Title Science and Technology Indonesia e-ISSN:2580-4391 p-ISSN:2580-4405 Vol. 7, No. 3, July 2022 Research Paper Subclasses of Analytic Functions with Negative Coefficients Involving q-Derivative Operator Andy Liew Pik Hern1, Aini Janteng1*, Rashidah Omar2 1Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Malaysia2Faculty of Computer and Mathematical Sciences, Universiti Teknologi Mara Cawangan Sabah, Kota Kinabalu, 88997, Malaysia *Corresponding author: aini-jg@ums.edu.my AbstractLet A denote the class of functions f which are analytic in the open unit diskU . The subclass of A consisting of univalent functionsis denoted by M. In this paper, we also consider a subclass of M which is denoted byV , consisting of functions with negativecoefficients. In addition, this paper also studies the q-derivative operator. By combining the ideas, this paper introduced threesubclasses of A with negative coefficients involving q-derivative. Furthermore, the coefficient estimates, growth results and extremepoints were obtained for all of these classes. KeywordsAnalytic, Univalent, q-Derivative Operator Received: 15 March 2022, Accepted: 23 June 2022 https://doi.org/10.26554/sti.2022.7.3.327-332 1. INTRODUCTION We denote A as the class of functions which has a Maclaurin series expansion of the form f (๐›ฟ) = ๐›ฟ + โˆžโˆ‘๏ธ ๐œ=2 a๐œ ๐›ฟ ๐œ. (1) The function f is analytic in the open unit diskU = {๐›ฟ โˆˆ โ„‚: |๐›ฟ |<1}. While we use M to represent the subclass of A and it is con- sisting of univalent functions. In recent times, there are quite a number of researchers have studied dierent subclasses of A whichassociatedwithq-derivative (seeBreazandCotรฎrlฤƒ,2021; Ibrahim, 2020; Jabeen et al., 2022; Janteng et al., 2020; Khan et al., 2022; Karahuseyin et al., 2017; Murugusundaramoor- thy et al., 2015; Najafzadeh, 2021; Oshah and Darus, 2015; Rashid and Juma, 2022; Shilpa, 2022). From (Jackson, 1909; Aral et al., 2013), we have the q- derivative of a function f โˆˆ A which given by (1) with 0 < q < 1 as Dq( f (๐›ฟ)) = f (q๐›ฟ) โˆ’ f (๐›ฟ) (q โˆ’ 1)๐›ฟ , q โ‰  1, ๐›ฟ โ‰  0, (2) Dq( f (0)) = f โ€ฒ(0). From (2), we can get Dq( f (๐›ฟ)) = 1 + โˆžโˆ‘๏ธ ๐œ=2 [๐œ]qa๐œ ๐›ฟ๐œโˆ’1, where [๐œ]q = 1โˆ’q๐œ 1โˆ’q . As q โ†’ 1, [๐œ]q โ†’ ๐œ. For a function j(๐›ฟ) = 2๐›ฟ๐œ, Dq( j(๐›ฟ)) = Dq(2๐›ฟ๐œ) = 2 ( 1 โˆ’ q๐œ 1 โˆ’ q ) (๐›ฟ๐œโˆ’1) = 2[๐œ]q๐›ฟ๐œโˆ’1 lim qโ†’1 ( Dq( j(๐›ฟ)) ) = lim qโ†’1 ( 2[๐œ]q๐›ฟ๐œโˆ’1 ) = 2๐œ๐›ฟ๐œโˆ’1 = jโ€ฒ(๐›ฟ) where jโ€ฒ is the ordinary derivative. Furthermore, we denoteV as a class with negative coe- cients and a subclass of M, consisting of the following functions f (๐›ฟ) = ๐›ฟ โˆ’ โˆžโˆ‘๏ธ ๐œ=2 a๐œ ๐›ฟ ๐œ (3) where a๐œ โ‰ฅ 0. For f โˆˆ V , there are some signicant researchers for ex- ample in (Halim et al., 2005), the authors studied the class Mโˆ—SV ([ , ๐œ—) consistingofstarlikefunctionswithrespect to (w.r.t) symmetric points. Besides, there are various studies for ex- ample in (Al-Abbadi and Darus, 2010; Al Shaqsi and Darus, https://crossmark.crossref.org/dialog/?doi=10.26554/sti.2022.7.3.327-332&domain=pdf https://doi.org/10.26554/sti.2022.7.3.327-332 Hern et. al. Science and Technology Indonesia, 7 (2022) 327-332 2007; Atshan and Ghawi, 2012; Bucur and Breaz, 2020; Choo and Janteng, 2013; Halim et al., 2006; Janteng and Halim, 2009; Najafzadeh and Salleh, 2022; Oluwayemi et al., 2022; Porwal et al., 2022). In this paper, by considering functions f โˆˆ V and q-deriva- tive operator, we introduce the classes Mโˆ—S,qV ([ , ๐œ—), M โˆ— C,qV ([ , ๐œ—) andMโˆ—SC,qV ([ , ๐œ—). The coecient estimates, growth results, and extreme points are obtained for these classes. First, we give the denitions for the 3 classes. We note that as q โ†’ 1, we obtain the classes which were introduced by (Halim et al., 2005). Denition 1. A function f โˆˆ Mโˆ—S,qV ([ , ๐œ—) if and only if it satises ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๐›ฟDq f (๐›ฟ)f (๐›ฟ) โˆ’ f (โˆ’๐›ฟ) โˆ’ 1 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ < ๐œ— ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ [๐›ฟDq f (๐›ฟ)f (๐›ฟ) โˆ’ f (โˆ’๐›ฟ) + 1 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ for 0 โ‰ค [ < 1, 0 < ๐œ— < 1, 0 โ‰ค 2(1โˆ’๐œ—)1+[๐œ— < 1 and ๐›ฟ โˆˆ U. Denition 2. A function f โˆˆ Mโˆ—C,qV ([ , ๐œ—) if and only if it satises ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๐›ฟDq f (๐›ฟ)f (๐›ฟ) + f (๐›ฟ) โˆ’ 1 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ < ๐œ— ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ [๐›ฟDq f (๐›ฟ)f (๐›ฟ) + f (๐›ฟ) + 1 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ for 0 โ‰ค [ < 1, 0 < ๐œ— < 1, 0 โ‰ค 2(1โˆ’๐œ—)1+[๐œ— < 1 and ๐›ฟ โˆˆ U. Denition 3. A function f โˆˆ Mโˆ—SC,qV ([ , ๐œ—) if and only if it satises ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๐›ฟDq f (๐›ฟ)f (๐›ฟ) โˆ’ f (โˆ’๐›ฟ) โˆ’ 1 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ < ๐œ— ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ [๐›ฟDq f (๐›ฟ)f (๐›ฟ) โˆ’ f (โˆ’๐›ฟ) + 1 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ for 0 โ‰ค [ < 1, 0 < ๐œ— < 1, 0 โ‰ค 2(1โˆ’๐œ—)1+[๐œ— < 1 and ๐›ฟ โˆˆ U. 2. RESULTS Now, we give the properties for the 3 classes. First, we proceed with the coecient estimates for f โˆˆ Mโˆ—S,qV ([ , ๐œ—). Theorem 1. Let f โˆˆ V . A function f โˆˆ Mโˆ—S,qV ([ , ๐œ—) if and only if โˆžโˆ‘๏ธ ๐œ=2 ( (1 + ๐œ—[)[๐œ]q ๐œ—(2 + [) โˆ’ 1 + ๐œ— (1 โˆ’ (โˆ’1)๐œ) โˆ’ (1 โˆ’ (โˆ’1)๐œ) ๐œ—(2 + [) โˆ’ 1 ) a๐œ โ‰ค 1 (4) for 0 โ‰ค [ < 1, 0 < ๐œ— < 1 and 0 โ‰ค 2(1โˆ’๐œ—)1+[๐œ— < 1. proof. Initially, we may prove the โ€™ifโ€™ part rst. We apply the method in (Clunie and Keogh, 1960). So, we write ๏ฟฝ๏ฟฝ๐›ฟDq f (๐›ฟ) โˆ’ ( f (๐›ฟ) โˆ’ f (โˆ’๐›ฟ))๏ฟฝ๏ฟฝ โˆ’ ๐œ— ๏ฟฝ๏ฟฝ[๐›ฟDq f (๐›ฟ) + ( f (๐›ฟ) โˆ’ f (โˆ’๐›ฟ))๏ฟฝ๏ฟฝ = ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโˆ’๐›ฟ โˆ’ โˆžโˆ‘๏ธ ๐œ=2 ( [๐œ]q โˆ’ (1 โˆ’ (โˆ’1)๐œ) ) a๐œ ๐›ฟ ๐œ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โˆ’ ๐œ— ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ(2 + [)๐›ฟโˆ’ โˆžโˆ‘๏ธ ๐œ=2 ( [๐œ]q[ + 1 โˆ’ (โˆ’1)๐œ ) a๐œz ๐œ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ‰ค โˆžโˆ‘๏ธ ๐œ=2 ( [๐œ]q โˆ’ (1 โˆ’ (โˆ’1)๐œ) ) a๐œr ๐œ + r โˆ’ ๐œ—(2 + [)r + โˆžโˆ‘๏ธ ๐œ=2 ๐œ— ( [๐œ]q[ + 1 โˆ’ (โˆ’1)๐œ ) a๐œr ๐œ < [ โˆžโˆ‘๏ธ ๐œ=2 ( [๐œ]q โˆ’ (1 โˆ’ (โˆ’1)๐œ) ) a๐œ + 1 โˆ’ ๐œ—(2 + [) + โˆžโˆ‘๏ธ ๐œ=2 ๐œ— ( [๐œ]q[ + 1 โˆ’ (โˆ’1)๐œ ) a๐œ ] r = [ โˆžโˆ‘๏ธ ๐œ=2 ((1 + [๐œ—)[๐œ]q + ๐œ— ( 1 โˆ’ (โˆ’1)๐œ ) โˆ’ ( 1 โˆ’ (โˆ’1)๐œ ) )a๐œ โˆ’ (๐œ—(2 + [) โˆ’ 1) ] r By considering inequality (4), we getโˆ‘โˆž ๐œ=2 ( (1 + ๐œ—[)[๐œ]q + ๐œ—(1 โˆ’ (โˆ’1)๐œ) โˆ’ (1 โˆ’ (โˆ’1)๐œ) ) a๐œ โˆ’ (๐œ—(2 + [) โˆ’ 1) โ‰ค 0, and by applying this inequality, we obtain ๏ฟฝ๏ฟฝ๐›ฟDq f (๐›ฟ) โˆ’ ( f (๐›ฟ) โˆ’ f (โˆ’๐›ฟ))๏ฟฝ๏ฟฝ โˆ’ ๐œ— ๏ฟฝ๏ฟฝ[๐›ฟDq f (๐›ฟ) + ( f (๐›ฟ) โˆ’ f (โˆ’๐›ฟ))๏ฟฝ๏ฟฝ = [ โˆžโˆ‘๏ธ ๐œ=2 ( (1 + [๐œ—)[๐œ]q + ๐œ—(1 โˆ’ (โˆ’1)๐œ) โˆ’ (1 โˆ’ (โˆ’1)๐œ) ) a๐œ โˆ’ (๐œ—(2 + [) โˆ’ 1) ] r โ‰ค 0 Thus, ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๐›ฟDq f (๐›ฟ) f (๐›ฟ)โˆ’f (โˆ’๐›ฟ) โˆ’ 1 [๐›ฟDq f (๐›ฟ) f (๐›ฟ)โˆ’f (โˆ’๐›ฟ) + 1 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ < ๐œ— and hence f โˆˆ Mโˆ—S,qV ([ , ๐œ—). Conversely, let๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๐›ฟDq f (๐›ฟ) f (๐›ฟ)โˆ’f (โˆ’๐›ฟ) โˆ’ 1 [๐›ฟDq f (๐›ฟ) f (๐›ฟ)โˆ’f (โˆ’๐›ฟ) + 1 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ = ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โˆ’1 โˆ’ โˆ‘โˆž ๐œ=2 ( [๐œ]q โˆ’ (1 โˆ’ (โˆ’1)๐œ) ) a๐œ ๐›ฟ๐œโˆ’1 (2 + [) โˆ’ โˆ‘โˆž ๐œ=2 ( [๐œ]q[ + 1 โˆ’ (โˆ’1)๐œ ) a๐œz๐œโˆ’1 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ < ๐œ—. Since we know that the function f is analytic, continuous and non constant inU, then we apply the maximum modulus principle, so we can get ยฉ 2022 The Authors. Page 328 of 332 Hern et. al. Science and Technology Indonesia, 7 (2022) 327-332 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โˆ’1 โˆ’ โˆ‘โˆž ๐œ=2 ( [๐œ]q โˆ’ (1 โˆ’ (โˆ’1)๐œ) ) a๐œ ๐›ฟ๐œโˆ’1 (2 + [) โˆ’ โˆ‘โˆž ๐œ=2 ( [๐œ]q[ + 1 โˆ’ (โˆ’1)๐œ ) a๐œ ๐›ฟ๐œโˆ’1 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ = ๏ฟฝ๏ฟฝ1 + โˆ‘โˆž ๐œ=2 ( [๐œ]q โˆ’ (1 โˆ’ (โˆ’1)๐œ) ) a๐œ ๐›ฟ๐œโˆ’1 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ(2 + ๐›ผ) โˆ’ โˆ‘โˆž ๐œ=2 ( [๐œ]q[ + 1 โˆ’ (โˆ’1)๐œ ) a๐œ ๐›ฟ๐œโˆ’1 ๏ฟฝ๏ฟฝ โ‰ค 1 + โˆ‘โˆž ๐œ=2 ( [๐œ]q โˆ’ (1 โˆ’ (โˆ’1)๐œ) ) |a๐œ ||๐›ฟ |๐œโˆ’1 (2 + [) โˆ’ โˆ‘โˆž ๐œ=2 ( [๐œ]q[ + 1 โˆ’ (โˆ’1)๐œ ) |a๐œ ||๐›ฟ |๐œโˆ’1 โ‰ค 1 + โˆ‘โˆž ๐œ=2 ( [๐œ]q โˆ’ (1 โˆ’ (โˆ’1)๐œ) ) a๐œr๐œโˆ’1 (2 + [) โˆ’ โˆ‘โˆž ๐œ=2 ( [๐œ]q[ + 1 โˆ’ (โˆ’1)๐œ ) a๐œr๐œโˆ’1 = f (r). Since f โˆˆ Mโˆ—S,qV ([ , ๐œ—) and 0 < r < 1, we obtain 1 + โˆ‘โˆž ๐œ=2 ( [๐œ]q โˆ’ (1 โˆ’ (โˆ’1)๐œ) ) a๐œr๐œโˆ’1 (2 + [) โˆ’ โˆ‘โˆž ๐œ=2 ( [๐œ]q[ + 1 โˆ’ (โˆ’1)๐œ ) a๐œr๐œโˆ’1 < ๐œ—. (5) Then, we let r โ†’ 1 in (5), we gain 1 + โˆžโˆ‘๏ธ ๐œ=2 ( [๐œ]q โˆ’ (1 โˆ’ (โˆ’1)๐œ) ) a๐œ โ‰ค ๐œ— ( (2 + [) โˆ’ โˆžโˆ‘๏ธ ๐œ=2 ( [๐œ]q[ + 1 โˆ’ (โˆ’1)๐œ ) a๐œ ) and hence โˆ‘โˆž ๐œ=2 ( (1+๐œ—[) [๐œ]q ๐œ—(2+[)โˆ’1 + ๐œ—(1โˆ’(โˆ’1)๐œ)โˆ’(1โˆ’(โˆ’1)๐œ) ๐œ—(2+[)โˆ’1 ) a๐œ โ‰ค 1 as required. This completes the proof of the theorem. Corollary 1. If f โˆˆ Mโˆ—S,qV ([ , ๐œ—) then a๐œ โ‰ค ๐œ—(2 + [) โˆ’ 1 (1 + ๐œ—[)[๐œ]q + ๐œ— (1 โˆ’ (โˆ’1)๐œ) โˆ’ (1 โˆ’ (โˆ’1)๐œ) , ๐œ โ‰ฅ 2. Proof. From Theorem 1, if f โˆˆ Mโˆ—S,qV ([ , ๐œ—) then โˆžโˆ‘๏ธ ๐œ=2 ( (1 + ๐œ—[)[๐œ]q + ๐œ—(1 โˆ’ (โˆ’1)๐œ) โˆ’ (1 โˆ’ (โˆ’1)๐œ) ๐œ—(2 + [) โˆ’ 1 ) a๐œ โ‰ค 1 for 0 โ‰ค [ < 1, 0 < ๐œ— < 1 and 0 โ‰ค 2(1โˆ’๐œ—)1+[๐œ— < 1. Since ( (1 + ๐œ—[)[๐œ]q + ๐œ—(1 โˆ’ (โˆ’1)๐œ) โˆ’ (1 โˆ’ (โˆ’1)๐œ) ๐œ—(2 + [) โˆ’ 1 ) a๐œ โ‰ค โˆžโˆ‘๏ธ ๐œ=2 ( (1 + ๐œ—[)[๐œ]q + ๐œ—(1 โˆ’ (โˆ’1)๐œ) โˆ’ (1 โˆ’ (โˆ’1)๐œ) ๐œ—(2 + [) โˆ’ 1 ) a๐œ โ‰ค 1, we obtain that a๐œ โ‰ค ๐œ—(2+[)โˆ’1 (1+๐œ—[) [๐œ]q+๐œ—(1โˆ’(โˆ’1)๐œ)โˆ’(1โˆ’(โˆ’1)๐œ) . The proof is completed. Next, by applying similar way of methods, we may get the coecient properties for the functions which belongs to Mโˆ—C,qV ([ , ๐œ—) andM โˆ— SC,qV ([ , ๐œ—). TheresultsareshowninThe- orem 2 and Theorem 3. Theorem 2. Let f โˆˆ V . A function f โˆˆ Mโˆ—C,qV ([ , ๐œ—) if and only if โˆžโˆ‘๏ธ ๐œ=2 ( (1 + ๐œ—[)[๐œ]q ๐œ—(2 + [) โˆ’ 1 + 2(๐œ— โˆ’ 1) ๐œ—(2 + [) โˆ’ 1 ) a๐œ โ‰ค 1 for 0 โ‰ค [ < 1, 0 < ๐œ— < 1 and 0 โ‰ค 2(1โˆ’๐œ—)1+[๐œ— < 1. Corollary 2. If f โˆˆ Mโˆ—C,qV ([ , ๐œ—) then a๐œ โ‰ค ๐œ—(2 + [) โˆ’ 1 (1 + ๐œ—[)[๐œ]q + 2(๐œ— โˆ’ 1) , ๐œ โ‰ฅ 2. Theorem 3. Let f โˆˆ V . A function f โˆˆ Mโˆ—SC,qV ([ , ๐œ—) if and only if โˆžโˆ‘๏ธ ๐œ=2 ( (1 + ๐œ—[)[๐œ]q ๐œ—(2 + [) โˆ’ 1 + ๐œ— (1 โˆ’ (โˆ’1)๐œ) โˆ’ (1 โˆ’ (โˆ’1)๐œ) ๐œ—(2 + [) โˆ’ 1 ) a๐œ โ‰ค 1 for 0 โ‰ค [ < 1, 0 < ๐œ— < 1 and 0 โ‰ค 2(1โˆ’๐œ—)1+[๐œ— < 1. Corollary 3. If f โˆˆ Mโˆ—S,qV ([ , ๐œ—) then a๐œ โ‰ค ๐œ—(2 + [) โˆ’ 1 (1 + ๐œ—[)[๐œ]q + ๐œ— (1 โˆ’ (โˆ’1)๐œ) โˆ’ (1 โˆ’ (โˆ’1)๐œ) , ๐œ โ‰ฅ 2. After that, we may get the growth property for functions in the class Mโˆ—S,qV ([ , ๐œ—) in the next part. Theorem 4. Given that a function f be dened by (4) and belongs to the class Mโˆ—S,qV ([ , ๐œ—). Then for {๐›ฟ : 0 < |๐›ฟ | = r < 1}, r โˆ’ ๐œ—(2 + [) โˆ’ 1 [2]q(1 + ๐œ—[) r2 โ‰ค | f (๐›ฟ)| โ‰ค r + ๐œ—(2 + [) โˆ’ 1 [2]q(1 + ๐œ—[) r2. proof. First, it is obvious that [2]q(1 + ๐œ—[) ๐œ—(2 + [) โˆ’ 1 โˆžโˆ‘๏ธ ๐œ=2 a๐œ โ‰ค โˆžโˆ‘๏ธ ๐œ=2 ( (1 + ๐œ—[)[๐œ]q ๐œ—(2 + [) โˆ’ 1 + ๐œ— (1 โˆ’ (โˆ’1)๐œ) โˆ’ (1 โˆ’ (โˆ’1)๐œ) ๐œ—(2 + [) โˆ’ 1 ) a๐œ and as f โˆˆ Mโˆ—S,qV ([ , ๐œ—), we use the inequality in Theorem 1 and it gives ยฉ 2022 The Authors. Page 329 of 332 Hern et. al. Science and Technology Indonesia, 7 (2022) 327-332 โˆžโˆ‘๏ธ ๐œ=2 a๐œ โ‰ค ๐œ—(2 + [) โˆ’ 1 [2]q(1 + ๐œ—[) . (6) From (4) with |๐›ฟ | = r (r < 1), we can gain | f (๐›ฟ)| โ‰ค r + โˆžโˆ‘๏ธ ๐œ=2 a๐œr ๐œ โ‰ค r + โˆžโˆ‘๏ธ ๐œ=2 a๐œr 2 and | f (๐›ฟ)| โ‰ฅ r โˆ’ โˆžโˆ‘๏ธ ๐œ=2 a๐œr ๐œ โ‰ฅ r โˆ’ โˆžโˆ‘๏ธ ๐œ=2 a๐œr 2. Lastly, by considering the inequalities (6), we may gain the result of Theorem 4. In the next part, we shall gain the growth results for func- tions that belongs to Mโˆ—C,qV ([ , ๐œ—) and M โˆ— SC,qV ([ , ๐œ—) by using a similar method. The results are shown in Theorem 5 and Theorem 6. Theorem 5. Given that a function f be dened by (4) and belongs to the class Mโˆ—C,qV ([ , ๐œ—). Then for {z : 0 < |๐›ฟ |= r < 1}, r โˆ’ ๐œ—(2 + [) โˆ’ 1( [2]q โˆ’ 1 ) + ๐œ— ( [2]q[ + 2 ) r2 โ‰ค | f (๐›ฟ)| โ‰ค r + ๐œ—(2 + [) โˆ’ 1( [2]q โˆ’ 1 ) + ๐œ— ( [2]q[ + 2 ) r2. Theorem 6. Given that a function f be dened by (4) and belongs to the class Mโˆ—SC,qV ([ , ๐œ—). Then for {z : 0 < |๐›ฟ | = r < 1}, r โˆ’ ๐œ—(2 + [) โˆ’ 1 [2]q(1 + ๐œ—[) r2 โ‰ค | f (๐›ฟ)| โ‰ค r + ๐œ—(2 + [) โˆ’ 1 [2]q(1 + ๐œ—[) r2. Finally, we consider extreme points for these 3 classes. Theorem 7. Let f1(๐›ฟ) = ๐›ฟ and f๐œ (๐›ฟ) =๐›ฟ โˆ’ ๐œ—(2 + [) โˆ’ 1 (1 + ๐œ—[)[๐œ]q + ๐œ—(1 โˆ’ (โˆ’1)๐œ) โˆ’ (1 โˆ’ (โˆ’1)๐œ) ๐›ฟ ๐œ , ๐œ โ‰ฅ 2. Then f โˆˆ Mโˆ—S,qV ([ , ๐œ—) if and only if f (๐›ฟ) = โˆžโˆ‘๏ธ ๐œ=1 _๐œ f๐œ (๐›ฟ) where _๐œ โ‰ฅ 0 and โˆžโˆ‘๏ธ ๐œ=1 _๐œ = 1. proof. We adopt the technique by (Silverman, 1975), we assume that f (๐›ฟ) = โˆžโˆ‘๏ธ ๐œ=1 _๐œ f๐œ (๐›ฟ) = ๐›ฟ โˆ’ โˆžโˆ‘๏ธ ๐œ=2 _๐œ ( ๐œ—(2 + [) โˆ’ 1 (1 + ๐œ—[)[๐œ]q + ๐œ—(1 โˆ’ (โˆ’1)๐œ) โˆ’ (1 โˆ’ (โˆ’1)๐œ) ) ๐›ฟ ๐œ. Next since โˆžโˆ‘๏ธ ๐œ=2 _๐œ ( ๐œ—(2 + [) โˆ’ 1 (1 + ๐œ—[)[๐œ]q + ๐œ—(1 โˆ’ (โˆ’1)๐œ) โˆ’ (1 โˆ’ (โˆ’1)๐œ) ) ( (1 + ๐œ—[)[๐œ]q + ๐œ—(1 โˆ’ (โˆ’1)๐œ) โˆ’ (1 โˆ’ (โˆ’1)๐œ) ๐œ—(2 + [) โˆ’ 1 ) = โˆžโˆ‘๏ธ ๐œ=2 _๐œ = 1 โˆ’ _1 โ‰ค 1. Therefore by Theorem 1, f โˆˆ Mโˆ—S,qV ([ , ๐œ—). Conversely, suppose f โˆˆ Mโˆ—S,qV ([ , ๐œ—). Since a๐œ โ‰ค ๐œ—(2 + [) โˆ’ 1 (1 + ๐œ—[)[๐œ]q + ๐œ— (1 โˆ’ (โˆ’1)๐œ) โˆ’ (1 โˆ’ (โˆ’1)๐œ) , ๐œ โ‰ฅ 2, we may set _๐œ = { (1 + ๐œ—[)[๐œ]q + ๐œ— (1 โˆ’ (โˆ’1)๐œ) โˆ’ (1 โˆ’ (โˆ’1)๐œ) ๐œ—(2 + [) โˆ’ 1 } a๐œ , ๐œ โ‰ฅ 2 and _1 = 1 โˆ’ โˆžโˆ‘๏ธ ๐œ=2 _๐œ. Then โˆžโˆ‘๏ธ ๐œ=1 _๐œ f๐œ (๐›ฟ) = _1 f1(๐›ฟ) + โˆžโˆ‘๏ธ ๐œ=2 _๐œ f๐œ (๐›ฟ) = ๐›ฟ โˆ’ โˆžโˆ‘๏ธ ๐œ=2 _๐œ ๐›ฟ + โˆžโˆ‘๏ธ ๐œ=2 _๐œ ๐›ฟ โˆ’ โˆžโˆ‘๏ธ ๐œ=2 a๐œ ๐›ฟ ๐œ = f (๐›ฟ). Hence, we complete the proof. By using a similar method, we obtain the extreme points for the other 2 classes. ยฉ 2022 The Authors. Page 330 of 332 Hern et. al. Science and Technology Indonesia, 7 (2022) 327-332 Theorem 8. Let f1(๐›ฟ) = ๐›ฟ and f๐œ (๐›ฟ) =๐›ฟ โˆ’ ๐œ—(2 + [) โˆ’ 1 (1 + ๐œ—[)[๐œ]q + 2(๐œ— โˆ’ 1) ๐›ฟ ๐œ , ๐œ โ‰ฅ 2. Then f โˆˆ Mโˆ—C,qV ([ , ๐œ—) if and only if f (๐›ฟ) = โˆžโˆ‘๏ธ ๐œ=1 _๐œ f๐œ (๐›ฟ) where _๐œ โ‰ฅ 0and โˆžโˆ‘๏ธ ๐œ=1 _๐œ = 1. Theorem 9. Let f1(๐›ฟ) = ๐›ฟ and f๐œ (๐›ฟ) =๐›ฟ โˆ’ ๐œ—(2 + [) โˆ’ 1 (1 + ๐œ—[)[๐œ]q + ๐œ—(1 โˆ’ (โˆ’1)๐œ) โˆ’ (1 โˆ’ (โˆ’1)๐œ) ๐›ฟ ๐œ , ๐œ โ‰ฅ 2. Then f โˆˆ Mโˆ—SC,qV ([ , ๐œ—) if and only if f (๐›ฟ) = โˆžโˆ‘๏ธ ๐œ=1 _๐œ f๐œ (๐›ฟ) where _๐œ โ‰ฅ 0 and โˆžโˆ‘๏ธ ๐œ=1 _๐œ = 1. 3. CONCLUSIONS In thispaper, we introduced3newsubclassesof Awithnegative coecients involving q-derivative and obtained their results for the coecient estimates, growth results and extreme points. 4. ACKNOWLEDGMENT Wegiveourgratitudetothenancial support (SBK0485-2021) and all the reference papers. REFERENCES Al-Abbadi, M. H. and M. Darus (2010). On Subclass of Ana- lytic Univalent Functions Associated with Negative Coe- cients. International Journal of Mathematics and Mathematical Sciences, 2010; 1โ€“11 Al Shaqsi, K. and M. Darus (2007). On Certain Subclass of Analytic Univalent Functions with Negative Coecients. Applied Mathematical Sciences, 1(21-24); 1121โ€“1128 Aral, A., V. Gupta, and R. P. Agarwal (2013). Applications of q-Calculus in Operator Theory. Springer Atshan, W. G. and H. Y. Ghawi (2012). On a New Class of Univalent Functions with Negative Coecients. European Journal of Scientic Research, 74(4); 601โ€“608 Breaz, D. and L. I. Cotรฎrlฤƒ (2021). The Study of The New Classesofm-FoldSymmetricBi-UnivalentFunctions. Math- ematics, 10(1); 75 Bucur, R. and D. Breaz (2020). Properties of a New Subclass of Analytic Functions with Negative Coecients Dened by Using The q-Derivative. Applied Mathematics and Nonlinear Sciences, 5(1); 303โ€“308 Choo, C. P. and A. Janteng (2013). Estimate on The Second Hankel Functional for a Subclass of Close-to-Convex Func- tions with Respect to Symmetric Points. InternationalJournal of Mathematics Analysis, 7; 781โ€“788 Clunie, J. and F. Keogh (1960). On Starlike and Convex Schlicht Functions. Journal of The London Mathematical Soci- ety, 1(2); 229โ€“233 Halim, S., A. Janteng, and M. Darus (2005). Coecient Prop- erties forClasses with Negative Coecients and Starlike with Respect to Other Points. In Proceeding of The 13th Mathemat- ical Sciences National Symposium, 2; 658โ€“663 Halim, S. A., A. Janteng, and M. Darus (2006). Classes with Negative Coecients and Starlike with Respect to Other Points II. Tamkang Journal of Mathematics, 37(4); 345โ€“354 Ibrahim, R. W. (2020). Geometric Process Solving a Class of Analytic Functions Using q-Convolution Dierential Oper- ator. Journal of Taibah University for Science, 14(1); 670โ€“677 Jabeen, M., S. Nawaz Malik, S. Mahmood, S. Riaz, and M. Ali (2022). On q-Convex Functions Dened by The q- Ruscheweyh Derivative Operator in Conic Regions. Journal of Mathematics, 2022; 1โ€“13 Jackson, F. H. (1909). On q-Functions and a Certain Dier- ence Operator. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 46(2); 253โ€“281 Janteng, A. and S. A. Halim (2009). A Subclass Quasi-Convex Functions with Respect to Symmetric Points. Applied Math- ematical Sciences, 3(12); 551โ€“556 Janteng, A., A. L. P. Hern, and R. Omar (2020). Fekete-Szegรถ Functional of Classes of Analytic Functions Involving The q- Derivative Operator. Applied Mathematical Sciences, 14(10); 481โ€“488 Karahuseyin, Z., S. Altinkaya, and S. Yalรงin (2017). On H3(1) Hankel Determinant for Univalent Functions Dened by Using q-Derivative Operator. Transylvanian Journal of Math- ematics and Mechanics, 9; 25โ€“33 Khan, B., Z. G. Liu, T. G. Shaba, S. Araci, N. Khan, and M. G. Khan (2022). Applications of-Derivative Operator to The Subclass of Bi-Univalent Functions Involving-Chebyshev Polynomials. Journal of Mathematics, 2022 Murugusundaramoorthy, G., T. Janani, and M. Darus (2015). Coecient Estimate of Biunivalent Functions Based on q- Hypergeometric Functions. Applied Sciences, 17; 75โ€“85 Najafzadeh, S. (2021). (p, q)-Derivative on Univalent Func- tionsAssociatedwithSubordinationStructure. GeneralMath- ematics, 29(2); 99โ€“106 Najafzadeh, S. and Z. Salleh (2022). Univalent Functions by Means of Chebyshev Polynomials. Journal of Function Spaces, 2022 Oluwayemi, M. O., K. Vijaya, and A. CฤƒtaลŸ (2022). Certain Properties of a Class of Functions Dened by Means of a Generalized Dierential Operator. Mathematics, 10(2); 174 Oshah, A. and M. Darus (2015). New Subclass of Analytic Functions Dened by q-Dierentiation. International Infor- mation Institute (Tokyo). Information, 18(7); 2897 Porwal, S., B. M. Indu, and M. Nanjundan (2022). On Certain Subclasses of Univalent Functions Associated with Wright Function. Theory and Applications of Mathematics & Computer Science, 12(1); 13โ€“20 Rashid, A. M. and A. R. S. Juma (2022). A Class of Harmonic Univalent Functions Dened by The q-Derivative Operator. International Journal of Nonlinear Analysis and Applications, 13(1); 2713โ€“2722 ยฉ 2022 The Authors. Page 331 of 332 Hern et. al. Science and Technology Indonesia, 7 (2022) 327-332 Shilpa, N. (2022). Fekete-Szegรถ Inequalities for Certain Ana- lytic Functions Associated with q-Derivative Operator. Ad- vances and Applications in Mathematical Sciences, 21(4); 2125โ€“ 2135 Silverman, H. (1975). Univalent Functions with Negative Coecients. Proceedings of The American Mathematical Society, 51(1); 109โ€“116 ยฉ 2022 The Authors. Page 332 of 332 INTRODUCTION RESULTS CONCLUSIONS ACKNOWLEDGMENT