Title Science and Technology Indonesia e-ISSN:2580-4391 p-ISSN:2580-4405 Vol. 8, No. 2, April 2023 Research Paper Bi-Univalent Function Classes Defined by Using an Einstein Function and a New Generalised Operator Munirah Rossdy1,2*, Rashidah Omar2, Shaharuddin Cik Soh1 1School of Mathematical Sciences, College of Computing, Informatics and Media, Universiti Teknologi MARA, Shah Alam, Selangor, 40450, Malaysia2Mathematical Sciences Studies, College of Computing, Informatics and Media, Universiti Teknologi MARA Sabah Branch, Kota Kinabalu Campus, Kota Kinabalu, Sabah, 88997, Malaysia *Corresponding author: munirahrossdy@uitm.edu.my AbstractLet A be the class of all analytic and univalent functions f (z) = z+ฮฃโˆž k=2 akz k in the open unit disc ๐”ป = {z:|z|<1 }. S then represents the classes of every function in A that is univalent in ๐”ป. For every f โˆˆ S, there is an inverse f โˆ’1. A function f โˆˆ A in ๐”ป is categorised asbi-univalent if f and its inverse g = f โˆ’1 are both univalent. Motivated by the generalised operator, subordination principle, and thefirst Einstein function, we present a new family of bi-univalent analytic functions on the open unit disc of the complex plane. Thefunctions contained in the subclasses are used to account for the initial coefficient estimate of |a2|. In this study, we derive the resultsfor the covering theorem, distortion theorem, rotation theorem, growth theorem, and the convexity radius for functions of the class N s,m,k _ ,๐›ผ (ฮฃ, E) of bi-univalent functions related to an Einstein function and a generalised differential operator Ds,m,k_ ,๐›ผ f (z). We usethe elementary transformations that preserve the class N s,m,k _ ,๐›ผ (ฮฃ, E) in order to attain the intended results. The required propertiesare then obtained. KeywordsEinstein Function, Subordination, Distortion Theorem, Covering Theorem, Radius of Convexity, Bi-Univalent Functions Received: 8 November 2022, Accepted: 13 February 2023 https://doi.org/10.26554/sti.2023.8.2.195-204 1. INTRODUCTION For the open unit disc ๐”ป = {z โˆˆ โ„‚:|z|<1 }, we set A as denoting the class of f (z) = z + โˆžโˆ‘๏ธ n=2 anz n , for z โˆˆ ๐”ป (1) analytic functions. S represents the class of all functions in A that are univalent in ๐”ป (for further detail on univalent functions, see Duren (2001) ) and satisfy the standard normali- sation condition f (0) = f โ€ฒ(0) - 1 = 0. The Koebe one-quarter theorem (Duren, 2001) demonstrates that each univalent func- tion f โˆˆ S having a disc with a radius of 14 possesses an inverse function f โˆ’1 that can be defined by f โˆ’1( f (z)) = z, for z โˆˆ ๐”ป, and f ( f โˆ’1(w)) = w, |w| < r0( f ), r0( f ) โ‰ค 1 4 The function f โˆˆ S is deemed as bi-univalent if f and f โˆ’1 are both univalent in ๐”ป. Let the class of bi-univalent functions in ๐”ป of the form (1) be denoted by โˆ‘ . Moreover, it is easily demonstrated that the series expansion of the inverse function can be written as follows: g(w) = f โˆ’1(w) = w โˆ’ a2w2 + (2a22 โˆ’ a3)w 3 (2) โˆ’ (5a32 โˆ’ 5a2a3 + a4)w 4 + ยท ยท ยท , for w โˆˆ ๐”ป. Class โˆ‘ includes functions such as z1โˆ’zโ€ฒ โˆ’ log(1 โˆ’ z), and 1 2 log( 1+z 1โˆ’z) . Nevertheless, the well-known Koebe function does not belong to โˆ‘ . Other typical instances of functions in S such as z โˆ’ z 2 2 , and z 1โˆ’z2 , do not belong to โˆ‘ . For references to related works on bi-univalent functions, see the revival paper https://crossmark.crossref.org/dialog/?doi=10.26554/sti.2023.8.2.195-204&domain=pdf https://doi.org/10.26554/sti.2023.8.2.195-204 Rossdy et. al. Science and Technology Indonesia, 8 (2023) 195-204 by Srivastava et al. (2010) , as well as several other studies (Ali et al., 2012; Oros and Cotรฎrlฤƒ, 2022; Srivastava et al., 2018). Normalised analytic function operators are commonly utili- sed in the field of Geometric Function Theory (GFT), particu- larly differential and integral operators. A wide range of authors have written numerous articles on a variety of topics, including operators and novel generalisation. The differential operator, which was first introduced in 1975 by Ruscheweyh (1975) , was a particularly major breakthrough. Differential and integral op- erators were then presented in a different version by Salagean (1983) . From there on, many academics have developed new operators and used them in numerous research topics involving GFT. They include Rossdy et al. (2022) , Wanas (2019) , Yunus et al. (2017) , Elhaddad and Darus (2021) , and Frasin (2020) . In this paper, we provide some information regarding the differential operator that is applied to examine our new sub- classes. According to Rossdy et al. (2022) , the differential operator is defined by: Definition 1.1 For f โˆˆ A, 0 < _ < 1, 0 < ๐›ผ < 1, m โˆˆ โ„• = {1, 2, ยท ยท ยท }, b โˆˆ โ„‚\Zโˆ’0 , s โˆˆ โ„‚, k โˆˆ โ„•0 , Ds,m,k _ ,๐›ผ f (z) =z + โˆžโˆ‘๏ธ n=2 ( 1 + b n + b )s (3) [1 + _ (n โˆ’ 1)(1 โˆ’ _)m]kanzn We can see that when two functions of the class โˆ‘ are linked in a convex combination, it need not be bi-univalent. Even though the two functions of f1(z) = z1โˆ’z and f2(z) = z 1+iz are examples of bi-univalent functions, their sum, f1 + f2, is not univalent because its derivative no longer exists at 12 (1 + i). Nevertheless, several elementary transformations preserve the class โˆ‘ , as seen below (Wei, 2017; Sivasubramanian et al., 2014): i. Rotation: If f โˆˆ โˆ‘ , 0 โˆˆ โ„, and g(z) = eโˆ’i\ f (ei\z), then g โˆˆ โˆ‘ ; ii. Dilation: If f โˆˆ โˆ‘ , 0 < r < 1, and g(z)= 1r f (rz), then g โˆˆ โˆ‘ ; iii. Conjugation: If f โˆˆ โˆ‘ and g(z) = f (z), then g โˆˆ โˆ‘ ; iv. Disk automorphism: If f โˆˆ โˆ‘ , Z โˆˆ ๐”ป, and g(z) = f ( z+Z 1+Zz )โˆ’ f (Z ) (1โˆ’|Z |2 ) f โ€ฒ (Z ) , then g โˆˆ โˆ‘ . v. Omitted value transformation: If f โˆˆ โˆ‘ with f (z) ยฑ w for all z โˆˆ ๐”ป, and g(z)= wf (z)wโˆ’ f (z) , then g โˆˆ โˆ‘ . In GFT, determining coefficient estimates |an |(n โˆˆ โ„•) is es- sential because this allows details of these functionsโ€™ geometric properties to be obtained. The evaluation of analytic function coefficients determines the structural characteristics and partic- ulars of GFT. For example, in the univalent function set, the second coefficient |a2| implies the covering theorems, growth and distortion bounds. The renowned Bieberbach Conjecture, as proven by Louis de Branges (De Branges, 1985) , posits that the coefficient inequality as written below is true for each f โˆˆ S provided by the Taylor-Maclaurin series expansion (1): |an | โ‰ค n (n โˆˆ โ„•\{1}), (4) where โ„• represents the set of all positive integers. Lewin in his research Lewin (1967) on bi-univalent functions of the class โˆ‘ , discovered the bound |a2| < 1.51. Brannan and Clunie (1980) in their subsequent work proposed that |a2| โ‰ค โˆš 2. Additionally, Netanyahu (1969) demonstrated that maxf โˆˆโˆ‘ |a2| = 4 3 . In addition to estimating the coefficients for |a2| and |a3|, Brannan and Taha (1988) proposed the concepts of strongly bi-starlike functions of the order ๐›ผ and strongly bi- convex functions of the order ๐›ผ. Following the lead of Brannan and Taha (1988) , other researchers (Rossdy et al., 2021; Soni et al., 2018; Xu et al., 2012) have studied numerous subclasses of โˆ‘ and determined the coefficient bounds for |a2| and |a3|. The geometric theory of bi-univalent functions shows more applications of Lewinโ€™s inequality (Lewin, 1967) . An important implication is the distortion theorem. This theorem gives non- sharp upper and lower bounds for |f โ€ฒ(z)| as f ranges over the class โˆ‘ . The idea of subordination is then employed as defined below: Definition 1.2 (Miller and Mocanu, 2000) Given that f (z) โ‰บ g(z), with f being a subordinate to g, and both functions taken to be analytic. This indicates that f (z) = g(w(z)), where w is taken as analytic in ๐”ป, which corresponds to |w(z)| < 1 and w(0) = 0. Ma (1992) presented the subset of functions Sโˆ—(๐œ™) = {f โˆˆ A : zf โ€ฒ (z) f (z) โ‰บ ๐œ™(z), ๐œ™ โˆˆ P, z โˆˆ ๐”ป} in 1994, in which the sym- bol "โ‰บ" corresponds to the subordination stated in Definition 1.2 above. Ma (1992) studied several relevant topics, such as covering, growth, and distortion theorems. Then, by inserting certain functions for ๐œ™ in Sโˆ—(๐œ™), we obtain various subclasses of A with distinct geometric analyses, such as those from the work by Janowski (1970) , Mendiratta et al. (2015) , and Cho et al. (2019) . Many characteristics of the analytic univalent functions are connected with differential and integral opera- tors, such as coefficient bound, covering theorems, distortion theorems, growth theorems, inclusion properties, and radius of convexity; all of these have been investigated (Omar and Abdul Halim, 2012; Zhang et al., 2021; Saheb and Al-Khafaji, 2021; Kumar and Sahoo, 2021; Awasthi, 2017). Yet, there has been relatively little research and discovery on the relevant features involving bi-univalent function subclasses. However, much attention has been focused on bi-univalent functionsโ€™ ini- tial coefficients (Al-Ameedee et al., 2020; Rossdy et al., 2021; Soni et al., 2018). ยฉ 2023 The Authors. Page 196 of 204 Rossdy et. al. Science and Technology Indonesia, 8 (2023) 195-204 Gradshteyn and Ryzhik (2014) published a formulation for the Bernoulli polynomials in 1980, which has substantial uses in number theory and classical analysis. The Bernoulli polynomials are featured in differentiable periodic functions in the integral form of the functions because they are used for polynomial approximation of these functions. The polyno- mials are used to represent the remainder term of the Euler- Maclaurin quadrature rule in its composite form as well. The Bernoulli polynomials Bn(x) are commonly defined (Natalini and Bernardini, 2003) using the generating function: G(x, t) B text et โˆ’ 1 = โˆžโˆ‘๏ธ n=0 Bn(x) n! tn , |t| < 2๐œ‹, where for each nonnegative integer n, Bn(x) are polynomials in x. Since nโˆ’1โˆ‘๏ธ j=0 ( n j ) Bj(x) = nxnโˆ’1 , n = 2, 3, ยท ยท ยท , the Bernoulli polynomials can be calculated readily via recursion. The initial Bernoulli polynomials are B0(x) = 1, B1(x) = x โˆ’ 12 , B2(x) = x2 โˆ’ x + 16 , B3(x) + x3 โˆ’ 32 x 2 + 12 x, ยท ยท ยท Moreover, Bernoulli numbers Bn B Bn(0) can be directly generated by setting x = 0 in the Bernoulli polynomials. The initial Bernoulli numbers are B0(x) = 1, B1(x) = โˆ’ 12 , B2(x) = 16 , B4(x) = โˆ’ 130 B2n+1 = 0, โˆ€n = 1, 2, ยท ยท ยท Furthermore, Bernoulli numbers Bn can be produced using the Einstein function E(z): E(z) B z ez โˆ’ 1 = โˆžโˆ‘๏ธ n=0 Bn n! zn. The name of Einstein function is sometimes applied in mathematics for one of the functions (see (Abramowitz and Stegun, 1972; Weisstein, 2022)): E1(z) B zezโˆ’1 , E2(z) B z 2ez (ezโˆ’1)2 , E3(x) B log(1 โˆ’ eโˆ’z), E4(x) B zezโˆ’1 โˆ’ log(1 โˆ’ e โˆ’z). Both E1 and E2 exhibit these desirable properties. E1 and E2 (convex functions) have a symmetric range along the real axis and starlike range about E1(0) = E2(0) = 1 and โ„(E1(z)) > 0, โ„(E2(z)) > 0, โˆ€z โˆˆ ๐”ป. The series representa- tion is given by E1(z) =1 + โˆžโˆ‘๏ธ n=1 Bn n! zn E2(z) =1 + โˆžโˆ‘๏ธ n=1 (1 โˆ’ n)Bn n! zn , where Bn denotes the nth Bernoulli number. However, Eโ€ฒ1(0) and E โ€ฒ 2(0) โ‰ฏ 0, therefore we must establish new func- tions E(z) B E1(z) + z and ๐”ผ(z) B E2(z) + 12 z. A significant function class will be known as P and P defines the function family ๐œ™ that is restricted by the image domain of ๐œ™ (๐œ™ is a convex function with Re (๐œ™) > 0 in ๐”ป) being symmetric along the real axis and starlike about ๐œ™(0) = 1 with ๐œ™โ€ฒ(0) > 0. We can now say that E, ๐”ผ โˆˆ P. The following are the series repre- sentations: E(z) = 1 + z + โˆžโˆ‘๏ธ n=1 Bn n! zn , and ๐”ผ(z) = 1 + 1 2 z + โˆžโˆ‘๏ธ n=1 (1 โˆ’ n)Bn n! zn , The contour integral (see (Arfken and Weber, 1999) ) can be used to define the nth Bernoulli number, Bn: Bn = n! 2๐œ‹i โˆฎ z ez โˆ’ 1 dz zn+1 , where the radius of the contour encircling the origin is less than 2๐œ‹i. El-Qadeem et al. (2022b) presented outcomes relating to the first Einstein function E1, while El-Qadeem et al. (2022a) worked on the second Einstein function E2. ยฉ 2023 The Authors. Page 197 of 204 Rossdy et. al. Science and Technology Indonesia, 8 (2023) 195-204 Definition 1.3 Let โˆ‘ indicate the bi-univalent function class in ๐”ป. A function f โˆˆ โˆ‘ is said to be in the class N s,m,k _ ,๐›ผ ( โˆ‘ , E) for 0 < _ < 1, 0 < ๐›ผ < 1, m โˆˆ โ„• = {1, 2, ยท ยท ยท }, b โˆˆ โ„‚\Zโˆ’0 , s โˆˆ โ„‚, k โˆˆ โ„•0, if the subsequent subordination satisfies: (1 โˆ’ ๐›ฝ) Ds,m,k _ ,๐›ผ f (z) z + ๐›ฝ ( Ds,m,k _ ,๐›ผ f (z) )โ€ฒ โ‰บ E(z), (1 โˆ’ ๐›ฝ) Ds,m,k _ ,๐›ผ f (z) w + ๐›ฝ ( Ds,m,k _ ,๐›ผ f (w) )โ€ฒ โ‰บ E(w), where Ds,m,k _ ,๐›ผ f (z) and g are denoted by (4) and (3), respec- tively. Definition 1.4 (Orloff, 2018) (Complex Logarithm Function) The function log(z) is defined as log(z) = log(|z|) + i arg(z), where log |z| is the usual natural logarithm of a positive real number. Inspired by Sivasubramanian et al. (2014) , Rossdy et al. (2022) , Zhang et al. (2021) , Saheb and Al-Khafaji (2021) , and El-Qadeem et al. (2022b) , we propose in this paper a subclass of analytic bi-univalent function connected to the first Einstein function, E(z). We obtain the covering theorem for bi-univalent functions; the theorem states that each functionโ€™s range in the class N s,m,k _ ,๐›ผ ( โˆ‘ , E) must encompass a disk with a minimum radius of 14 . We also find the distortion theorem, the growth theorem, and the convexity radius for functions in the class N s,m,k _ ,๐›ผ ( โˆ‘ , E). 2. MAIN RESULTS 2.1 Covering Theorem Firstly, we discover the covering theorem for the class N s,m,k _ ,๐›ผ ( โˆ‘ , E) provided by the following: Theorem 2.1.1 The range of each function of the class N s,m,k _ ,๐›ผ ( โˆ‘ , E) includes the disk {w โˆˆ โ„‚ : |w| < 14 }. Proof. A disk automorphism is used to derive the function f from a given function f โˆˆ N s,m,k _ ,๐›ผ ( โˆ‘ , E) and a fixed Z โˆˆ ๐”ป where F(z) = f ( z+Z 1+Zz ) โˆ’ f (Z) (1 โˆ’ |Z |2) f โ€ฒ(Z) = z + A2(Z)z2 + ยท ยท ยท , forz โˆˆ ๐”ป. (5) Then, we have F(z) =z + ๏ฃฎ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฐ โˆ’6 ( 2a2 ( 1+b 2+b )s [1 + _ (1 โˆ’ ๐›ผ)m]k(1 + ๐›ฝ)Z+ 2 ( 6a2 ( 1+b 2+b )s [1 + _ (1 โˆ’ ๐›ผ)m]k(1 + ๐›ฝ) 2a3 ( 1+b 3+b )s [1 + 2_ (1 โˆ’ ๐›ผ)m]k(1 + 2 ๐›ฝ)(3Z 2 โˆ’ 1) +12a3 ( 1+b 3+b )s [1 + 2_ (1 โˆ’ ๐›ผ)m]k(1 + 2 ๐›ฝ)Z + 5c21 Z โˆ’3Z 2 + 1 + c21 (5 โˆ’ 15Z 2) + 6c1Z + ยท ยท ยท ) โˆ’3c1 โˆ’ 6Z ) + ยท ยท ยท ๏ฃน๏ฃบ๏ฃบ๏ฃบ๏ฃบ๏ฃบ๏ฃบ๏ฃบ๏ฃบ๏ฃป z2 + ยท ยท ยท , z โˆˆ ๐”ป By performing a straightforward calculation, we get F(z) = z + [ (1 โˆ’ 3Z 2)(2a2a3 ( 1+b2+b )s[1 + _ (1 โˆ’ ๐›ผ)m]k(1 + 2 ๐›ฝ) 2 ( a2 ( 1+b 2+b )s [1 + _ (1 โˆ’ ๐›ผ)m]k(1 + ๐›ฝ) + 2a3 ( 1+b 3+b )s 5c21 6 โˆ’ 1 + ยท ยท ยท ) [1 + 2_ (1 โˆ’ ๐›ผ)m]k(1 + 2 ๐›ฝ)Z + 56c 2 1 Z โˆ’ c1 2 โˆ’ Z + ยท ยท ยท ) โˆ’ Z + 1 w ] z2 + ยท ยท ยท , z โˆˆ ๐”ป, is analytic and bi-univalent in ๐”ป. Then, by incorporating ยฉ 2023 The Authors. Page 198 of 204 Rossdy et. al. Science and Technology Indonesia, 8 (2023) 195-204 the inequality (4) with [ (1 โˆ’ 3Z 2)(2a2a3 ( 1+b2+b )s[1 + _ (1 โˆ’ ๐›ผ)m]k(1 + 2 ๐›ฝ) 2 ( a2 ( 1+b 2+b )s [1 + _ (1 โˆ’ ๐›ผ)m]k(1 + ๐›ฝ) + 2a3 ( 1+b 3+b )s 5c21 6 โˆ’ 1 + ยท ยท ยท ) [1 + 2_ (1 โˆ’ ๐›ผ)m]k(1 + 2 ๐›ฝ)Z + 56c 2 1 Z โˆ’ c1 2 โˆ’ Z + ยท ยท ยท ) โˆ’ Z + 1 w ] โ‰ค 2, we find that |w| โ‰ฅ 1 (1โˆ’3Z 2 ) ( 2a2a3 ( 1+b 2+b ) s [1+_ (1โˆ’๐›ผ)m]k (1+2 ๐›ฝ ) 2 ( a2 ( 1+b 2+b ) s [1+_ (1โˆ’๐›ผ)m]k (1+๐›ฝ )+2a3 ( 1+b 3+b ) s 5c2 1 6 โˆ’1+ยทยทยท ) [1+2_ (1โˆ’๐›ผ)m]k (1+2 ๐›ฝ )Z+ 56 c 2 1 Z โˆ’ c1 2 โˆ’Z+ยทยทยท ) In view of Brangeโ€™s work (De Branges, 1985) we find that |A2(Z)| โ‰ค 2, therefore |w| โ‰ฅ 1 4 2.2 Distortion and Rotation Theorems The next theorem, which gives a vital estimate, is used to de- velop the distortion theorem and accompanying findings: Theorem 2.2.1 For N s,m,k _ ,๐›ผ ( โˆ‘ , E), we have: ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝzf โ€ฒโ€ฒ(z)f โ€ฒ(z) โˆ’ 2r21 โˆ’ 3r2 ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ‰ค 4r1 โˆ’ 3r2 , |z| = r < 1. (6) Proof. A disk automorphism defined in (5) is used to de- rive the function F for a given function f โˆˆ N s,m,k _ ,๐›ผ ( โˆ‘ , E) and a fixed Z โˆˆ ๐”ป. Hence, using the elementary transformation, we get f โˆˆ N s,m,k _ ,๐›ผ ( โˆ‘ , E), and a simple computation gives us A2(Z) = (1 โˆ’ 3|Z |2)( f โ€ฒโ€ฒ(Z)) 2( f โ€ฒ(Z)) โˆ’ Zฬ„ . (7) Moreover, following the lead from Brangeโ€™s work (De Branges, 1985) , we can deduce that |A2(Z)| โ‰ค 2|. As a result, we may get the inequality (6) by using the bound A2(Z) in (7) and replacing Z with z. After establishing Theorem 2.2.1, the following distortion theorem can be shown: Theorem 2.2.2 For each f โˆˆ N s,m,k _ ,๐›ผ ( โˆ‘ , E), we have: (1 โˆ’ โˆš 3r) 2 โˆš 3โˆ’1 3 (1 + โˆš 3r) 2 โˆš 3+1 3 < | f โ€ฒ(z)| โ‰ค (1 + โˆš 3r) 2 โˆš 3+1 3 (1 โˆ’ โˆš 3r) 2 โˆš 3โˆ’1 3 , |z| = r < 1. (8) Proof. From inequality (6), we obtain โˆ’ 4r 1 โˆ’ 3r2 < zf โ€ฒโ€ฒ(z) f โ€ฒ(z) โˆ’ 2r2 1 โˆ’ 3r2 โ‰ค 4r 1 โˆ’ 3r2 , |z| = r < 1. (9) By taking the real component of (8), we get 2r2 1 โˆ’ 3r2 โˆ’ 4r 1 โˆ’ 3r2 < Re { zf โ€ฒโ€ฒ(z) f โ€ฒ(z) } < 2r2 1 โˆ’ 3r2 + 4r 1 โˆ’ 3r2 , |z| = r < 1. (10) Since f โ€ฒ(z)| โ‰  0 and f โ€ฒ(0) = 1, it is possible to allocate a branch of log f โ€ฒ(z) that has a single value and which disappears at the origin. As a result of utilising logarithmic differentiation and Definition 1.4, we can find that Re { zf โ€ฒโ€ฒ(z) f โ€ฒ(z) } =z Re { zf โ€ฒโ€ฒ(z) f โ€ฒ(z) } = r ๐œ• ๐œ•r Re{log | f โ€ฒ(z)|}, z = rei\ . ยฉ 2023 The Authors. Page 199 of 204 Rossdy et. al. Science and Technology Indonesia, 8 (2023) 195-204 We then employ the above identity in (10) and obtain 2r โˆ’ 4 1 โˆ’ 3r2 < ๐œ• ๐œ•r log | f โ€ฒ(z)| < 2r + 4 1 โˆ’ 3r2 , z = rei\ . (11) With \ as a constant, we integrate the inequality (11) from 0 to R with respect to r which yields the following expression: โˆ’ 2 Rโˆซ 0 r โˆ’ 2 3r2 โˆ’ 1 dr < Rโˆซ 0 ๐œ• ๐œ•r log | f โ€ฒ(rei\)|๐œ•r < โˆ’2 Rโˆซ 0 r + 2 3r2 โˆ’ 1 dr. By employing the partial fractions, we obtain โˆ’ 2 Rโˆซ 0 6 + โˆš 3 2 โˆš 3(3r + โˆš 3) + f rac6 โˆ’ โˆš 32 โˆš 3(3r โˆ’ โˆš 3)dr < Rโˆซ 0 ๐œ• ๐œ•r log | f โ€ฒ(rei\)|๐œ•r < โˆ’2 Rโˆซ 0 โˆ’6 + โˆš 3 2 โˆš 3(3r + โˆš 3) + 6 + โˆš 3 2 โˆš 3(3r โˆ’ โˆš 3) dr. Using the technique of substitution, we get [( 2 โˆš 3 โˆ’ 1 3 ) log( โˆš 3 โˆ’ 3r) โˆ’ ( 1 + 2 โˆš 3 3 ) log( โˆš 3 + 3r) ]R 0 < log | f โ€ฒ(rei\)| < [( 2 โˆš 3 โˆ’ 1 3 ) log( โˆš 3 + 3r) โˆ’ ( 1 + 2 โˆš 3 3 ) log( โˆš 3 โˆ’ 3r) ]R 0 Then, by using the logarithmic quotient rule, we have log [ (1 โˆ’ โˆš 3R) 2 โˆš 3โˆ’1 3 (1 + โˆš 3R) 2 โˆš 3+1 3 ] < log | f โ€ฒ(rei\)| โ‰ค [ (1 + โˆš 3R) 2 โˆš 3โˆ’1 3 (1 โˆ’ โˆš 3R) 2 โˆš 3+1 3 ] (12) Finally, we attain (8) by exponentiating (12). As a result, we intend to point out the fact that the upper and lower bounds of the distortion factor | f โ€ฒ(z)| for the class N s,m,k _ ,๐›ผ ( โˆ‘ , E) are obtained by essentially putting into consider- ation the real component of inequality (6) in Theorem 2.2.1. However, by considering the imaginary part, we may get a con- dition for the rotation factor |arg f โ€ฒ(z)|. Hence, the theorem of rotation is as follows: Theorem 2.2.3 For each f โˆˆ N s,m,k _ ,๐›ผ ( โˆ‘ , E), we have: |arg f โ€ฒ(z)| โ‰ค 2 โˆš 3 log [ 1 + โˆš3r 1 โˆ’ โˆš 3r ] , |z| = r < 1. Proof. From inequality (9), we attain 2r2 1 โˆ’ 3r2 โˆ’ 4r 1 โˆ’ 3r2 < zf โ€ฒโ€ฒ(z) f โ€ฒ(z) โ‰ค 2r2 1 โˆ’ 3r2 + 4r 1 โˆ’ 3r2 , |z| = r < 1. (13) By considering the imaginary component only from (13), we get: โˆ’4r 1 โˆ’ 3r2 < lm zf โ€ฒโ€ฒ(z) f โ€ฒ(z) โ‰ค 4r 1 โˆ’ 3r2 , |z| = r < 1. (14) Since | f โ€ฒ(z)| โ‰  0 and f (0) = 1, it is possible to allocate a branch of log f โ€ฒ(z) that has a single value and which disappears at the origin. Thus, by employing the logarithmic differentiation and Definition 1.4, we have lm zf โ€ฒโ€ฒ(z) f โ€ฒ(z) = z 2f โ€ฒโ€ฒ(z) f โ€ฒ(z) = r ๐œ• ๐œ•r arg f โ€ฒ(z), z = rei\ . As a result of utilising the above inequality in (14), we obtain: โˆ’4 1 โˆ’ 3r2 < ๐œ• ๐œ•r arg f โ€ฒ(rei\) โ‰ค 4 1 โˆ’ 3r2 , z = rei\ . (15) ยฉ 2023 The Authors. Page 200 of 204 Rossdy et. al. Science and Technology Indonesia, 8 (2023) 195-204 The desired result is obtained by integrating the inequality (15) from 0 to R with respect to r by keeping \ constant. 2.3 Radius of Convexity Another area where the inequality (6) is related is the radius of convexity. The theorem below estimates the convexity radius for functions in the class N s,m,k _ ,๐›ผ ( โˆ‘ , E): Theorem 2.3.1 For every positive number, the function f โˆˆ N s,m,k _ ,๐›ผ ( โˆ‘ , E) maps the disk |z| < p into a convex domain such that p < โˆš 5โˆ’2 โ‰ˆ 0.23607. Proof. Based on inequality (6), we may evaluate: ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝzf โ€ฒโ€ฒ(z)f โ€ฒ(z) ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ‰ค 2r21 โˆ’ 3r2 + 4r1 โˆ’ 3r2 , |z| = r < 1. (16) Next, we have a double inequality derived from (16), as repre- sented below: 2r2 โˆ’ 4r 1 โˆ’ 3r2 < zf โ€ฒโ€ฒ(z) f โ€ฒ(z) โ‰ค 2r2 + 4r 1 โˆ’ 3r2 |z| = r < 1. Subsequently, by using a simple computation, we get 1 โˆ’ r2 โˆ’ 4r 1 โˆ’ 3r2 < 1 + zf โ€ฒโ€ฒ(z) f โ€ฒ(z) โ‰ค 1 โˆ’ r2 + 4r 1 โˆ’ 3r2 |z| = r < 1. (17) By taking the real value from (17), we acquire Re { 1 + zf โ€ฒโ€ฒ(z) f โ€ฒ(z) } > 1 โˆ’ r2 โˆ’ 4r 1 โˆ’ 3r2 , |z| = r < 1. but 1โˆ’r 2 โˆ’4r 1โˆ’3r2 > 0 for r < โˆš 5 โˆ’ 2 โ‰ˆ 0.23607, and thence f maps such a disk |z|, r onto a convex domain. Accordingly, this demonstrates our result. 2.4 Growth Theorem The distortion result from Theorem 2.2.2 can be used to derive the lower and upper bounds of f โˆˆ N s,m,k _ ,๐›ผ ( โˆ‘ , E). We can subsequently prove the growth theorem as follows: Theorem 2.4.1 For each f โˆˆ N s,m,k _ ,๐›ผ ( โˆ‘ , E), we have โˆ’ โˆš 3 2 2(2+ โˆš 3) 3 [ (1 โˆ’ โˆš 3r) 2(1+ โˆš 3) 3 2F1 ( 1 + 2 โˆš 3 3 , 2 + 2 โˆš 3 3 ; 5 + 2 โˆš 3 3 ; 1 โˆ’ โˆš 3r 2 ) โˆ’ 2F1 ( 1 + 2 โˆš 3 3 , 2 + 2 โˆš 3 3 ; 5 + 2 โˆš 3 3 ; 1 2 )] < | f (z)| โ‰ค 2 ( 2 โˆš 3โˆ’7 3 ) (3 + โˆš 3) (18) [ (1 โˆ’ โˆš 3r) ( 2โˆ’2 โˆš 3 3 ) 2F1 ( 1 โˆ’ 2 โˆš 3 3 , 2 โˆ’ 2 โˆš 3 3 ; 5 โˆ’ 2 โˆš 3 3 ; 1 โˆ’ โˆš 3r 2 ) โˆ’ 2F1 ( 1 โˆ’ 2 โˆš 3 3 , 2 โˆ’ 2 โˆš 3 3 ; 5 โˆ’ 2 โˆš 3 3 ; 1 2 )] , |z| = r < 1. Proof. Let f โˆˆ N s,m,k _ ,๐›ผ ( โˆ‘ , E) and z = rei\ , where 0 < r < 1. We integrate the inequality from 0 to R with respect to r using Theorem 2.2.2, Rโˆซ 0 (1 โˆ’ โˆš 3r) 2 โˆš 3โˆ’1 3 (1 + โˆš 3r) 2 โˆš 3+1 3 dr < Rโˆซ 0 | f โ€ฒ(z)|๐œ•r โ‰ค Rโˆซ 0 (1 + โˆš 3r) 2 โˆš 3โˆ’1 3 (1 โˆ’ โˆš 3r) 2 โˆš 3+1 3 dr. Next, we obtain ๏ฃฎ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฐ โˆ’ โˆš 3(1 โˆ’ โˆš 3r) 2(1+ โˆš 3) 3 2F1 ( 1+2 โˆš 3 3 , 2+2 โˆš 3 3 ; 5+2 โˆš 3 3 ; 1โˆ’ โˆš 3r 2 ) 2 2(2+ โˆš 3) 3 ๏ฃน๏ฃบ๏ฃบ๏ฃบ๏ฃบ๏ฃบ๏ฃบ๏ฃบ๏ฃบ๏ฃป R 0 < [ | f (rei\)| ]R 0 โ‰ค (19) ยฉ 2023 The Authors. Page 201 of 204 Rossdy et. al. Science and Technology Indonesia, 8 (2023) 195-204 ๏ฃฎ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฏ๏ฃฐ 2 2 3 ( โˆš 3โˆ’2)โˆš3(1 โˆ’ โˆš 3r) ( 2โˆ’2 โˆš 3 3 ) 2F1 ( 1โˆ’2 โˆš 3 3 , 2โˆ’2 โˆš 3 3 ; 5โˆ’2 โˆš 3 3 ; โˆš 3 โˆ’ 1 1 โˆ’ โˆš 3r2 ) ๏ฃน๏ฃบ๏ฃบ๏ฃบ๏ฃบ๏ฃบ๏ฃบ๏ฃบ๏ฃบ๏ฃป R 0 . Thus, a simple computation from (19) results in the double in- equality (18). The growth and distortion theorems can be used to achieve the following inequality: Theorem 2.4.2 For each f โˆˆ N s,m,k _ ,๐›ผ ( โˆ‘ , E), we have r ( (1โˆ’3 โˆš 3r) 2 โˆš 3โˆ’1 3 (1+3 โˆš 3r) 2 โˆš 3+1 3 ) โˆ’ โˆš 3 2 2(2+ โˆš 3) 3 [ (1 โˆ’ โˆš 3r) 2(1+ โˆš 3) 3 2F1 ( 1+2 โˆš 3 3 , 2+2 โˆš 3 3 ; 5+2 โˆš 3 3 ; 1โˆ’ โˆš 3r 2 ) โˆ’ 2F1 ( 1+2 โˆš 3 3 , 2+2 โˆš 3 3 ; 5+2 โˆš 3 3 ; 1 2 )] < ๏ฟฝ๏ฟฝ๏ฟฝzf โ€ฒ(z)f (z) ๏ฟฝ๏ฟฝ๏ฟฝ โ‰ค r ( (1+3 โˆš 3r) 2 โˆš 3โˆ’1 3 (1โˆ’3 โˆš 3r) 2 โˆš 3+1 3 ) 2 ( 2 โˆš 3โˆ’7 3 ) (3+ โˆš 3) [ (1 โˆ’ โˆš 3r) 2(1โˆ’ โˆš 3) 3 2F1 ( 1โˆ’2 โˆš 3 3 , 2โˆ’2 โˆš 3 3 ; 5โˆ’2 โˆš 3 3 ; 1โˆ’ โˆš 3r 2 ) โˆ’ 2F1 ( 1โˆ’2 โˆš 3 3 , 2โˆ’2 โˆš 3 3 ; 5โˆ’2 โˆš 3 3 ; 1 2 )] , 0 < |z| = r < 1. Proof. By utilising Theorem 2.4.1 and Theorem 2.2.2, we get ( (1โˆ’3 โˆš 3r) 2 โˆš 3โˆ’1 3 (1+3 โˆš 3r) 2 โˆš 3+1 3 ) โˆ’ โˆš 3 2 2(2+ โˆš 3) 3 [ (1 โˆ’ โˆš 3r) 2(1+ โˆš 3) 3 2F1 ( 1+2 โˆš 3 3 , 2+2 โˆš 3 3 ; 5+2 โˆš 3 3 ; 1โˆ’ โˆš 3r 2 ) โˆ’ 2F1 ( 1+2 โˆš 3 3 , 2+2 โˆš 3 3 ; 5+2 โˆš 3 3 ; 1 2 )] < ๏ฟฝ๏ฟฝ๏ฟฝ f โ€ฒ(z)f (z) ๏ฟฝ๏ฟฝ๏ฟฝ โ‰ค (20)( (1+3 โˆš 3r) 2 โˆš 3โˆ’1 3 (1โˆ’3 โˆš 3r) 2 โˆš 3+1 3 ) 2 ( 2 โˆš 3โˆ’7 3 ) (3+ โˆš 3) [ (1 โˆ’ โˆš 3r) 2(1โˆ’ โˆš 3) 3 2F1 ( 1โˆ’2 โˆš 3 3 , 2โˆ’2 โˆš 3 3 ; 5โˆ’2 โˆš 3 3 ; 1โˆ’ โˆš 3r 2 ) โˆ’ 2F1 ( 1โˆ’2 โˆš 3 3 , 2โˆ’2 โˆš 3 3 ; 5โˆ’2 โˆš 3 3 ; 1 2 )] , |z| = r < 1. Hence, from (20), by considering zf โ€ฒ (z) f (z) , we obtain r ( (1โˆ’3 โˆš 3r) 2 โˆš 3โˆ’1 3 (1+3 โˆš 3r) 2 โˆš 3+1 3 ) โˆ’ โˆš 3 2 2(2+ โˆš 3) 3 [ (1 โˆ’ โˆš 3r) 2(1+ โˆš 3) 3 2F1 ( 1+2 โˆš 3 3 , 2+2 โˆš 3 3 ; 5+2 โˆš 3 3 ; 1โˆ’ โˆš 3r 2 ) โˆ’ 2F1 ( 1+2 โˆš 3 3 , 2+2 โˆš 3 3 ; 5+2 โˆš 3 3 ; 1 2 )] < ๏ฟฝ๏ฟฝ๏ฟฝzf โ€ฒ(z)f (z) ๏ฟฝ๏ฟฝ๏ฟฝ โ‰ค r ( (1+3 โˆš 3r) 2 โˆš 3โˆ’1 3 (1โˆ’3 โˆš 3r) 2 โˆš 3+1 3 ) 2 ( 2 โˆš 3โˆ’7 3 ) (3+ โˆš 3) [ (1 โˆ’ โˆš 3r) 2(1โˆ’ โˆš 3) 3 2F1 ( 1โˆ’2 โˆš 3 3 , 2โˆ’2 โˆš 3 3 ; 5โˆ’2 โˆš 3 3 ; 1โˆ’ โˆš 3r 2 ) โˆ’ 2F1 ( 1โˆ’2 โˆš 3 3 , 2โˆ’2 โˆš 3 3 ; 5โˆ’2 โˆš 3 3 ; 1 2 )] , ยฉ 2023 The Authors. Page 202 of 204 Rossdy et. al. Science and Technology Indonesia, 8 (2023) 195-204 |z| = r < 1. Therefore, the desired result is achieved. The combination of growth and distortion theorems produces a useful inequality where the starlikeness properties can be determined. 3. CONCLUSION Our motivation comes from the aspiration to find numerous novel and useful applications for the new generalised operator Ds,m,k _ ,๐›ผ f (z) proposed by Rossdy et al. (2022) . Therefore, in this paper, we found the theorems of covering, rotation, dis- tortion, growth and the convexity radius for functions of the class N s,m,k _ ,๐›ผ ( โˆ‘ , E) of bi-univalent functions connected with the Einstein function and Ds,m,k _ ,๐›ผ f (z) by using the subordination method. 4. ACKNOWLEDGMENT We gratefully acknowledge the insightful comments and thor- ough reading of the manuscript by the reviewers. REFERENCES Abramowitz, M. and I. Stegun (1972). Handbook of Mathe- matical Functions with Formulas, Graphs, and Mathematical Tables. 9th Printing by Dover. Originally Published by the Na- tional Bureau of Standards, USA. 10th printing Al-Ameedee, S. A., W. G. Atshan, and F. A. Al-Maamori (2020). Coefficients Estimates of Bi-Univalent Functions Defined by New Subclass Function. In Journal of Physics: Conference Series, 1530; 012105 Ali, R. M., S. K. Lee, V. Ravichandran, and S. Supramaniam (2012). Coefficient Estimates for Bi-Univalent Ma-Minda Starlike and Convex Functions. Applied Mathematics Letters, 25(3); 344โ€“351 Arfken, G. B. and H. J. Weber (1999). Mathematical Methods for Physicists. Academic Press Awasthi, J. (2017). A Generalized Sub Class of Univalent Starlike Functions with a Linear Operator. Journal of Applied Research and Technology, 2(2); 113โ€“122 Brannan, D. A. and J. Clunie (1980). Aspects of Contemporary Complex Analysis. Academic Press Brannan, D. A. and T. Taha (1988). On Some Classes of Bi-Univalent Functions. In Mathematical Analysis and Its Applications. Elsevier; 53โ€“60 Cho, N., V. Kumar, S. S. Kumar, and V. Ravichandran (2019). Radius Problems for Starlike Functions Associated with the Sine Function. Bulletin of the Iranian Mathematical Society, 45; 213โ€“232 De Branges, L. (1985). A Proof of the Bieberbach Conjecture. Acta Mathematica, 154(1-2); 137โ€“152 Duren, P. L. (2001). Univalent Functions, Volume 259. Springer Science & Business Media El-Qadeem, A. H., M. A. Mamon, and I. S. Elshazly (2022a). Application of Einstein Function on Bi-Univalent Functions Defined on the Unit Disc. Symmetry, 14(4); 758 El-Qadeem, A. H., S. A. Saleh, and M. A. Mamon (2022b). Bi-Univalent Function Classes Defined by Using a Second Einstein Function. Journal of Function Spaces, 2022; 1โ€“10 Elhaddad, S. and M. Darus (2021). Differential Subordina- tion and Superordination for a New Differential Operator Containing Mittag-Leffler Function. Kragujevac Journal of Mathematics, 45(5); 699โ€“708 Frasin, B. (2020). A New Differential Operator of Analytic Functions Involving Binomial Series. Boletim da Sociedade Paranaense de Matemรกtica, 38(5); 205โ€“213 Gradshteyn, I. S. and I. M. Ryzhik (2014). Table of Integrals, Series, and Products. Academic Press Janowski, W. (1970). Extremal Problems for a Family of Func- tions with Positive Real Part and for Some Related Families. In Annales Polonici Mathematici, 2; 159โ€“177 Kumar, S. and S. K. Sahoo (2021). Radius of Convexity for Integral Operators Involving Hornich Operations. Journal of Mathematical Analysis and Applications, 502(2); 125265 Lewin, M. (1967). On a Coefficient Problem for Bi-Univalent Functions. Proceedings of the American Mathematical Society, 18(1); 63โ€“68 Ma, W. (1992). A Unified Treatment of Some Special Classes of Univalent Functions. In Proceedings of the Conference on Complex Analysis, 1992. International Press Inc., page 157โ€“169 Mendiratta, R., S. Nagpal, and V. Ravichandran (2015). On a Subclass of Strongly Starlike Functions Associated with Exponential Function. Bulletin of the Malaysian Mathematical Sciences Society, 38; 365โ€“386 Miller, S. S. and P. T. Mocanu (2000). Differential Subordina- tions: Theory and Applications. CRC Press Natalini, P. and A. Bernardini (2003). A Generalization of the Bernoulli Polynomials. Journal of Applied Mathematics, 2003(3); 155โ€“163 Netanyahu, E. (1969). The Minimal Distance of the Image Boundary from the Origin and the Second Coefficient of a Univalent Function in |z|<1. Archive for Rational Mechanics and Analysis, 32(2); 100โ€“112 Omar, R. and S. Abdul Halim (2012). Subclasses of Analytic Functions Associated with Generalised Multiplier Transfor- mations. International Scholarly Research Notices, 2012; 1โ€“9 Orloff, J. (2018). Complex Variables with Applications. MIT Open Course Ware Oros, G. I. and L. I. Cotรฎrlฤƒ (2022). Coefficient Estimates and the Feketeโ€“Szegรถ Problem for New Classes of m-Fold Symmetric Bi-Univalent Functions. Mathematics, 10(1); 129 Rossdy, M., R. Omar, and S. C. Soh (2021). Coefficient Prob- lems of Bi-Univalent Functions with Respect to Symmetric and Symmetric Conjugate Points Defined by the Al-Oboudi Operator. In Journal of Physics: Conference Series, 1988; 012076 Rossdy, M., R. Omar, and S. C. Soh (2022). New Differential ยฉ 2023 The Authors. Page 203 of 204 Rossdy et. al. Science and Technology Indonesia, 8 (2023) 195-204 Operator for Analytic Univalent Functions associated with Binomial Series. Proceedings of the 29th National Symposium on Mathematical Sciences Ruscheweyh, S. (1975). New Criteria for Univalent Functions. Proceedings of the American Mathematical Society, 49(1); 109โ€“ 115 Saheb, A. H. and A. K. Al-Khafaji (2021). On the Class of Analytic and Univalent Functions Defined by Differential Operator. In Journal of Physics: Conference Series, 1818; 012184 Salagean, G. (1983). Subclasses of Univalent Functions. Lecture Notes in Math., 1013; 362โ€“372 Sivasubramanian, S., R. Sivakumar, T. Bulboacฤƒ, and T. N. Shanmugam (2014). On the Class of Bi-Univalent Func- tions. Comptes Rendus Mathematique, 352(11); 895โ€“900 Soni, A., K. K. Mishra, and S. Issar (2018). Coefficient Esti- mates for Certain Subclass of Bi-Univalent Functions Asso- ciated with the Class Pm (b, ๐›ฝ ). In AIP Conference Proceedings, 1953; 140093 Srivastava, H. M., A. K. Mishra, and P. Gochhayat (2010). Certain Subclasses of Analytic and Bi-Univalent Functions. Applied Mathematics Letters, 23(10); 1188โ€“1192 Srivastava, H. M., M. F. Sakar, and G. H. ร–zlem (2018). Some General Coefficient Estimates for a New Class of Analytic and Bi-Univalent Functions Defined by a Linear Combina- tion. Filomat, 32(4); 1313โ€“1322 Wanas, A. K. (2019). New Differential Operator for Holomor- phic Functions. Earthline Journal of Mathematical Sciences, 2(2); 527โ€“537 Wei, D. K. (2017). A Study on Univalent Functions and their Geometrical Properties. Ph.D. thesis, Universiti Tunku Abdul Rahman Weisstein, E. W. (2022). Einstein Functions. MathWorld-A Wolfram Web Resource Xu, Q. H., Y. C. Gui, and H. M. Srivastava (2012). Co- efficient Estimates for a Certain Subclass of Analytic and Bi-Univalent Functions. Applied Mathematics Letters, 25(6); 990โ€“994 Yunus, Y., A. Akbarally, and S. A. Halim (2017). Strongly Starlike Functions Associated with a New Operator. In AIP Conference Proceedings, 1870; 040001 Zhang, C., S. Khan, A. Hussain, N. Khan, S. Hussain, and N. Khan (2021). Applications of q-Difference Symmetric Operator in Harmonic Univalent Functions. AIMS Mathe- matics, 7; 667โ€“680 ยฉ 2023 The Authors. Page 204 of 204 INTRODUCTION MAIN RESULTS Covering Theorem Distortion and Rotation Theorems Radius of Convexity Growth Theorem CONCLUSION ACKNOWLEDGMENT