DOI: 10.2478/romneu-2018-0031

Techniques of Surgery for Lumbar Spinal Stenosis: A comparative study

Gabriel Iacob, Abdul Salam, Abdul Rahman Hawis

"Carol Davila" University of Medicine and Pharmacy, Bucharest, ROMANIA

Abstract: Aim: To compare between classic open surgeries and minimally invasive surgeries in Lumbar Spinal Stenosis. Methods: A comparative descriptive study, involved 117 patients suffering from lumbar canal stenosis, aged between 40-70 years; admitted to department of Neurosurgery from March 2011 till august 2016 in King Fahad Hospital in Saudi Arabia. Study groups are consisted of group A as patients managed with classical laminectomy, group B as patients managed with Endoscopic spinal procedures and group C as patients managed with Microscopic decompression facilitated by the Metrex Tubular System. SPSS was used in data entry and analysis, and ethical considerations taken into consideration and participants filled the required inform consents. Results: Age of particaoncet ranged from 45 - 63 Year, Mean +/- 50. The degenerative canal stenosis with acute disc single level (cauda equina syndrome) was the most common type of lumbar canal stenosis encountered in group A, the unilateral foraminal and lateral recess stenosis without disc prolapse was the most common type of lumbar canal stenosis encountered in group B, while The unilateral foraminal and lateral recess stenosis without disc prolapse was the most common type of lumbar canal stenosis encountered in group C. Classic laminectomy and disectomy used mostly in group A, endoscopic unilateral decompression lamino-foraminotomy without discectomy used mostly in group B and bilateral microscopic laminectomy without discectomy followed by unilateral microscopic lamino-foraminotomy without discectomy used mostly in group C. Mean of operation duration was the highest in both gender of group A, followed by group B, then group C. Unintended durotomy was the most common intra operative complications occurred in the whole study especially in group A. Mean of blood lost was the highest in both gender of group A, followed by group B, then group C. Postop complications in the patients of study Groups was the highest in group A (33.3 %), followed by group B (8.5 %) and then group C (2 %). Conclusion: Microscopic decompression facilitated by the Metrex Tubular System is the most effective techniques of Surgery for Lumbar Spinal Stenosis and the least intraoperative and post-operative complications.

Key words: Minimally invasive microscopic technique is the golden standard in lumbar canal stenosis.

Introduction

Lumbar spinal stenosis (LSS) is a common and often disabling, well-recognized spinal disorder that generally occurs in the sixth or seventh decade of life, although it can uncommonly occur in younger individuals. Degenerative LSS including intervertebral disc bulge, ligamentum flavum hypertrophy/calcification, facet ioint hypertrophy, cause neural compression in the vertebral canal, lateral recess, or intervertebral foramen, resulting in pain, impaired function, and decreased quality life [6,39].

Lumbar spinal stenosis or "loss of epidural reserve "could affect the central lumbar spinal canal± lateral recess ± the neuro-foramen or any combination of these, causing nervous impingement and vascular structures compression [36,75]. Lumbar canal stenosis is the disease of elderly patients which interfere with the quality of the life of those patients which cannot tolerate the pain and it is impaired their function.

Recently there were increasing in the diagnosis of LSS due the revolution in the radiological machines and increasing our experience in this disease as it is become the most common spinal surgery nowadays. Surgical treatment of LSS is recommended after failure of conservative medical therapy; however, the optimal procedure is still debated [45,73,74].

The treatment choice in LSS should consider the following:

A medical treatment should precede the surgical one.

There is no recommendation referring to the timing of surgery, except motor deficit, cauda equina syndrome with bladder/bowel dysfunction.

It is important to inform the patient about the difference between lumbar pain and the diagnosis of radicular syndrome and that surgery is not effective in lumbar pain.

The number of nerve roots requiring decompression is often smaller than what appears in radiological studies. Therefore, surgical procedures should not be based on X-ray studies alone.

Our surgical strategy according to the therapeutic objectives, constraints physiological analysis of imbalances was clearly precised in the informed consent, corresponding with patients expectations: never preventive, minimally invasive decompressive technique for the lumbar canal and the roots, to minimize tissue damage, avoiding destabilization, minimizing time of surgery, postoperative morbidity, length of hospital stay and avoiding complications to achieve a good quality of life using a minimally invasive techniques for "maximum effect with minimum trauma", thinking to an unique surgical procedure.

Material and Methods

A descriptive study involved 100 patients suffering from lumbar canal stenosis, aged between 40-75 years; admitted to Department of Neurosurgery from March 2011 till august 2016. SPSS was used in data entry and analysis, and ethical considerations taken into consideration and participants filled the required inform consents.

Study groups

Group A: Classical laminectomy.

Group B: Endoscopic spinal procedures

Group C: Microscopic decompression facilitated by the tubular lumbar system.

All patients of this study were enrolled and surveyed 3, 6 12 and 24 months post operatory, for symptomatic lumbar spine stenosis at one/several levels or lumbar stenosis with aggravating factors. As a precondition for inclusion in the study, (unsuccessful) conservative treatment was first tried to all patients with radiculalgia, for at least 3 months, in an effort to reduce pain, augmenting walking distance, maintaining a better posterior pelvic tilt, improving muscles strength, endurance and flexibility.

Inclusion criteria included:

Co-existing multiple or single level disc prolapse with a multistage lumbar spinal stenosis without scoliosis, degenerative listhesis and posterior arthrosis at one or several levels, scoliosis with a small and a big radius of curvature and facet joint cyst.

The conservative treatment methods that were used based on observation and clinical judgments included: activity restrictions like avoiding hyperextension and side bending, lumbo-sacral orthoses for a limited number of hours per day, to avoid atrophy of paraspinal muscles, Physical therapy as active exercises in the form of stretching to increase lumbo-pelvic muscular stabilization, distraction, manipulation and neural mobilization, encouraging lumbar flexion and flattening of the lumbar lordotic curve, also exercises performed during lumbar flexion, such as bicycling, In aditiuon to massage,

acupuncture, biofeedback, hot or cold packs and ultrasounds, analgesics such as antiinflammatory medications, vasodilators, anxiolytic and antidepressive medication, and epidural injections with corticoid products made blindly or under fluoroscopic control that used when pain relievers were ineffective and conservative treatment has failed to give adequate results in 3 months, surgical alternative was applied in all patients.

Characteristics of the study groups

Demographic characteristics of group A – classic open laminectomy

Group A included 21 patients who underwent classic open laminectomy under several procedure variations.

Age distribution of laminectomy patients

The age distribution per gender within group A was balanced between sexes, with a smooth distribution between the extreme ages. The extreme ages, -both minimal (45 in both sexes) and maximal ages (66 vs. 68) in both sexes were well matched as were the age distributions in both sexes, despite the different number of patients per gender in this group, with slightly older (68 vs. 66) male patient.

The patients in group B had ages between 45 and 63 years, with an average age of a 49.2381years for females and 49.80769 for males. The median value for the group was 48 for the female patients and 49 for the male patients, just a bit lower than the average age for the group, with a standard deviation of 4.369265years for the female patients and 3.370688 for the male patients, suggesting a well-balanced study group with a distribution

only approximating a normal distribution as shown in Table 1. The extreme ages, -both minimal and maximal ages in both sexes were well matched as were the age distributions in both sexes, despite a slightly older (63 vs. 58) female patient and the different number of patients per gender in this group. The overall mean age in Group B was 49.55319, with a standard deviation of 3.815349 for the entire group B, and a general median of 49.

The patients in group C had ages between 45 and 62 and 58 years respectively in females and in males, with an average age of 49.284 years for females and 49.5 for males. The median value for group C was 47 for the female patients and 48.5 for the male patients,

just a bit lower than the average age for the group, with a standard deviation of 5.161395 for the female patients and 3.451528 for the male patients, suggesting a well-balanced study group with a distribution only approximating a normal distribution as shown in table 1.

The overall mean age in Group C was 49.77083, with a standard deviation of 4.357628 for the entire group C, and a general median of 49. The age distribution by gender -the so called "age pyramid" of the sample the study group-, is very well-shaped for such a small sample size, with a minimal skew due to the difference of 1 case in the age group 45-50 years.

Table 1 Age distribution of study Groups

Parameter	Group A	Group B	Group C
Minimal age of the whole group	45	45	45
Maximal age of the whole group	63	63	62
Mean - average age of patient of the whole group	52.76	49.23	49.77
Standard deviation of the mean for the whole group	7.09	4.36	4.35
Female minimal age	45	45	47
Female maximal age	66	63	62
Mean - average age of female patient	53.62	49.23	49.84
Standard deviation of the mean	7.90	4.36	5.16
Median age of the female	51.5	48	49
Males minimal age	45	45	45
Males maximal age	68	58	58
Mean - average age of male patient	52.23	49.80	49.5
Standard deviation of the mean in the males	6.83	3.37	3.45
Median age of the males	51	49	48.5

Type of pathologies

The type of pathology exhibited by the patients included in each of the study groups it was surgically distinct for the 3 study groups as shown in Table 2. In this regard, group A exhibited 8 types of pathologies.

The degenerative canal stenosis with acute disc single level was the most common type of lumbar canal stenosis encountered in group A, with 5 cases more than the central lumbar canal stenosis, which came in second with 4 cases. The least number of cases were encountered for the degenerative canal stenosis with facet cyst single level and the unstable canal stenosis with degenerative scoliosis from L2-L5 (large curve) which presented only 1 case each.

The patients from group B exhibited 4 types of pathology, as summarized in Table 2.

The unilateral foraminal and lateral recess stenosis without disc prolapse was the most common type of lumbar canal stenosis encountered in group B, with 7 cases more than the bilateral foraminal and lateral recess stenosis without disc prolapse, which came in

second with 13 cases. The least number of cases were encountered for the bilateral foraminal and lateral recess stenosis with disc prolapse which presented only 4 cases.

From this we can conclude that the most common type of lumbar canal stenosis encountered in our study is the peripheral one. The patients from group C exhibited 3 types of pathology. The unilateral foraminal and lateral recess stenosis without disc prolapse was the most common type of lumbar canal stenosis encountered in group C, with 7 cases more than the bilateral foraminal and lateral recess stenosis withoutdisc prolapse, which came in second with 13 cases. The least number of cases were encountered for the bilateral foraminal and lateral recess stenosis withdisc prolapse which presented only 4 cases.

Table 2Type of pathologies

Group A		Group B		Group C	
Central lumbar canal stenosis	4	Unilateral foraminal and lateral recess stenosis without disc prolapse	20	Unilateral foraminal and lateral recess stenosis without disc prolapse	30
Mixed(lateral and central)LSS	2	Unilateral foraminal and lateral recess stenosis with posterolateral disc prolapse	10	Unilateral foraminal and lateral recess stenosis with posterolateral disc prolapse	6
Degenerative LSS with facet cyst single level	1	Bilateral foraminal and lateral recess stenosis without disc prolapse	13	Bilateral foraminal and lateral recess stenosis without disc prolapse	13
Degenerative LSS with acute disc prolapse single level	5	Bilateral foraminal and lateral recess stenosis with disc prolapse	4		
Unstable LSS with two levels disc prolapse	3				

2/	
7.4	F 7

Unstable LSS with one level disc prolapse	2		
Unstable LSS with degenerative scoliosis small curve from L2 to L5	3		
Unstable LSS with degenerative scoliosis big curve from L2 to L5	1		

Type of procedure used in the study

For the surgical management of the patients in the study group A several types of the classical open surgical procedures were used. In this regard, the patients in the study group A had undergone the most numerous variations of surgical procedures, as 9 types of procedures were used in this group for only 21 patients in total, as shown in Table 3.

The most common procedure used in group A is the classic laminectomy and disectomy with 5 patients. It was followed by fusion and correction of deformity after bilateral facectomy and decompression from L2-L5 with 4 cases treated this way.

Three types were the least common procedures each used for 1 patient; these being:

- i decompression and facectomy and fusion
 - ii Weiner technique
 - iii hinge osteotomy

For the surgical management of the patients in the study group B several types of the minimally invasive surgical procedures with endoscopic approach were used. In this regard, the patients in the study group B had undergone less numerous variations of surgical procedures than group A, as only 4 types of procedures were used in this group

for a total of 47 patients in this group, as shown in Table 3.

The most common procedure used in group B is the endoscopic unilateral decompression without discectomy which was performed on 20 of the patients in group B.

It was followed by bilateral endoscopic decompression without discectomy, with 13 cases treated this way, almost the same as the endoscopic unilateral decompression with discectomy which was performed on 10 patients. The least common procedure was bilateral endoscopic laminoforaminectomy with discectomy used for 4 patients.

For the surgical management of the patients in the study group C several types of decompresion microscopic surgical procedures were used. In this regard, the patients in the study group C had undergone numerous variations of surgical procedures than groups A, as 5 types of procedures were used for a total of 49 patients in this group, as shown in Table 3. The most common procedure used in group C (on 13 is bilateral microscopic patients) the laminectomy without discectomy followed by microscopic lamino-foraminotomy without discectomy which was performed on 11 of the

patients out of 49 in group C, almost the same as the unilateral microscopic laminectomy. with 10 cases treated this way. The least

common procedure was the unilateral microscopic lamino-foraminotomy with discectomy used for 1 patient.

Table 3

Types of procedure used in the study groups

Group A	n.	Group B	n.	Group C
Bilateral decompression	4	Bilateral endoscopic	4	Unilateral microscopic
laminectomy, facetectomy		lamioforaminectomy with		lamino-foraminotomy
from L2 to L5 and		discectomy		and discectomy one level
correction of degenerative				
scoliosis by fusion				
Laminectomy and medial	2	Bilateral endoscopic	13	Unilateral microscopic
facetectomy, discectomy,		lamioforaminectomy		lamino-foraminotomy
cage with TLIF fusion		without discectomy		two levels
Laminectomy and medial	3	Endoscopic unilateral	10	Bilateral microscopic
facetectomy, discectomy		decompression with		lamino-foraminotomy
with PLI fusion		discectomy		without discectomy
Classic laminectomy and	5	Endoscopic unilateral	20	Unilateral microscopic
discectomy		decompression without		laminectomy with
		discectomy		discectomy two levels
Decompression	1			Unilateral microscopic
laminectomy, facetectomy				lamino-foraminotomy
and fusion				one level
Laminectomy and	2			Unilateral microscopic
artherectmy				laminectomy
Weiner technique	1			
Hinge osteotomy	1			
Classic laminectomy and	2			
bilateral foraminectomy				

Duration of surgical interventions

For the patients included in the study group A, a total number of 2540 hours of intervention time was spent, split 1370/2140 respectively between females and males. The times for the males had a larger variance and standard deviation than for females as shown in Table 4.

In study group, the total time required for the surgical procedures was higher in male patients than in the female patients (2140/1370), also the maximal absolute values (300 min in males vs. 240 min in females) and the average times of surgical procedures (166.92307 \pm 64.50253424min in males vs. 171.25 \pm 56.10895min in females) but not the minimal absolute times which had higher

values in female patients than in male patients(90 min in males vs. 95 min in females), as shown in Table 4. The median time required for a surgical intervention in group A was also lower in male patients than in female patients (145 min in males vs. 180min in females).

For the patients included in the study group B a total number of 2434 hours of intervention time was spent, split 1034/1400 respectively between female patients and male patients

In study group, the total time required for the surgical procedures was higher in male patients than in the female patients, also the maximal absolute values (75 min in males vs. 70 min in females) and the average times which had higher values in male patients than in female patients (53.84615 ± 11.51588min in males vs. 52.85714 ± 9.561829min in females), as shown in Table 4. The median time required for a surgical intervention in group B was equal in both sexes (55min).

For the patients included in the study group C a total number of 2090 hours of intervention time was spent, split 1040/1050 respectively between female patients and male patients. In study group C, the total time required for the surgical procedures was higher in females than in males, also the maximal absolute values (90 min in males vs. 60 min in females) but not the average times which had higher values in male patients than in female patients (43.75 \pm 8.628819 min in males vs. 42.8 ± 12.75408 min in females), as shown in Table 4. The median time in group C was also higher in males than in females (45 min in males vs. 40 min in females).

Table 4 Duration of surgical interventions among study groups

Parameter	Group A	Group B	Group C
Maximal time duration in the Female / Minute	95	40	30
group minimal time			
Minimal time duration in the Female group time	240	70	90
Mean duration in the Female group	171	52.8	42.8
Standard deviation of the mean in the Female group	565	9.5	12.7
Median duration in the Female group	180	55	40
minimal time duration in the in the Male group	90	40	30
maximal time duration in the in the Male group	300	75	60
Mean duration in the Male the group	166	53.8	43.7
Standard deviation of the mean in the Male group	64.5	11.5	8.6
Median duration in the Male the group	145	55	45

Intraoperative complications

In the study group A one type of intraoperative complications occurred, represented by unintended durotomy in 3 cases out of 21, which makes for 14.3% of the total number of surgical interventions performed in this study group as shown in Table 5.

The patients in group B exhibited only one case of nerve root injury, making for a percentage of complications of 2.1% in a total number of 47cases in group B, as shown in Table 5. From the above table we can conclude that patients who had undergone minimally invasive surgeries like endoscopic and microscopic procedures had the least intraoperative complications. Of the 3 intra operative complications occurred in the whole study, the patients in group C exhibited only one case of failure to access target, making for a percentage of complications of 2% in a total number of 49cases in group C, as shown in Table 5.

 Table 5

 Intra operative complications of study Groups

1 1		,	1
Complication type	Group	Group	Group
	A	В	С
Unintended durotomy	3	0	0
Failure to access target	0	0	1
Nerve root injury	0	1	0
Percentage of	14.3%	2.1%	2%
complications			

Intra-operative blood loss

For the patients included in the study group A a total amount of 3150 mL of blood was lost during surgical procedures, split 1215/1935mL respectively between female patients and male patients.

In study group A, the total amount blood lost during surgical procedures was higher in male patients than in the female patients, both in the maximal absolute individual values (240 mL in males vs. 200 mL in females) and in the average amounts which had higher values in male patients than in female patients (148.85 \pm 32.414mL in males vs. 141.88 \pm 31.275 mL in females), as shown in Table 4. The median amount of blood lost during surgical procedures was lower though in male patients than in the female patients in group A (140mL vs. 152.5mL)

The very large value of the standard deviation in the male group was due to the one outlier case which lost 240mL of blood during the surgical procedure, apparently making the distribution in this segment of group A non-normal distribution. Besides the statistical argument, such a large amount of blood lost in this type of surgical procedure is totally uncharacteristic for such procedure; therefore exclusion of that case from the sample also makes a clinical sense. The unusually high amount of blood lost during the surgical procedure was correlated with a longer procedure and also with the longer time spent in hospital by that patient.

Eliminating the outlier from the sample and excluding the outlier value of 240mL brings the maximal amount of blood loss in the male group to 185mL, a value still higher than the corrected one in the female group (180mL), the mean in the male group to 141mL, the Standard deviation to 18.106, and the median in males to 140mL, brings the

statistics closer to the ones for the female segment of group A, as shown in Table 6. Deviation in Group A to 31.225, and the median in Group A to 140mL, as shown in Table 4. This makes this group relatively well balanced also with regard to the amount of blood loss during surgical procedures, confirming the validity of the sample group. Eliminating the outliers from the sample and excluding the outlier values of 200mL and 240mL brings the overall maximal amount of blood loss in Group A to 185mL, the overall mean amount of blood loss in Group A to 145.588mL, the Standard.

For the patients included in the study group B a total amount of 2400 mL of blood was lost during surgical procedures, split 1075/11325 respectively between female patients and male patients

In study group B, the total amount blood lost during surgical procedures was higher in malepatients than in the female patients, also the maximal absolute values (80 mL in males vs. 75 mL in females) but not in the average amounts which had higher values in female patients than inmale patients (51.19048± in females 50.96154± 16.9488mL vs. 17.49395mL in males), as shown in Table 6. The median amount of blood lost during surgical procedures was higher in males than in females in group B (52.5 vs. 50) as shown in Table 6.

Table 6 Intra-operative blood loss in surgical interventions of study Groups

	•	•	
Parameter	Group	Grou	Grou
	A	pВ	рC
Minimal amount of blood loss in	120	30	15
the Male group / ml			
Maximal amount of blood loss in the Male group	240	80	60
Mean amount of blood loss in the Male group	148.85	50.96	32.70
Standard deviation of the mean in the Male group	32.41	17.49	9.77
Median amount of blood loss in the Male group	140	52.5	30
Minimal amount of blood loss in the Female group	120	30	15
Maximal amount of blood loss in the Female group	200	75	120
Mean amount of blood loss in the Female group	151.88	51.19	30.8
Standard deviation of the mean in the Female group	31.27	16.94	20.34
Median amount of blood loss in the Female group	152.5	50	25

Post-operative complications

The patients in Group A exhibited relatively many post-operative complications, of 5 types comprising with a total of 7 cases, this making for a percentage of complications of 33.3% in a total number of 21cases in group A, as shown in Table 7.

The patients in Group B exhibited few post-operative complications, comprising 3 types (2 cases of persistent radiculopathy, and one case each of wound infection and discitis. representing 8.5% of complications in a total number of 47cases in group B, as shown in Table 7.

The patients in Group C exhibited even fewer post-operative complications than the other 2 study groups, comprising 1 type (1 cases of persistent radiculopathy), this making for a percentage of complications of 2% in a total number of 47cases in group C, as shown in Table 7

For the patients included in the study group C a total amount of 1555 mL of blood was lost during surgical procedures, split 770/785 respectively between female patients and male patients In study group C, the total amount blood lost during surgical procedures was higher in female patients than in the male patients, also the maximal absolute values (120 mL in females vs. 60 mL in males) but not in the average amounts which had higher values in male patients than in female patients $(32.70833 mL \pm 9.777877 mL in males vs.$ $30.8\text{mL} \pm 20.34494\text{in females}$), as shown in Table 7. The median amount of blood lost during surgical procedures was higher in male patients than in the female patients in group C (30mL vs. 25mL) The very large value of the standard deviation in the female group was due to the one outlier case which lost 120mL of blood during the surgical procedure, apparently making distribution in this segment of group C a distribution. Besides non-normal statistical argument, such a large amount of blood lost in this type of surgical procedure is totally uncharacteristic for such procedure; therefore, exclusion of that case from the sample also makes a clinical sense.

The unusually high amount of blood lost during the surgical procedure was correlated with a longer procedure as the patient was converted to open classic laminectomy because she was marked obese and we fail to access our target and also with the longer time spent in hospital by that patient.

Eliminating the outlier from the sample and excluding the outlier value of 120mL brings the maximal amount of blood loss in the female group to 50mL, a value lower than the one in the male group (60mL), the mean in the female group to 27.08333mL, the Standard deviation to 8.459194, while the median remains 25mL, bringing the statistics very close to the ones for the male segment of group C as shown in Table 7.

This makes this group very well balanced also with regard to the amount of blood loss during surgical procedures, confirming the validity of the sample group.

Table 7 - Postop complications in the patients of study Groups

Type of complication	Group A	Group B	Group C
CSF leak	3	0	0
Persistent weakness	1	0	0
Persistent bladder dysfunction	1	0	0
Wound infection	1	1	0
Persistent LBP	1	0	0
Persistent radiculopathy	0	2	1
Discitis	0	1	0
Total no. of cases	21	47	49
Percentage of complications	33.3%	8.5%	2%

For the patients included in the study group A, the total amount of 158 days was spent in hospital associated with the surgical procedures, split 73/85 between female patients and male patients.

In study group A, although the total time spent in hospital associated with the surgical procedures was longer in male patients than in the female patients, the maximal absolute individual values was not (14 in males vs. 21 days in females) but not in the average amounts which had higher values in female patients than in male patients (9.125 \pm 6.356942212 days in females vs. 6.538461538 \pm 2.78733399 days in males), as shown in Table 8. Though, the median hospital time spent by Laminectomy patients was equal in male patients and in the female patients in group A (5 days)

The very large value of the standard deviation compared to the value of the mean in the female group was due to the one outlier case which spent 21 days in hospital care but also 2 other patients that spent 14 days each in hospital care, apparently making the distribution in this segment of group A a non-normal distribution. **Besides** statistical argument, such a long period of time being totally uncharacteristic for such procedure, therefore exclusion of that case from the sample also makes a clinical sense. Eliminating the outlier from the sample and excluding the outlier value of 21 days brings the overall time spent by the females in hospital care to 52 days, the mean to 7.428571429, the Standard deviation to 4.503966506, while the median remains 5,

bringing the statistics closer to the ones for the male segment of group A.

For the patients included in the study group B a total amount of 67 days was spent in hospital associated with the surgical procedures, split 27/40 between female patients and male patients

In study group B, the total time spent in associated with the procedures was longer in male patients than in the female patients, also the maximal absolute values (14 in males vs. 5 days in females) and also the average hospital times which had higher values in female patients than in male patients (1.538462± 2.549208 days in males vs. 1.285714± 0.956183 days in females), as shown in Table 8. Though, the median Hospital time spent by MIP Endoscopy patients was equal in male patients and in the female patients in group B (1 day). The standard deviation much greater than the mean in the male group was due to the one outlier case which spent 14 days in hospital care, apparently making the distribution in this segment of group B a nonnormal distribution. Besides the statistical argument, such a long period of time being totally uncharacteristic for such procedure, therefore exclusion of that case from the sample also makes a clinical sense.

Eliminating the outlier from the sample and excluding the outlier value of 14 days brings the overall time spent in hospital care to 26 days, the mean to 1.04, the standard deviation to 0.2, while the median remains 1, bringing the statistics very close to the ones for the female segment of group B, as shown in Table 8.

For the patients included in the study group C a total amount of 52 days was spent in hospital associated with the surgical procedures, split 28/24 between female patients and male patients

In study group C, although the total time spent in hospital associated with the surgical procedures was longer in male patients than in the female patients, also the maximal absolute values (14 in males vs. 5 days in females) but not in the average amounts which had higher values in female patients than in male patients (1.538462± 2.549208 days in males vs. 1.285714± 0.956183 days in females), as shown in Table 8.

Though, the median hospital time spent by Microscopic decompression patients was equal in male patients and in the female patients in group C (1 day). The very large value of the standard deviation compared to the value of the mean in the male group was due to the one outlier case which spent 3 days in hospital care, apparently making the distribution in this segment of group C a non-normal distribution. **Besides** the statistical argument, such a long period of time being totally uncharacteristic for such procedure, therefore exclusion of that case from the sample also makes a clinical sense. Eliminating the outlier from the sample and excluding the outlier value of 3 days brings the overall time spent in hospital care to 25 days, the mean to 1.04167, the Standard deviation to0.204124, while the median remains 1, bringing the statistics very close to the ones for the female segment of group C as shown in Table 8.

Table 8 - In-Hospital time of study Groups

1		- 1	1
Parameter	Group	Group	Group
	A	В	C
Minimal hospital	4	1	1
time in the in the			
male group			
Maximal hospital	14	5	1
time in the in the			
male group	< =0	4.00	_
Mean time of hospital	6.53	1.28	0
time in the male			
group Standard deviation of	2.78	0.95	2.54
the mean in the male	2.76	0.93	2.34
group Median time of	5	1	1
hospital time in the		•	•
male group			
Minimal hospital	4	1	1
time in the Female			
group			
Maximal hospital	21	14	3
time in the Female			
group			
Mean time of hospital	9.12	1.53	1.12
time in the Female			
group			
Standard deviation of	6.35	2.54	0.43
the mean in the			
Female group			
Median time of	5	1	1
hospital time in the			
Female group			

Discussions

Lumbar spinal stenosis is a spinal disorder, congenital or acquired, focal or diffuse (multilevel), defining a osteoligamentous narrowing (congenital) or shrink (secondary – acquired) of the lumbar spinal canal, a conflict between the lumbar spinal canal with vertebral body osteophytes,

hypertrophy of the ligamentum flavum, zygapophyseal joint, lumbar disc hernia or a combination of these and the content represented by the cauda quina roots, lumbar spinal roots and ganglia, generating a complex set of symptoms of which the hallmark is neurogenic claudication, physical findings and radiological abnormalities [1,2,6,20,27].

Lumbar stenosis (LSS) could appear also with aggravating factors - presented in chapter 5, which should have special considerations treatment and [2,6,9,20,21,27,31,36,42-44,46,47]:

- co-existing multiple disk prolapses or single level disk prolapsed with a multistage lumbar spinal stenosis, without scoliosis
- combined LSS with degenerative listhesis and posterior arthrosis at one or several levels
- combined LSS with scoliosis:
 - with a small radius of curvature
 - scoliosis and a big radius of curvature installed in adolescence
 - a big radius of curvature, with rapid evolution 5-100 in one year generating both radiculalgia and instability
- scoliosis with rotation and rapid evolution to 30-500 affecting several levels
- combined stenosis and facet joint cyst
- LSS with severe polineuropaty, with or without uni/bilateral paresis

The pathophysiology of spinal stenosis causing neurologic symptoms is likely from a combination of anatomic compression of nerve roots as well as impaired blood flow primarily to the nerve roots [1,2,5,6,10-13].

To solve such condition, the surgical treatment is not only a solution for resistant symptoms in patients with LSS, but really makes sense: in cases of consistent clinical and radiological findings after adequate conservative therapeutic measures have failed for a time at least three months span of control, to patients with realistic expectations; certified although by few evidence-based insights into the treatment options [1-3,6,7,10-14,20,21]

There are several points to consider into the preoperative planning:

medical status & physiologic age of the patient, clinical and morphologic aspects, comorbidities, if LSS is symptomatic.

It's also art of surgery - adequacy for enlarged lumbar spinal canal - it's a balance between doing too much and not doing enough: suppressing the conflict between the lumbar spinal canal with disco-ligamentary structures and the content represented by the dural sac and radicular nerves, decompressing the neural foramina, eliminating pressure on the spinal nerve roots, without generating spinal instability, never prophylactic. It means also a functional surgery - never operate pictures with the aim to alleviate symptoms; surgical treatment should be applied to each patient, with a perfect correspondence between neuro-radiologic and findings, to normalize daily life activities, improving functional capacity, achieving a good quality of life

the timing for surgery has not been clearly decided. Data comparing the outcomes of patients who underwent surgery earlier versus later in the disease suggest no difference in outcome

is there deformity/instability too?, the suggested decompression technique alone may lead to segmental instability? A fusion technique should be performed to all cases? – see loss of mobility of the operated segment, possible adjacent segment decompensation or unless instability is present pre-op; for older patients ability to fuse may be compromised, also fixation may not be adequate

It's mandatory to inform patient that LSS surgery has no action on: focal or diffuse low back pain and/or stiffness, "degenerative" illness, no patient will be completely free of complaints, no patient will have a new lumbar spine after the operation

it's a difficult surgery – most aged patients, fragile, with chronic illness; thinking to an unique surgical procedure, but there are still 20% unsatisfactory results

the proposed surgical procedure should achieve a good quality of life using a technique for "maximum effect minimum trauma": continue with current best practice - surgical expertise - relating modern techniques especially to experience for patient selection & for surgical skills, inform patients of surgical choices and availability of resources and facilities in institution, using local or regional anesthesia combined with conscious sedation - informed consent, with the aim to minimize tissue disruption, decompress the lumbar channel and the roots, avoid reintervention, never preventive, avoid to destabilize. stabilization, no instrumentation, minimal blood loss, minimize time of surgery and length of hospital stay, minimize post operative morbidity, avoiding complications, with earlier return to activities and work; easier operative approach in obese patients.

While this debilitating condition has been treated successfully in the past with open laminectomies, MISS approaches are rapidly becoming the "standard" technique used by spine surgeons. The development of minimally invasive surgical techniques is driven by the quest for better patient outcomes. There is some evidence for the use minimally invasive surgery degenerative lumbar spine stenosis (LSS), but there are currently no studies comparing outcomes with matched controls [20-24,27-29,32-34,37,38,40,48,49,5-59,62-65].

The object of this study was to compare outcomes following minimally invasive spinal decompression procedures to a standard "open" laminectomy for LSS.

The first therapeutic approach should always be the conservative treatment and our study included only patients that had undergone conservative treatment, but failed to show adequate response. This is however consistent with other recent randomized controlled studies have shown greater improvements in patients after surgery than after conservative treatment [12,14]. A recent systematic review comparing surgery to conservative treatment in LSS suggested that for patients with radicular pain caused by LSS, in whom a trial of 3-6 months of conservative treatment had failed, surgery did not improve walking ability but improved pain, function than continuing conservative treatment [10]. Small improvements are

generally reported by patients treated conservatively and serious complications or deterioration are rare with conservative treatment [1-12,14].

A study done by Parikh [48] included among the possible disadvantages of minimally surgery techniques the increased operation time due to the steep learning curve. This disadvantage was minimal in our study as all the surgical procedures were performed by the same highly skilled surgeon, with extensive experience using both minimally invasive and open techniques, thus eliminating the potential bias due to the steep learning curve. Taking into account the relative sample sizes with a slight larger sample size for males than females, the procedure time distribution over gender of laminectomy patients was well balanced in both sexes, the surgical time required for the various versions of laminectomy performed on the patients in with classic laminectomy being uniformly split between sexes for every time interval (30-60 minutes and 60-120 minutes and > 240 minutes) per surgical intervention, but with a slight bias towards shorter times, in comparison to MIS approaches. The median time required for a surgical intervention in endoscopy group was equal in both sexes (55 min) and (30-60 minutes and 60-120 minutes) per surgical intervention with equal frequency in females and a slight bias towards lower times in males MIS microscopy group.

The intra-operative complication rates may be one of the very few possible disadvantages of MIS techniques, due to difficulty manipulating instruments through a

small portal, especially in cases requiring contralateral access [25,27,42-44,60,61,65]: symptomatic CSF leaks, wound infections and post operative spinal spondylolisthesis. In my experience unintentional durotomies have decreased with the use of a protective sleeve drill bit and preservation of the underlying flavum ligamentum during decompression. The use of a retractable, single sided guard on the pneumatic drill bit protects the dura from inadvertent injury on one side while allowing visualization of the drill bit tip from the other slide. The ligamentum flavum is kept intact until the bony decompression with the drill and Kerrison is completed. The senior author recently showed a 4.5 incidence durotomies in obese patients undergoing minimally invasive procedures for lumbar stenosis comparing to our study [57].

Regarding the intra-operative complications, we conclude that patients who had undergone minimally invasive surgeries have the least intra-operative complication as follows:

1 patient we failed to access the target in group C due to patient obesity with a percentage of complications 2%.

1 patient with nerve root injury in group B with a total percentage of complication 2.1%.

On the other hand the rate complications were higher in group A in the form of 3 patients had unintended durotomy with a total percentage of 14.3% regarding the post-operative complications it was higher in Group A as follows:

3 patients with persistent CSF leak

1 patient with persistent limb and bladder weakness (patient with preoperatory cauda equina)

1 patient with wound infection.

1 patient with persistent LBP with a total percentage of complications 33.3%.

In the other hand the post-operative complications were less in group B as follows:

2 patients with persistent radiculopathy

1 patient with post-operative discitis with a total percentage of 8.5%.

The least complications were happened in group C with only 1 patient with persistent radiculopathy and total percentage of complications 2% as in a series of studies done by Armin [40], Khoo LT [59], Jayarao M [62].

In a study done by Madjetko [44], Sengupta D.K. [46,47] post-operative, long term spinal instability is a real concern in patients undergoing laminectomy for lumbar canal stenosis, especially if the patients have pre-operative spondylolisthesis. Review of literature shows that patients with preoperative spondylolisthesis have a higher rate (40-100%) of post operative progression of instability on dynamic x-ray at a long term follow-up [44]. Comparatively, in our study, among the patients with unstable canal stenosis that had been operated by decompression, instrumentation and fusion, progression of instability had occurred in 2 patients = 22.2%. In another study [6] it no significant difference complication and re-operation rates between minimal invasive surgery treated and conventionally treated patients. This could be accounted by our study's short duration of follow-up, as reoperation rates increase in the long term when bony regrowth occurs in an inadequate decompression. However, our study showed no significant difference in complication and reoperation rates between ULBD (Unilateral Laminectomy Bilateral Decompression) treated and conventionally treated patients.

Other studies have shown that the difficulty manipulating instruments through a small portal MIS has intrinsic potential disadvantage of literally leaving "little room for mistakes", resulting in more postoperative complications including more significant dural sac retraction and a higher possibility of dural tears [23,24,28,29], higher recurrence and reoperation rates due to minimal inadequate exposure leading to decompression [29,30,32-41]. Despite these previous findings in the literature, our study failed to find these short-comes of the MIS approach. This could be accounted for by our study's short duration of follow-up, as reoperation rates increase in the long term [34,35] when bony re-growth occurs in an inadequate decompression; additionally, the procedures in this study were performed by a single senior surgeon with extensive experience using both minimally invasive and open techniques, thus reducing the impact of the learning curve for MIS patients.

Our study demonstrates several benefits of MIS microscopic the post operative course. As most patients with LSS are elderly and have numerous preoperative comorbidities, decreasing postoperative hospital stay, time to mobilization, post operative pain and disability can significantly decrease patient

morbidity. Longer hospital stays and delayed recovery are associated with more post operative complications, such as deep vein thrombosis, urinary tract infections, cardio-pulmonary problems, pulmonary embolism, ileus and prolonged narcotic use as well as with and increased cost of care [6,20,21].

Therefore, in our study, the significantly shorter average time to mobilization (1.6 vs 33.3 hours) and average duration of post operative hospital stay (55.1 vs 100.8 hours) for patients in the MIS group compared with those in the conventionally treated group were advantages. Mean post operative hospital stay is ranging from 42 to 80 hours [23,24,40] and from 45 to 172 hours [21,25,26,29] for ULBD treated conventionally treated patients, respectively. In another study, [23] which conclude the shorter average significantly time mobilization (15.6 vs 33.3 hours) and average duration of post operative hospital stay 55.1 vs 100.8 hours for patients in the minimally invasive procedures group compared with those in the conventionally treated group more advantageous. By comparison, in our study the duration of hospital stay was higher in group A with mean hospital stay 7.5 days and shorter B with a mean hospital stay 1.4 days and the shortest period was in group C with 1.06 days.

Opioids have unwanted side effects that may require additional medications and unnecessarily prolong hospital stay [20], therefore decreasing opioid requirements avoids these complications and allows for less complicated recovery, increased patient comfort and faster return to normal activities of daily living. In our study, the mean value of total iv morphine equivalent units consumed was significantly smaller in MIS - treated patients (9.3 vs 42.8 morphine equivalent units). While this could be due to the significantly longer mean post operative stay in the conventionally treated group, a significantly larger proportion of patients in the MIS group did not use any opioids at all (52% vs 15%). This is supported by Khoo and Fessler's 2002 study [59] in which opensurgery patients required almost 3 times the amount of narcotics as patients treated with micro-endoscopic decompression laminotomy (73.7 vs 31.8 morphine equivalent units, respectively) after adjusting for length of stay. While we cannot definitely state that patients treated with MIS consume fewer morphine equivalents units, we can conclude they are more likely to not use any opioids, suggesting that MIS is associated with less post-operative pain and discomfort.

In the literature, the minimally invasive surgery achieved a significantly greater improvement in post operative pain than did the open approach. However, neither approach was superior in improving function or quality of life. Furthermore, neither approach or satisfaction rate, while greater percentage of patients in the minimally invasive approaches 85% felt they had a good outcome than the open group 62%, the difference was not statistically significant [49]

Our study showed that there was a significant improvement in patient status in the study group that underwent minimally invasive surgery, it was significant

improvement in patient function of both endoscopic 97.8% and microscopic groups 100% and significant improvement of the patient self assisting score in the endoscopic group 14% in the last 3 months to 2.5 over 2 years of annual follow-up and in the microscopic group from 12% to 2.5% over the same period.

Conclusion

The initial management of LSS should be non-surgical, surgical intervention considered only in patients with intractable back or radicular pain that interfere with the patient life style or in occurrence of neurological deficit. Pre-operative detailed assessment of age and other investigations including MRI, dynamic x-rays, and EMG should be reviewed carefully to determine preoperative instability or presence of associated neurological deficit and also to define which level are we going to decompress. We established an extrusive relation between the radiological degree of canal stenosis and the severity of symptoms and its association of neurological deficit. It was noticed that the predominance of back pain over the radicular symptoms has carried less favorable outcome. Also, operating patients after full trials of conservative treatment for at least 3 to 6 months carry a better outcome and it enhances the result of surgery with net improvement of 60 to 30%.

Abbreviations

CSS Central Spinal Stenosis CT Computed Tomography D Decompression DF Decompression and Fusion DS Degenerative Spondylolisthesis FS Foraminal Stenosis LRS Lateral Recess Stenosis LSS Lumbar Spinal Stenosis ODI Oswestry disability index PLIF Postero-Lateral Interbody Fusion RCT Randomized controlled trial SD Standard Deviation SF-36 Medical outcomes study short form survey, 36 items SPORT Spine Outcomes Research Trial VAS Visual Analog Scale GE General Electric SRFS Self Reported Functional Status SSWBS Symptoms Specific Well-Being Score GWBS General Well-Being Score ANACOVA Data Analysis FT Fisher Test ANOVA Analysis Of Data MIS Minimal Invasive Surgery CSF Cerebrospinal Fluid CS Canal Stenosis ULBD Unilateral Laminectomy Bilateral Decompression EMG Electromyogram **DVT Deep Venus Thrombosis** MIP Minimal Invasive Procedure

DOS Duration of Symptoms

References

1. Albert P.Wong, Zachary A. Smith, Rohan R. Lall, Lacy E. Bresnahan and Rishcahrd G. Fessler. Department of Neurological surgery, Northwestern University, 676 N. St. Clair street, Suite 2210, Chicago IL 60611, USA. Revised 16 March, 2012; accepted 7 June 2012

TLIF Transforaminal Lumbar Interbody Fusion

- 2. Armin SS, Holly LT, Khoo LT: Minimally invasive decompression for lumbar stenosis and disc herniation. Neurosurg focus 25(2): E11, 2008.
- 3. Atlas SJ, Deyo RA, Keller RB, Chapin AM, Patrick DL, Long JM, et al. The maine lumbar spine study part II 1-year outcomes of surgical and non-surgical management lumbar spinal stenosis, Spine 1996: 21(15):1787-95.
- 4. C.R. Martin, A.T. Gruszczynski, H.A. Braunsfurth, S.M. Fallatah, J. O'Neil, and E.K. Wai, "The surgical management of degenerative lumbar spondylolisthesis: a systematic review", Spine, vol. 32, no. 16, pp. 1791-1798, 2007. View at publisher. View at google scholar. View at scopus.

- 5. Costa F. Sassi M, Cardia A, Ortolina A, De Santis A, Luccarrel G, et al: Degenerative lumbar spinal stenosis: analysis of results in a series of 374 patients treated with unilateral laminotomy for bilateral microdecomposition. J. Neurosurg. Spine 7:579-586, 2007.
- 6. D.K. Sengupta and H.N. Herkowitz, "Degenerative spondylolithesis: review of current trends and controversies", Spine, vol. 30, supplement 6, pp.s71s81,2005.
- 7. D.K. Sengupta, "Point of view: dynamic stabilization, in addition to decompression for lumbar spinal stenosis with degenerative spondylolisthesis", Spine, vol. 31, no. 4, p. 450, 2006. View at publisher. View at google scholar. View at scopus.
- 8. H. Bassewitz and H. Herkowitz, "Lumbar stenosis with spondylolisthesis: current concepts of surgical treatment", clinical orthopedics and related research, no. 384, pp. 54-60, 2001, view at google scholar. View at scopus.
- 9. Ikuta K, Arima J, Tanaka T, Oga M, Nakano S, Sasaki K, et al: Short-term results of microendoscopic posterior decompression for lumbar spinal stenosis. Technical note. J. Neurosurg spine 2:624-633, 2005.
- 10. J.E. o'Toole, K.M. Eichholz, and R.G. Fessler, "Surgical site infection rates after minimally invasive spinal surgery: clinical article", Journal of neurosurgery: spine, vol. 11, no. 4, pp. 471-476, 2009. View at publisher. View at google scholar. View at scopus.
- 11. J.J. Shin, S.U. Kuh, and Y.E. Cho, "Surgical management of spontaneous spinal epidural hematoma", European Spine Journal, vol. 15, no. 6, pp. 998-1004, 2006. View at publish. View at google scholar. View at scopus.
- 12. Jayarao M, Chin LS: results after lumbar decompression with and without discectomy: comparison of the transspinous and conventional approaches. Neurosurgery 66 (3 Suppl Operative): 152-160, 2010.
- 13. Khoo LT, Fessler RG: Microendoscopic decompressive laminotomy for the treatment of lumbar stenosis. Neurosurgery 51 (5 Suppl): S146-S154, 2002.
- 14. Kovacs FM, Urrutia G, Alarcon JD. Surgery versus conservative treatment for symptomatic lumbar spinal stenosis: a systematic review of randomized controlled trials. Spine 2011:36:E1335-1351.
- 15. Likert, R. (1932). A Technique for the Measurement of Attitudes. Archives of Psychology, 140, 1-55.

- 16. Malmivaara A, Slatis P, Heliovaara M, Sainio P., Kinnunen H, Kankare J, et. Al. Surgical or non-operative treatment for lumbar spinal stenosis. A randomized controlled trial. Spine 2007: 32(1):1-8.
- 17. Mariconda M, Zanforlino G, Celestino GA, Brancaleone S, Fava R, Milano C. Factors influencing the outcome of degenerative lumbar spinal stenosis. J Spinal disord 2000:13(2):131-7.
- 18. Mariconda M, Fava R, Gatto A. Longo C. Milano C: Unilateral laminectomy for bilateral decompression of lumbar spinal stenosis: a prospective comparative study with conservatively treated patients. J. Spinal Disord Tech 15:39-46, 2002.
- 19. Oertel MF, Ryang YM, Korinth MC. Gilsbach JM, Rohde V: Long-term results of microsurgical treatment of lumbar spinal stenosis by laminotomy for bilateral decompression. Neurosurgery 59-:1264-1270, 2006.
- 20. P. Shin, A.P. Wong, T.R. Smith, A.I. Lee, and R.G. Fessler, "Complications of open compared to minimally invasive lumbar spine decompression", Journal of clinical neuroscience, vol. 18, no. 10, pp. 1360-1364, 2011. View at publisher. View at google scholar. View at scopus.
- 21. Parikh K, Tomasino A, Knopman J, Boockvar J, Hartl R: Operative results and learning curve: microscope-assisted tubular microsurgery for 1 and 2 level discectomies and laminectomies. Neurosurg Focus 25(2): E14, 2008.
- 22. Ralph Jasper, Praveenan Sivabalan, and Prashanth J. Rao :comparison between minimally invasive decompression laminectomy and open open
- 23. S.M. Madjetko, P.J. Connolly, and S. Shott, "Degenerative lumbar spondylotisthesis: a meta-analysis of literatue 1970-1993", Spine vol. 19, supplement 20, pp. 2256S, 1994. View at google scholar. View at scopus.
- 24. V. Surin, E. Hedelin, and L. Smith, "Degenerative lumbar spinal stenosis. Results of operative treatment", Acta Orthopedica Scandinavica, vol. 53, no. 1, pp. 79-85, 1982. View at google scholar. View at scopus.
- 25. Weinstein JN, Lurie JD, Tosteson TD, Hanscom B, Tosteson ANA, Blood EA, et al. Surgical versus nontreatment for lumbar degenerative spondylolisthesis. N. Engl J Med 2007:356(22):2257-70.
- 26. Weinsterin JN, Tosteson TD, Lurie JD, Teteson ANA, Blood E, hanscome B, et al. Surgical versus non-

- surgical theraphy for lumbar spinal stenosis. N. Engl J Med 2008: 794-810.
- 27. Z.A. Smith, "Obesity and patient outcomes following lumbar microendoscopic decompression of stenosis-outcomes and complications in 111 conservatively treated patients", Northwestern University, Chicago Ill, USA, p. 19, 2012.
- 28. Atlas S.J. et al. Long-term outcomes of surgical and non surgical management of lumbar spinal stenosis: 8 to 10 year results form Maine Lumbar Spine Study, Spine 2005, 30, 936-943.
- 29. Johnsson K.E. Lumbar spinal stenosis, a retrospective study of 163 cases in southern Sweden, Acta Orthop Scand 1995, 66, 403–405.
- 30. Mazanek D.J. et al. Lumbar canal stenosis: start with nonsurgical therapy, Cleveland Clinic Journal of Medecine, 2002, 69, 11, 909-917.
- 31. Fritz JM, et al. Lumbar spinal stenosis: a review of current concepts in evaluation, management and outcome measurements, Arch Phys Med Rehabil 1998, 79(6), 700-708.
- 32. Kovacs F.M., et al. Surgery versus conservative treatment for symptomatic lumbar spinal stenosis, Spine 2011, 9.
- 33. Herno A et al. Lumbar spinal stenosis: a matched-pair study of operated and nonoperated patients, Br J Neurosurg 1996, 10, 461–465.
- 34. Treatment of degenerative lumbarspinal stenosis summary. Evidence report/technology assessment number 32.Rockville, MD: Agency for Healthcare Research and Quality, 2001, AHRQpublication no.01-E047,accessed January28, 2008 athttp://www.ahrq.gov/clinic/epcsums/stenosum.htm.
- 35. Iacob G. Craciun M Personal experience in lumbar spinal stenosis (LSS), Romanian Neurosurgery 2011, XVIII, 4, 400-411.
- 36. Iacob G. Neurochirurgia in managementul coloanei dureroase, Congresul Asociatiei Romane pentru Studiul Durerii, "Managementul durerii acute pentru medicii dinambulator" Howard-Johnson Grand Plaza, Bucuresti, 14-15, 10, 2011.
- 37. Iqbal J. Surgery For Lumbar Canal Stenosis: Micro or Macro?, Dubai Spinal Course 2008.
- 38. Jakola et al. Clinical outcomes and safety assessment in elderly patients undergoing decompressive laminectomy for lumbar spinal stenosis: a prospective study, BMC Surgery 2010, 10:34.

- 39. Rosen D.S. et al. Minimally invasive lumbar spinal decompression in the elderly: outcomes of 50 patients aged75 years and older, Neurosurgery 2007, 60, 3, 503.
- 40. Assaker R. Lumbar Stenosis, Minimal invasive decompression, Spinal Congress Dubai 2012.
- 41. Wiltse L.L., Kirkaldy-Willis WH, McIvor GW. The treatment of spinal stenosis, Clin Orthop Relat Res 1976, 83
- 42. Court C. Rationale for Wiltse approach for L5-S1 mini-invasive arthrodesis, Dubai Spinal Congress 2008.
- 43. Nellensteijn J. et al. Transforaminal endoscopic surgery for lumbar stenosis: a systematic review, Eur. Spine J. 2010, 19(6), 879-886.
- 44. Guiot BH, Khoo LT, Fessler RG. A minimally invasive technique for decompression of the lumbar spine. Spine 2002, 27, 432–438.
- 45. Papavero L et al. Lumbar spinal stenosis: prognostic factors for bilateral microsurgical decompression using a unilateral approach, Neurosurgery 2009, 65[ONS Suppl 1], ons182–ons187
- 46. Rosen D.S., O'Toole J.E., Eichholz K.M.,et al. Minimally invasive lumbar spinal decompression in the elderly: outcomes of 50 patients aged 75 years and older, Neurosurgery2007, 60, 503-510.
- 47. Colak A. et al. A less invasive surgical approach in the lumbar lateral recess stenosis: direct approach to the medial wall of the pedicle, Eur Spine J 2008, 17, 1745–1751.
- 48. Tuite G.F., et al. Outcome after laminectomy for lumbar spinal stenosis. Part II: radiographic and clinical correlations, J. Neurosurg. 1994; 81, 707–715.
- 49. Tuite G.F., et al. Diagnosis and treatment of surgery for lumbar spinal stenosis, Burr Ridge (IL): North American Spine Society (NASS), 2007, 262, 394 references.
- 50. Iacob G. Craciun M, Hawis A.A. General considerations in lumbar spinal stenosis (LSS), Romanian Neurosurgery 2015, XXIX (XXII), 1, 77-84.
- 51. Iacob G. Craciun M, Hawis A.A. Treatment of lumbar spinal stenosis (LSS) and outcome, Romanian Neurosurgery 2015, XXIX, 2, 200-229.
- 52. Djurasovic M, et al. Contemporary management of symptomatic lumbar spinal stenosis, Orthop. Clin. North Am. 2010, 41 (2), 183–191

- 53. Amundsen T, et al. Lumbar spinal stenosis: conservative or surgical management? A prospective 10year study, Spine 2000, 25, 1424-1436
- 54. Mazanek D.J. et al. Lumbar canal stenosis: start with nonsurgical therapy, Cleveland Clinic Journal of Medecine, 2002, 69, 11, 909-917
- 55. Kovacs F.M., et al. Surgery versus conservative treatment for symptomatic lumbar spinal stenosis, Spine 2011, 9
- 56. Verbeek J. et al. Patient expectation of treatment for back pain. A systmatic review of qualitative and quantitative studies, Spine 2004, 29, 2309-2318
- 57. Cooper G, Lutz GE, et al. Effectiveness of transforaminal epidural steroid injections in patients with degenerative lumbar scoliotic stenosis and radiculopathy, Pain Physician 2004, 7, 311-317
- 58. Fukusaki M, Kobayashi I, et al. Symptoms of spinal stenosis do not improve after epidural steroid injection, Clin J Pain 1998, 14, 148-151
- 59. Armon C, Argoff CE, et al. Assessment: use of epidural steroid injections to treat radicular lumbosacral pain: report of the Therapeutics and Technology Assessment Subcommitteeof the American Academy of Neurology, Neurology 2007, 68, 723-729
- 60. Simotas C.A. et al.-Nonoperative treatment for lumbar spinal stenosis. Clinical and outcome results and a 3-year survivorship analysis, Spine 2000, 25, 197-203
- 61. Costandi S., Chopko B. et al. Lumbar Spinal Stenosis: Therapeutic Options Review, Pain Practice 2015, 15, 1, 68-81
- 62. Porter RW, Miller CG Neurogenic claudication and root claudication treated with calcitonin. A double-blind trial Spine 1998, 13, 1061-1064
- 63. Podichetty VK, et al. Effectiveness of salmon calcitonin nasal spray in the treatment of lumbar canal stenosis: a double-blind, randomized, placebo-

- controlled, parallel grouptrial, Spine 2004; 29, 2343-2349
- 64. Yoshihara H. Prostaglandin E, Treatment for Lumbar Spinal Canal Stenosis, Review of the Literature, Pain Practice 2015
- 65. Toyonne et al. Patients expectations in lumbar spine surgery, Spine 2005
- 66. K. Iwatsuki et al. Bilateral interlaminar fenestration and unroofing for the decompression of nerve roots by using a unilateral approach in lumbar canal stenosis, Surgical Neurology 2007, 68, 487-492
- 67. Assaker R. Lumbar Stenosis, Minimal invasive decompression, Spinal Congress Dubai 2012
- 68. Court C. Rationale for Wiltse approach for L5-S1 mini-invasive arthrodesis, Dubai Spinal Congress 2008
- 69. Nellensteijn J. et al. Transforaminal endoscopic surgery for lumbar stenosis: a systematic review, Eur. Spine J. 2010, 19(6), 879-886
- 70. Endoscopy Guidelines from ISMISS, feb. 2008
- 71. Yoshida M. et al.- Surgical Procedures and Clinical Results of Endoscopic Decompression for Lumbar Canal Stenosis, in Dezawa A., Chen P.Q., Chung J.Y. - State of the Art for Minimally Invasive Spine Surgery, Springer-Verlag Tokyo 2005, 18-25
- 72. Foley KT, Smith MM Microendoscopic discectomy, Techniques Neurosurg 1997, 3, 301-307
- 73. Ji YC, Kim YB, Hwang SN, Park SW, Kown JT, Min BK: Efficacy of unilateral laminectomy for bilateral decompression in elderly lumbar spinal stenosis. J Korean neurosurgery S 37: 410-415,2005.
- 74. Turner JA, Ersek M, Herron L, Deyo R: Surgery for lumbar spinal stenosis, Attempt meta-analysis of the literature. Spine (Phila Pa1976) 17: 1-8,1992.
- AWMF-Leitlinie: Leitlinien der Deutschen Gesellschaft für Neurochirurgie "Lumbale Spinal kanal stenose" 2005,http://www.uni-duesseldorf.de/awmf/llna/008-022.htm.