309 57 Thymelaeaceae (4) 542 Aquilaria malaccensis 22 31.43 30 18,030.69 0.526 0.592 0.515 1.633 543 Gonystylus forbesii 1 1.43 1 113.10 0.003 0.027 0.017 0.047 544 Gonystylus macrophyllus 7 10.00 7 1,530.18 0.045 0.188 0.120 0.353 545 Gonystylus velutinus 4 5.71 4 1,242.89 0.036 0.108 0.069 0.213 Family Importance Value 2.246 58 Tiliaceae (4) 546 Microcos crassifolia 3 4.29 3 403.18 0.012 0.081 0.051 0.144 547 Microcos hirsuta 2 2.86 2 202.39 0.006 0.054 0.034 0.094 548 Pentace laxiflora 21 30.00 30 9,843.85 0.287 0.565 0.515 1.367 549 Pentace triptera 1 1.43 1 174.37 0.005 0.027 0.017 0.049 Family Importance Value 1.654 59 Ulmaceae (2) 550 Gironniera nervosa 26 37.14 54 19,101.88 0.557 0.699 0.927 2.184 551 Gironniera subaequalis 1 1.43 1 237.79 0.007 0.027 0.017 0.051 Family Importance Value 2.235 1 1.43 1 298.65 0.009 0.027 0.017 0.053 60 Urticaceae (1) 552 Poikilospermum suaveolens 1 143.00 1 298.65 0.009 0.027 0.017 0.053 Family Importance Value 0.053 61 Verbenaceae (2) 553 Teijsmanniodendron bogoriense 2 2.86 2 4,183.23 0.122 0.054 0.034 0.210 554 Teijsmanniodendron coriaceum 1 1.43 1 81.71 0.002 0.027 0.017 0.046 Family Importance Value 0.257 62 Violaceae (1) 555 Rinorea benghalensis 17 24.29 28 13,946.90 0.407 0.457 0.481 1.345 Family Importance Value 1.345 Number of Frequency Number of Basal Area Relative Relative Relative Importance No. Family and Species Occurrence (%) Trees (Cm2) Basal Area Frequency Density Value TOTAL 3,762 5,515.86 5,848 3,500,424.54 102.162 101.187 100.378 303.726 324 REINWARDTIA [VOL.12 INSTRUCTION TO AUTHORS Manuscripts intended for publication in Reinwardtia should be written either in English, French or German, and represent articles wich have not been published in any other journal or proceedings. Each manuscript received will be considered and processes further if it is accompanied by signed statements given independently by two reviewers chosen by the author (s) attestingto its merits as well as its scientific suitability for publication in Reinwardtia. Two printed copies (on A4 paper) of the manuscript of not more than 200 pages should be sent to Editors, together with an electronic copy prepared on Word Processor computer programme using Times New Romance letter type and saved as Rich Text File must be submitted. For the style of presentation autohrs should follow the latest issue of Reinwardtia very closely. Title of the article should be followed by author's name and mailing address and one-paragraphed abstract in English (with French or German abstract for paper in french or German) of not more than 250 words.Keywords should be given below each abstract, on a peparated paper author(s) sholud the preferred running title of the article submitted. Taxonomic keys should be prepared using the aligned-couplet type. Strict adherence to the International Code of Botanica Monenclatural is observed, so that taxonamix and nomenclatural novelties sholud be clearly shown, Latin description for new taxon proposed should be provided, and the herbaria where type specimens are deposited should be indicated. Synonyms should be presented in the long form [name of taxon, author's name, year of publication, abbreviated journal or book title, volume (number): [page]. Maps, line drawing illustrations or photographs preferably should be prepared in landscape presentation to occupy two columns. Illustrations must be submitted as original art accompanying, but separated from the manuscript. On electronic copy, the illistration sholud be saved in .jpg or .gif format. Legends for illustrations must be submitted separately at the end of the manuscript. Bibliography, list of literature cited or references follow the Harvard system. For each paper published author(s) will receive 25 copies of reprints free og charge, any additional copies should be ordered in advance and the author(s) will be charged accordingly. ISSN 0034 365 X REINWARDTIA Vol. 12. No. 4. 2008 CONTENTS Page J.F. VELDKAMP. The correct name for the Tetrastigma (Vitaceae) host of Rafflesia (Rqfflesiaeeae) in Malesia and a (not so) new species ... 261 WJ.J.ODE WILDE &B.E.E. DUYFES. Miscellaneous South East Asian cucurbit news 267 M.A. RIFAI. Endophragmiella bogoriensis Rifai,spec. nov (Hyphomycetes) 275 M.A. RIFAI. Another note on PodoconismegaspemiaBoedijn(Hyphomycetes) 277 TOPIK HID A W ; M. ITO; T. YUKAWA. The phylogenetic position of the Papuasian genus Sarcochilus R.Br. (Orchidaceae: Aeridinae): evidence frommolecular data 281 C.E. RIDSDALE. Notes on MaiesiznNeonaucleea 285 C.E. RIDSDALE. Thorny problems in the Rubiaceae: Benkara, Fagerlindia andOxyceros 289 KUSWATAKARTAWINAIA, PURWANINGSIH, T. PARTOMIHARDJO, R. YUSUF, R. ABDULHADI, S. RISWAN. Floristics and structure of a lowland dipterocarp forest at Wanariset Samboja, East Kalimantan, Indonesia 301 RUGAiAH & S. SUNARTI. Two new wild species of Averrhoa (Oxalidaceae) from Indonesia 325 ATIKRETNOWATI. Anew Javanese species of Marasmius (Trichlomataceae ) 334 Reinwardtia is a LEPI acredited Journal (80/Akred-LIPI/P2MBI/5/2007) HERBARIUM BOGORIENSE BIDANG BOTANI , PUS AT PENELITIAN BIOLOGI - LIPI BOGOR, INDONESIA depannnn 72-146-1-SM blkngg