DOI: 10.13102/sociobiology.v62i3.359Sociobiology 62(3): 382-388 (September, 2015) Open access journal: http://periodicos.uefs.br/ojs/index.php/sociobiology ISSN: 0361-6525 Influence of the Vegetation Mosaic on Ant (Formicidae: Hymenoptera) Distributions in the Northern Brazilian Pantanal Introduction Floodplains, especially the Brazilian Pantanal, are characterized by the controlling influence of flood pulses and vegetation, which have a major impact on the population dynamics of species, thereby influencing community structure (Junk et al., 1989; Junk, 1997). Another defining factor in the Pantanal of the state of Mato Grosso, Brazil is its landscape heterogeneity, which comprises a mosaic of forest, cerrado, grasslands and monodominant clusters of trees (Por, 1995; Silva et al., 2000). Together, in association with flood pulses, influence animal diversity, especially invertebrates (Brown, 1970). Plant formation and landscape diversity in this ecosystem result from many climatic changes that occurred throughout geological formation (Jimenez-Rueda et al., 1998), which was also influenced by seasonal flooding (Junk et al., 1989; Junk & Nunes- Abstract We examined how vegetation mosaic influences distribution of the edaphic ant (Formicidae) community in the northern part of the Pantanal in Cáceres, State of Mato Grosso, Brazil. Plant formations (hereafter habitats) that characterize this area include several savanna types, such as: Cerrado sensu stricto, Cerradão, Semi-deciduous forest, Termite savanna, Open fields and Cerrado field/carandazal. Pitfall traps were placed in ten 250 m transects each one separated by 1 km, within an area of 2 x 5 km (following RAPELD methodology). Five traps at intervals of 50 m were placed along each transect, in September and December 2008. Forty-four ant species were collected. Leaf litter predicted ant presence and influenced species occurrence in the different habitats. Pantanal habitats are very different structurally from one to another, which has have resulted in areas with very specific ant assemblages. The understanding of the ant community structure in these areas is fundamental to floodplain management. Sociobiology An international journal on social insects E Meurer¹, LD Battirola3, JHC Delabie2, MI Marques1 Article History Edited by Edilberto Giannotti, UNESP, Brazil Received 17 September 2014 Initial acceptance 12 February 2015 Final acceptance 11 March 2015 Keywords Cerrado, Semi-deciduous forest, Wetlands. Corresponding author: Eliandra Meurer Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade Universidade Federal de Mato Grosso Av. Fernando Corrêa da Costa nº 2.367 Boa Esperança, 78060-900, Cuiabá-MT, Brazil E-Mail: eliandrameurer@gmail.com da-Cunha, 2005) with input from adjacent phytogeographic provinces (Adámoli, 1982; Silva et al., 2000; Alho & Gonçalves, 2005; Junk et al., 2006). This landscape diversity also helps the Pantanal resist stressful conditions such as drought, floods and large fires (Nunes-da-Cunha et al., 2011). Ant (Formicidae) population dynamics are likely to be influenced by a variety of factors, including food resource availability, nest sites, competition and climate (Kaspari, 2000). Behavioral diversity also structures these communities, and organization is influenced by the distribution of unexploited resources and strategies used to obtain these resources (Fowler et al., 1991). These behavioral differences are a consequence of the variety of available niches, which increase with vegetation diversity and complexity (Hölldobler & Wilson, 1990; Tews et al., 2004). Ants are an important component of terrestrial invertebrate communities in the Pantanal because they RESEARCH ARTICLE - ANTS 1 - Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil 2 - Convênio UESC/CEPLAC, Itabuna-BA, Brazil 3 - Universidade Federal de Mato Grosso. Sinop, MT, Brazil Sociobiology 62(3): 382-388 (September, 2015) 383 participate in most ecological processes and have complex social behaviors and a variety of strategies for survival (Adis et al., 2001; Battirola et al., 2005, Castilho et al., 2005; Santos et al., 2008; Silva et al., 2013; Soares et al., 2013). In an attempt to associate habitat complexity with the role played by ants in tropical ecosystems of the Pantanal, we tested the interaction between the vegetation mosaic and the distribution and richness of the edaphic ant community in the Pantanal in Brazil. Materials and Methods Study area Ants were studied on the ranch Baía de Pedra, in Cáceres, state of Mato Grosso, Brazil (16º28’49”S 58º08’26”W). This area is in the Pantanal sub-region of Cáceres (Silva et al., 2000), and comprises six plant formations (herafter habitats) belonging to the Cerrado biome (Brazilian savanna): Cerrado sensu stricto (SS), Cerradão (C), Semi-deciduous forest (SDF), Termite savanna (TS), Open field (OF) and Cerrado field/ carandazal (CC) (e. g. Nunes-da-Cunha et al., 2011). Methods Samples were taken twice during the dry period, once in September and once in December 2008. For this, 10 transects were established, each 250 m in length, and with at least 1 km minimum distance between them. Transects were established in a 2x5 km grid following RAPELD protocol (Magnusson et al., 2005). Transects followed the topography to maintain a constant elevation (flooding regime) but independent of other natural habitat variation. This design provides a method to independent sample species distribution and abundance in each site. Each sampling point was characterized by a 250 m transect with five pitfall traps placed 50 m apart. Traps were on the field for five days when all samples were collected, for a total of 50 traps each, as well in September as in December. We also sampled leaf litter in ten 25 x 25 cm quadrants next to the pitfall traps. Leaf litter was placed in paper bags and dried until a constant weight was reached. Temperature and relative humidity were measured with a digital thermohygrometer at ground level next to all traps. Individual ants were identified according (Bolton, 2003) and nomenclature following Bolton’s catalog (Antweb, accessed 2014). Reference collections were deposited in the Laboratory of Ecology and Arthropod Taxonomy (LETA) of the Federal University of Mato Grosso Bioscience Institute and the Mirmecology Laboratory Collection of the Cacau Research Center (CPDC), CEPEC-CEPLAC, Ilhéus, Bahia, under the reference number #5574. Data analysis Community distribution patterns were determined in each habitat type, by non-metric multidimensional scaling (NMDS). We used presence/absence in the data matrix, and similarity was estimated using the Jaccard index. We associated the ant community (dependent variable) with leaf litter, temperature and humidity (independent variables) using multivariate multiple regressions. Significance level was established at 0.05, and we used the programs PAST (Hammer et al., 2001) and Systat 11 (Wilkinson, 2004) to carry out the analyses. Results The ant community comprised 44 species (Fig 1, Table 1), with the greatest species richness in the Cerrado sensu stricto and Open field (28 spp.), followed by Semi-deciduous forest (26 spp.). While species richness was similar, individual species varied in each habitat. Six species were exclusive to the Open field and five exclusive to the Cerrado sensu stricto. Fig 1. Ant presence and leaf litter mass of each phytophysiognomy in the Pantanal of Cáceres, Mato Grosso, Brazil. CC - Cerrado field/ carandazal; TS – Termite savanna; OF - Open field; C - Cerradão; SDF Semi-deciduous forest; SS - Cerrado stricto sensu. In the ant fauna, we noticed that Gracilidris pombero Wild and Cuezzo was restricted to Cerrado field/carandazal and Open field while Dinoponera mutica (Emery) was restricted to Semi-deciduous forest. NMDS found two axes that explained 84% of the variation in the data (stress = 0.147). Sampling locations formed three groups defined by the quantity of leaf litter in each sampling unit. The first group had dense vegetation (Semi-deciduous forest), which thus have a greater amount of leaf litter. The second group was Cerradão, Cerrado stricto sensu, and Open field, and the third was formed by Cerrado field/carandazal, Termite savanna and Open field (Fig 2). The amount of leaf litter (g) was the best predictor of ant occurrence in this vegetation mosaic (multivariate regression, F2.5 = 10.847, P = 0.003), and ant presence was independent of both humidity (F 2.5 = 3.884, P = 0.098) and temperature (F 2.5 = 3.224, P = 0.120). E Meurer et al. - Formicidae Distribution in the Cáceres Pantanal384 Taxa Phytophysiognomy *CC TM CF CF C SDF SDF SS SS SS Sum Myrmicinae Acromyrmex rugosus (Smith, F. 1858) - - - - 1 - - 1 1 - 3 Atta sexdens (Linnaeus, 1758) - - 1 - 1 - - 1 1 1 5 Cardiocondyla obscurior Wheeler, 1929 - - - - - - - - 1 - 1 Cephalotes persimplex De Andrade, 1999 - - - - - 1 - - - - 1 Cephalotes pusillus (Klug, 1824) 1 - 1 - 1 - - - - - 3 Crematogaster brasiliensis Mayr, 1878 1 - 1 - - 1 1 1 1 1 7 Crematogaster victima Smith, F. 1858 - - - - - - - 1 1 - 2 Cyphomyrmex major Forel, 1901 - - - - 1 - - - - - 1 Cyphomyrmex transversus Emery, 1894 - - 1 - 1 - - 1 1 1 5 Mycocepurus goeldii (Forel, 1893) - - - - 1 1 1 - - 1 4 Ochetomyrmex neopolitus Fernández, 2003 - 1 1 - 1 1 1 1 1 1 8 Pheidole prox. cursor - - 1 - 1 1 - - 1 1 5 Pheidole sp.1 grupo fallax - 1 1 - 1 1 1 1 1 1 8 Pheidole subarmata Mayr, 1884 - 1 1 1 - - 1 1 1 1 7 Pogonomyrmex naegelii Forel, 1886 - - 1 - - - - 1 - 1 3 Sericomyrmex sp.1 - - 1 - 1 1 1 1 - - 5 Solenopsis sp.2 1 1 1 1 1 1 1 1 1 1 10 Solenopsis sp. complexo tridens sensu Trager, 1991 1 1 1 1 1 1 - 1 1 1 9 Solenopsis invicta Buren, 1972 - - 1 - - - - - 1 1 3 Solenopsis globularia (Smith, F. 1858) 1 1 1 1 1 - - 1 1 1 8 Strumigenys denticulata Mayr, 1887 - 1 - - - 1 1 - - - 3 Wasmannia auropunctata (Roger, 1863) 1 1 - 1 1 1 1 1 1 1 9 Xenomyrmex sp.1 - - - - - 1 - - - - 1 Dolichoderinae Dorymyrmex brunneus Forel, 1908 1 1 1 - 1 - - 1 1 1 7 Forelius pusillus Santschi, 1922 1 - 1 1 - 1 1 1 1 - 7 Gracilidris pombero Wild & Cuezzo, 2006 1 - 1 - - - - - - 1 3 Tapinoma melanocephalum (Fabricius, 1793) - 1 1 - - - - 1 1 1 5 Formicinae Brachymyrmex sp.1 - - 1 - 1 - 1 1 1 - 5 Brachymyrmex heeri Forel, 1874 - - 1 - 1 1 1 1 1 - 6 Brachymyrmex patagonicus Mayr, 1868 - - - 1 1 - - 1 1 1 5 Camponotus melanoticus Emery, 1894 1 1 1 1 - 1 1 1 1 - 8 Camponotus novogranadensis Mayr,1870 - 1 - 1 - 1 - - - - 3 Nylanderia sp.1 1 1 1 1 1 1 1 1 1 1 10 Nylanderia sp.2 - - - - - 1 - - - - 1 Nylanderia fulva (Mayr, 1862) - - 1 - - 1 - - 1 - 3 Ectatomminae Ectatomma brunneum Smith, F. 1858 1 - 1 - 1 1 1 1 1 - 7 Ectatomma permagnum Forel, 1908 1 - 1 1 1 1 1 - - - 6 Gnamptogenys acuminata (Emery, 1896) - - - 1 - - 1 - - - 2 21 Table 1. Ant presence and richness (S) from pitfall traps in the Pantanal of Cáceres, Mato Grosso, Brazil. *CC - Cerrado field/carandazal; TS – Termite savanna; OF - Open field; C - Cerradão; SDF Semi-deciduous forest; SS - Cerrado stricto sensu. Sociobiology 62(3): 382-388 (September, 2015) 385 Taxa Phytophysiognomy *CC TM CF CF C SDF SDF SS SS SS Sum Ponerinae Dinoponera mutica Emery, 1901 - - - - 1 1 - - - - 2 Odontomachus bauri Emery, 1892 1 1 1 - 1 - - - 1 1 6 Odontomachus haematodus (Linnaeus,1758) - - - - - 1 - - - - 1 Pachycondyla apicalis (Latreille, 1802) - - - - 1 1 1 - 1 1 5 Pseudomyrmecinae Pseudomyrmex termitarius Smith, F. 1855 1 1 1 - 1 1 - 1 1 1 8 Ecitoninae Labidus praedator (Smith, F. 1858) - - 1 - - 1 1 - - - 3 Total number of occurrence 15 15 28 12 25 26 19 24 28 22 144 Leaf litter (g) 31 36 68 30 93 207 135 60 115 20 Temperature (°C) 33 28 35 34 33 31 31 21 23 30 Relative Humidity (%) 40 50 54 40 50 46 42 41 40 51 Table 1. Ant presence and richness (S) from pitfall traps in the Pantanal of Cáceres, Mato Grosso, Brazil. *CC - Cerrado field/carandazal; TS – Termite savanna; OF - Open field; C - Cerradão; SDF Semi-deciduous forest; SS - Cerrado stricto sensu. (Continuation) Discussion Species richness was clearly a consequence of habitat complexity, as observed too in other studies, such as in different successional stages (Leal & Lopes, 1992), vegetation types (Leal, 2002), vegetation complexity (Hölldobler & Wilson, 1990; Corrêa et al., 2006) and plant density and richness (Leal, 2003). Ant communities respond to changes in plant composition between different habitats (Morrisson, 1998; Gotelli & Ellison, 2002). Variation in ant diversity is influenced by environmental characteristics, and greater complexity leads to greater species diversity (Matos et al., 1994; Oliveira et al., 1995). Soares et al. (2003) found a greater number of ant species in native forest than in montane savanna (Campo rupestre), which reinforces Fig 2. Ordination (NMDS) of the ant community (presence and absence) obtained by pitfall traps in the Pantanal of Cáceres, Mato Grosso, Brazil. CC - Cerrado field/carandazal; TS – Termite savanna; OF - Open field; C - Cerradão; SDF Semi-deciduous forest; SS - Cerrado stricto sensu. the idea that ant diversity is affected by vegetation structure. This relationship is direct (Andow, 1991) since more complex vegetation leads to a more diverse ant community due to the greater support capacity. Habitat types may determine species composition of a region (Vasconcelos & Vilhena, 2006). Studies show that leaf litter can predict species richness in different plant formations and habitats (Matos et al., 1994; Carvalho & Vasconcelos, 2002; Leal, 2003). Differences between composition and structure of the ant community are probably a consequence of resource and niche distribution and foraging strategies in each (Fowler et al., 1991; Kaspari, 2000). Leaf litter thickness might be important because less litter implies reduced food abundance as well as less shelter and material for nest construction (Hölldobler & Wilson, 1990). Variation in the occurrence of ant communities among the vegetation types is explained by the positive relationship between species richness and heterogeneous environmental conditions (Cerdá et al., 1997; Santos et al., 2008). Locations with greater variety and availability of resources support a greater number of species than poorer habitats due to greater resource sharing (Lassau & Hochulli, 2004; Cramer & Willig, 2005). Ant species richness in this study is similar to other studies in the Pantanal (Ribas & Schoereder, 2007; Marques et al., 2010; Marques et al., 2011; Silva et al., 2013; Soares et al., 2013). Wilson (1987) was the first to show that periodically flooded Peruvian Amazon forests had more species than dry forests. In the Amazon, species that are associated with soil and leaf litter are more affected by natural and periodic disturbances than those that use other forest strata (Majer & Delabie, 1994). Similar situation was observed in cocoa plantations inserted in places formerly occupied by gallery forest and irregularly flooded in the Brazilian state of Bahia (Delabie et al., 2007). E Meurer et al. - Formicidae Distribution in the Cáceres Pantanal386 Ant species richness in the Pantanal is also less than that in other ecosystems (for example: Delabie et al., 2000; Silva & Silvestre, 2004, Santos et al., 2006; Leal et al., 2012). Low richness in the Pantanal of Mato Grosso may be due to periodic flooding and the resulting effect of the flood pulse on Pantanal biota (Junk et al., 1989; 2006). Habitat disturbances significantly affect species diversity and abundance (Vasconcelos, 1998) since strong climatic variation in the Pantanal limits local diversity (Lange et al., 2008). Gracilidris pombero is found in a variety of open environments (Wild & Cuezzo, 2006) including cerrado pastures with Copernica alba Morong ex. Morong & Britton (Arecaceae). On the other hand, D. mutica is usually found in forests. Biological and ecological aspects of this genus have received increasing attention during the last 20 years due to its very large size, its notable reproductive system and its wide occurrence in the Atlantic Forest, Caatinga, Cerrado and Amazon (for example: Monnin & Peeters, 1998; Peixoto et al., 2010; Lenhard et al., 2013). High structural variation of Pantanal habitats and the effects on ant communities have resulted in areas with specific characteristics, and learning more about these environments is fundamental to floodplain management and conservation. Leaf litter was most influential for the distribution pattern of the edaphic ant community in this vegetation mosaic, and it was thus considered a predictor of this community among the different plant formations studied. The different occurrence in these plant formations and low diversity could be related to forage characteristics and habitat preference of ant species in this ecosystem. Acknowledgments We thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES / MEC) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for a Ph.D. grant. Further financial and logistic support came from the Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade at the Instituto de Biociências of the Universidade Federal de Mato Grosso (UFMT), the Centro de Pesquisas do Pantanal (CPP), the Programa de Apoio a Núcleos de Excelência - PRONEX/FAPEMAT/CNPq, and the Instituto Nacional de Ciência e Tecnologia em Áreas Úmidas (INAU). References Adámoli, J.A. (1982). O Pantanal e suas relações fitogeográficas com os cerrados. Discussão sobre o conceito de “Complexo do Pantanal”. Anais do 32° Congresso Nacional de Botânica, p.109-119. Adis, J. (2002). Recommended sampling techniques. In: Adis J. (ed) Amazonian Arachnida and Myriapoda. Identification keys to all classes, orders, families, some genera, and lists of known terrestrial species. Pensoft Publishers, Sofia, p. 555-576. Adis, J., Marques, M.I. & Wantzen, K.M. (2001). First observations on the survival strategies of terricolous arthropods in the northern Pantanal wetland of Brazil. Andrias, 15: 127-128. Alho, C.J.R. & Gonçalves, H.C. (2005). Biodiversidade do Pantanal – Ecologia e Conservação. Campo Grande. Editora UNIDERP, 135 p. Andow, D.A. (1991). Vegetacional diversity and arthropod population response. Annual Review of Entomology, 36: 561-586. Battirola, L.D., Marques, M.I., Adis, J. & Delabie, J.H.C. (2005). Composição da comunidade de Formicidae (Insecta, Hymenoptera) em copas de Attalea phalerata Mart. (Arecaceae), no Pantanal de Poconé, Mato Grosso, Brasil. Revista Brasileira de Entomologia, 49: 107-117. Bestelmeyer, B.T., Agosti, D., Alonso, L.E., Brandão C.R.F., Brown Jr, W.L., Delabie, J.H.C. & Silvestre, R. (2000). Field techniques for the study of ground-living ants: an overview, description, and evaluation. In: Agosti, D., Majer, J.D., Alonso, L.E. & Schultz, T.R. (eds). Ants: Standart Methods for Measuring and Monitoring Biodiversity. Smithsonian Institution, Washington, USA, p. 122-144. Bolton, B. (2003). Synopsis and classification of Formicidae. Memoirs of the American Entomological Institute, 71: 1-370. Brown Jr., K.S. (1970). Proposta: uma reserva biológica na Chapada dos Guimarães, Mato Grosso. Brasil Floresta, l 4: 17-29. L. Castiho, A.C.C., Delabie, J.H.C., Marques, M.I., Adis, J., & Mendes, L. (2007). Registros novos da formiga criptobiótica Creightonidris scambognatha Brown (Hymenoptera: Formicidae). Neotropical Entomology, 36: 150-152. Cerdá, X., Retana J. & Cros, S. (1997). Thermal disruption of transitive hierarchies in Mediterranean ant communities. Journal of Animal Ecology, 66: 363-374. Corrêa, M.M., Fernandes, W.D. & Leal, I.R. (2006). Diversidade de formigas epigéicas (Hymenoptera: Formicidae) em capões do Pantanal sul mato-grossense: Relações entre riqueza de espécies e complexidade estrutural da área. Neotropical Entomology, 35: 724-730. Cramer, M.J. & Willig, M.R. (2005). Habitat heterogeneity, species diversity, and null models. Oikos, 108: 209-218. Delabie, J.H.C., Ramos, L.S., Santos, J.R.M., Campiolo, S. & Sanches, C.L.G. (2007). Mirmecofauna (Hymenoptera; Formicidae) da serapilheira de um cacaual inundável do agrossistema do Rio Mucuri, Bahia: considerações sobre conservação da fauna e controle biológico de pragas. Agrotrópica, 19: 5-12. Delabie, J.H.C., Fisher, B.L., Majer, J.D. & Wright, I.W. (2000). Sampling effort and choice of methods. In: Agosti, D., Majer, J.D., Alonso, L.E. & Schultz, T.R. (eds) Ants: Standart Methods for Measuring and Monitoring Biodiversity. Smithsonian Institution, Washington, USA, p. 145-154. Fernández, F. (2003). Subfamilia Myrmicinae. In: Fernández, F. (ed), Introducción a las hormigas de la región neotropical. Instituto de investigación de recursos biológicos Alexander von Humboldt, Bogotá, Colombia, p. 307-330. Sociobiology 62(3): 382-388 (September, 2015) 387 Fowler, H.G., Forti, L.C., Brandão, C.R.F., Delabie, J.H.C. & Vasconcelos H.L. (1991). Ecologia nutricional de formigas. In: Panizzi, A.R. & Parra, J.R.P. (eds), Ecologia nutricional de insetos e suas implicações no manejo de pragas. São Paulo: Manole, p. 131-223. Gotelli, N.J. & Ellison, A.M. (2002). Assembly rules for New England ant assemblages. Oikos, 99: 591-59,9. Hammer, O., Harper, D.A.T. & Ryan, P.D. (2001). PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9. Hölldobler, B. & Wilson, E.O. (1990). The ants. Harvard University Press, Cambridge,732 p. Jimenez-Rueda, J.R., Mattos, J.T. & Pessotti, J.E. (1998). Modelo para o estudo da dinâmica evolutiva dos aspectos fisiográficos dos Pantanais. Pesquisa Agropecuária Brasileira, 33: 1763-1773. Junk, W.J. (1997). General aspects of floodplain ecology with special reference to Amazonian Floodplains. In: Junk, W.J. (ed), The Central Amazon Floodplain. Ecology of a pulsing system. Ecological Studies 126, Berlin, Springer, p. 455-472. Junk, W.J. & Nunes-da-Cunha, C. (2005). Pantanal: a large South American wetland at a crossroads. Ecological Engineering, 24: 391-401. Junk, W.J., Bayley, P.B. & Sparks, R.E. (1989). The flood pulse concept in river-floodplain systems. In: Dodge, D.P. (ed), Proceedings International Large River Symposium (LARS). Canadian Special Publications in Fisheres and Aquatic Sciences, 106: 110-127. Junk, W.J., Nunes-da-Cunha, C., Wantzen, K,M,, Petermann, P., Strüssmann, C., Marques, M.I. & Adis, J. (2006). Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquatic Sciences, 68: 278-309. Kaspari, M. (2000). A primer on ant ecology. In: Agosti D, Majer JD, Alonso LE, Schultz T. (eds), Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, USA, p. 9-24. Lange, D., Fernandes, W.D., Raizer, J. & Silvestre, R. (2008). Activity of hypogeic ants (Hymenoptera: Formicidae) in flooded and non-flooded forest patches in the Brazilian Pantanal. Sociobiology, 51: 661-672. Lassau, S.A. & Hochuli, D.F. (2004). Effects of habitat complexity on ant assemblages. Ecography, 27: 157-164. Leal, I.R., Filgueiras, B.K.C., Gomes, J.P., Iannuzzi, L. & Andersen, A.N. (2012). Effects of habitat fragmentation on ant richness and functional composition in Brazilian Atlantic forest. Biodiversity and Conservation, 21: 1687-1701. Leal, I.R. & Lopes, B.C. (1992). Estrutura das comunidades de formigas (Hymenoptera: Formicidae) de solo e vegetação no Morro da Lagoa da Conceição, Ilha de Santa Catarina, SC. Biotemas, 5: 107-122. Leal, I.R. (2002). Diversidade de formigas no estado de Pernambuco. In: Silva, J.M. & Tabarelli, M. (eds), Atlas da biodiversidade de Pernambuco. Editora da Universidade Federal de Pernambuco, Recife, p. 483-492. Leal, I.R. (2003). Diversidade de formigas em diferentes unidades da paisagem da Caatinga. In: Leal, I.R., Tabarelli, M. & Silva, J.M. (eds), Ecologia e conservação da Caatinga. Editora da Universidade Federal de Pernambuco, Recife, p. 435-460. Lenhart, P.A., Dash, S.T. & Mackay, W.P. (2013). A revision of the giant Amazonian ants of the genus Dinoponera (Hymenoptera, Formicidae). Journal of Hymenoptera Research, 31: 119-164. Magnusson, W.E., Lima, A.P., Luizão, R., Luizão, F., Costa, F.R.C., Castilho, C.V. & Kinupp, V.F. (2005). RAPELD: uma modificação do método de Gentry para inventários de biodiversidade em sítios para pesquisa ecológica de longa duração. Biota Neotropica, 5: 1-6. Majer, J.D. & Delabie, J.H.C. (1994). Comparison of the ant communities of annually inundated and terra firme forests at Trombetas in the Brazilian Amazon. Insectes Sociaux, 41: 343-359. Marques, M.I., Sousa, W.O., Santos, G.B., Battirola, L.D. & Anjos, K.C. (2010). Fauna de artrópodes de solo. In: Fernandes, I.M., Signor, C.A. & Penha, J. (eds), Biodiversidade no Pantanal de Poconé. Centro de Pesquisa do Pantanal, p. 73-112. Marques, M.I., Adis, J., Battirola, L.D. dos Santos, G.B. & Castilho, A.C.C. (2011). Arthropods associated with a forest of Attalea phalerata Mart. (Arecaceae) palm trees in the Northern Pantanal. In: Junk, W.J., Da Silva, C.J., Nunes da Cunha, C. & Wantzen, K.M. (eds), The Pantanal: Ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft Publishers, Sofia–Moscow, p. 127-144. Matos, J.A., Yamanaka, C.N., Castellani, T.T., Lopes, B.C. (1994). Comparação da fauna de formigas de solo em áreas de plantio de Pinus elliottii, com diferentes graus de complexibilidade estrutural (Florianópolis, SC). Biotemas, 7: 57-64. Monnin, T. & Peeters, C. (1998). Monogyny and regulation of worker mating in the queenless ant Dinoponera quadriceps. Animal Behaviour, 55: 299–306. Morrison LW. 1998. A review of Bahamian ant (Hymenoptera: Formicidae) biogeography. Journal of Biogeography, 25: 561-571. Nunes-da-Cunha, C., Junk, W.J. & Da Silva, C.J. (2011). A preliminary classification of habitats of the Pantanal of Mato Grosso and Mato Grosso do Sul, and its relation to national and international wetland classification systems. In: Junk, W.J., Da Silva, C.J., Nunes da Cunha, C. & Wantzen, K.M. (eds), The Pantanal: Ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft Publishers, Sofia–Moscow, p. 127-141. Oliveira, M.A., Della Lucia, T.M.C., Araújo, M.S. & da Cruz, A.P. (1995). A fauna de formigas em povoamentos E Meurer et al. - Formicidae Distribution in the Cáceres Pantanal388 de eucalipto na mata nativa no estado do Amapá. Acta Amazonica, 25: 117-126. Peixoto, A.V., Campiolo, S. & Delabie, J.H.C. (2010). Basic ecological information about the threatened ant, Dinoponera lucida Emery (Hymenoptera: Formicidae: Ponerinae), aiming its effective long-term conservation. In: Tepper, G.H. (ed.), Species Diversity and Extinction, Nova Science Publishers, Inc. pp. 183-213. Por, F.D. (1995). The Pantanal of Mato Grosso (Brazil). World’s largest Wetlands. Dordrecht. Kluwer Academic Publishers, 124 p. Ribas, C.R. & Schoereder, J.H. (2007). Ant communities, environmental characteristics and their implications for conservation in the Brazilian Pantanal. Biodiversity and Conservation, 16: 1511-1520. Santos, M.S., Louzada, J.N.C., Dias, N., Zanetti, R., Delabie, J.H.C. & Nascimento, I.C. (2006). Riqueza de formigas (Hymenoptera, Formicidae) da serapilheira em fragmentos de floresta semidecídua da Mata Atlântica na região do Alto do Rio Grande, MG, Brasil. Iheringia, Sér Zoologia, 96: 95-101. Santos, I.A., Ribas, C.R. & Schoereder, J.H. (2008). Biodiversidade de formigas em tipos vegetacionais brasileiros: o efeito das escalas espaciais. In: Vilela, E.F. (ed), Insetos sociais: da biologia à aplicação. Viçosa, MG: Ed.UFV, p. 242-265. Silva, F.H.O., Delabie, J.H.C., Santos, G.B., Meurer, E. & Marques, M.I. (2013). Mini-Winkler Extractor and Pitfall Trap as complementary methods to sample Formicidae. Neotropical Entomology, 42: 351-358. Silva, R.R. & Silvestre, R. (2004). Riqueza da fauna de formigas (Hymenoptera: Formicidae) que habita as camadas superficiais do solo em Seara, Santa Catarina. Papéis Avulsos de Zoologia, 44: 1-11. Silva, M.P., Mauro, R.A., Mourão, G. & Coutinho, M.E. (2000). Distribuição e quantificação de classes de vegetação do Pantanal através de levantamento aéreo. Revista Brasileira de Botânica, 23: 143-152. Soares, I.M.F., Santos, A.A., Gomes, D., Delabie, J.H.C. & Castro, I.F. (2003). Comunidades de formigas (Hymenoptera: Formicidae) em uma “ilha” de floresta ombrófila serrana em região da caatinga (BA, Brasil). Acta Biológica Leopoldensia, 25: 197-204. Soares, S.A., Suarez, Y.R., Fernandes, W.D., Tenório, P.M.S. Delabie, J.H.C. & Antonialli-Junior, W.F. (2013). Temporal variation in the composition of ant assemblages (Hymenoptera, Formicidae) on trees in the Pantanal floodplain, Mato Grosso do Sul, Brazil. Revista Brasileira de Entomologia, 57: 84-90. doi 10.1590/S0085-56262013000100013 Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M.C., Schwager, M. & Jeltsch, F. (2004). Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography, 31: 79-92. Vasconcelos, H.L. (1998). Respostas das formigas à fragmentação florestal. Série Técnica IPF, 12: 95-98. Vasconcelos, H.L. & Vilhena, J.M.S. (2006). Species turnover and vertical partitioning of ant assemblages in the Brazilian Amazon: A comparison of forests and savannas. Biotropica, 38: 100-106. Wild, A.L. & Cuezzo, F. (2006). Rediscovery of a fossil Dolichoderine ant lineage (Hymenoptera: Formicidae: Dolichoderinae) and a description of a new genus from South America. Zootaxa, 1142: 57-68. Wilkinson, L. (2004). Systat. Version 11.0. Software Inc., San José, USA. Wilson, E.O. (1987). The arboreal ant fauna of Peruvian Amazon Forests: A first assessment. Biotropica, 19: 245-251.