DOI: 10.13102/sociobiology.v67i2.4834Sociobiology 67(2): 308-311 (June, 2020) 

Open access journal: http://periodicos.uefs.br/ojs/index.php/sociobiology
ISSN: 0361-6525

Introduction

The Brazilian fauna is composed of 22 genera of 
304 species of registered social wasps, of which 104 occur 
exclusively in Brazilian territory (Silveira et al., 2016). Three 
tribes occur in Brazil: Mischocyttarini (Mischocyttarus), 
Polistini (Polistes) and Epiponini (Carpenter & Marques 
2001; CTFB, 2017). These wasps have high predation 
potential and are important in population regulation of pest 
insects (Richards, 1978; Richter, 2000; Brügger et al., 2019a; 
Prezoto et al., 2019). Social insects forage for food resources 
(proteins, carbohydrates) material for building nests (plant 
fibers and clay), and water (Richter, 2000; Brügger et al., 
2019b). Environmental factors such as humidity, sunlight, 
and temperature regulate these activities (Kovac et al., 2018). 
Brazil has a large insect fauna and wasp diversity is poorly 

Abstract 
Social wasps play an important role in communities, whether in 
natural or agricultural ecosystems, performing pollination and/
or predation on other organisms, especially caterpillars, which 
reveals their potential for biological control. We register species 
of predatory wasps found in a eucalypt reforested area compared 
with a native rainforest. Five species of social wasps were found:  
Agelaia myrmecophila (Ducke), Mischocyttarus punctatus (Ducke), 
Polistes carnifex (Fabricius), Polybia liliacea (Fabricius), and 
Polybia striata (Fabricius), with higher numbers in the eucalypt 
monoculture than in the Atlantic rainforest, suggesting no 
negative impact of the monoculture on the population of that 
natural enemies.

Sociobiology
An international journal on social insects

R Silva-Filho1, BP Brügger2, JC Zanuncio2, PCR Cassino3

Article History

Edited by
Gilberto M. M. Santos, UEFS, Brazil
Received              22 October 2019
Initial acceptance                12 December 2019
Final acceptance             07 April 2020
Publication date                  30 June 2020

Keywords 
Epiponini; Mischocyttarini; occurrence; Polistini; 
predator. 

Corresponding author
Bruno Pandelo Brügger
Departamento de Entomologia/BIOAGRO
Universidade Federal de Viçosa, 
CEP 36570-900, Viçosa, Minas Gerais, Brasil.
E-Mail: brunopb2002@yahoo.com.br

known, so new records may contribute to the understanding 
of species diversity and richness in an area (De Souza et al., 
2017; Brügger et al., 2019b; Somavilla et al., 2019).

Eucalyptus trees play an important role in the Brazilian 
economy. Because they are locally abundant, this type of 
biomass is used as an energy source in agribusiness (Lenz 
et al., 2019), but its monoculture can favor the occurrence of 
pests such as defoliator caterpillars, which must be controlled 
to reduce their damage (Masson et al., 2017; Munique et al., 
2018; Zanuncio et al., 2018). 

 The collection and identification of social wasps in a 
given region provide information for studies on the ecology 
of these organisms and their interactions with the environment 
(Silveira et al., 2002). Therefore, the objective was to record 
the occurrence of social wasps in an area with Eucalyptus and 
Atlantic Forest.

1 - Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa-MG, Brazil
2 - Departamento de Entomologia e Fitopatologia, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, Brazil
3 - Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa-MG, Brazil

RESEARCH ARTICLE - WASPS

Social Wasps in Exotic Forest Planting and Atlantic Rainforest in the Neotropical Region



Sociobiology 67(2): 308-311 (June, 2020) 309

Materials and Methods

Social wasps were collected from May 2008 to March 
2009 in an area of 117.07 ha with four-year hybrid Eucalyptus 
(Eucalyptus grandis x Eucalyptus urograndis) and in 35.05 
ha of secondary Atlantic Forest in the municipality of 
Dionísio, Minas Gerais; Brazil (19º 48 ‘S 42º 45’ W and 315 
m elevation).  The distance between the areas was 953 meters.

PET bottle traps with three 2.5 cm diameter side 
openings adapted to 200 ml plastic pots containing baits 
(sardines or honey) were used to capture wasps (Fig 1). 
Thirty traps were used in the eucalyptus plantation or Atlantic 
Forest, being 15 with fish and 15 with honey, spaced every 50 
m, 1.60 m high and verified every 24 hours for 5 days, every 
month for 12 months.

Species frequency was calculated with the equation F = 
/ ΣS1.100 / ΣS2, where S1 = total number of species and S2 = 

<0 .0001) and the areas of Eucalyptus (F = 65.91, p <0.001). 
The average of all wasp species was higher in Eucalyptus than 
in the Atlantic Forest, and those of A. myrmecophila higher 
and M. punctatus lower in both environments (Fig 2).

Species
Atlantic rainforest Eucalypt

number
frequency 

(%)
number

frequency 
(%)

Agelaia 
myrmecophila

224 63.8 559 67.6

Polybia striata 54 15.4 111 13.4
Polistes carnifex 
carnifex

43 12.2 99 12.0

Polybia liliacea 22 6.3 42 5.1

Mischoyttarus 
punctatus

8 2.3 16 1.9

Total 351 827

Table 1. Social wasps sampled in eucalypt and Atlantic rainforest 
from May 2008 to March 2009 in the municipality of Dionísio, 
Minas Gerais State, Brazil. 

total number of wasps collected.
Results 

Five species,  827 and 351 individuals of social wasps,  
Agelaia myrmecophila (Ducke) (559 and 224), Polybia 
striata (Fabricius) (111 and 54), Polistes carnifex carnifex 
(Fabricius) (99 and 43), Polybia liliacea (Fabricius) (42 and 
22) and, Mischocyttarus punctatus (Ducke) ( 16 and 08) 
were collected in the areas of Eucalyptus or Atlantic forest 
respectively (Table 1).

The number of individuals of A. myrmecophila 
(F = 59.68, p <0.001), M. punctatus (F = 6.32, p = 0.003), 
P. carnifex carnifex (F = 9.47, p = 0.001), P. liliacea (F = 
7.34, p = 0.0038) and P. striata (F = 10.57, p <0.0001) were 
significantly different between Atlantic forest (F = 35.87, p 

Fig 1. Trap used for wasp capture (Silva-Filho, 2008).

Discussion

The largest number wasp individuals in the Eucalyptus 
area in relation to the Atlantic Forest is due to the abundance 
of prey in this area, which may be present in trees or in the 
understory (Kato, 1996; De Souza et al., 2011). Eucalyptus 
monoculture has defoliating caterpillars (Zanuncio et al., 2018), 

Fig 2. Number of wasp individuals (average ± standard error) of 
the social wasps Agelaia myrmecophila (A.m.), Mischocyttarus 
punctatus (M.p.), Polistes carnifex carnifex (P.c.c.), Polybia liliacea 
(P.l.) and Polybia striata (P.s.) (Hymenoptera: Vespidae: Polistinae) 
captured with traps from May 2008 to March 2009 in eucalypts 
reforested and native Atlantic rainforest areas. Municipality of 
Dionísio, Minas Gerais State, Brazil. Bars with the same letters 
(comparison within a species between two environments) and 
the same small letters (comparison within a species within an 
environment) Tukey’s test (p> 0.05). 



R Silva-Filho, BP Brügger, JC Zanuncio, PCR Cassino – Social wasps in forest planting and Atlantic rainforest310

favoring the wasps due to pest insect outbreaks (Elisei et al., 
2010). However, the use of only attractive traps, may have 
influenced the result, since in environments with less food 
availability (Eucalyptus) (De Souza et al., 2011) it may have 
captured more social wasps in relation to an environment rich 
in food (Atlantic forest) (Brügger et al.,2019b). In addition, the 
higher light intensity in Eucalyptus monoculture than in the 
Atlantic Forest may have contributed to the number of wasp 
individuals, as these insects use marked clues or points for 
short or long-distance orientation in relation to their nests 
(Steinmetz & Schmolz, 2004; Warrant et al., 2006; Mandal, 2018; 
Silva-Filho et al., 2020). Daytime insects can make navigation 
errors in low sunlight conditions (Spiewok & Schmolz, 2005). In 
social wasps it is common for the colonies’ foundations to be in 
forest areas due to their cryptic aspect, using monoculture only 
as a foraging site (Jeanne, 1975). The maintenance of Atlantic 
forest areas is important because among the management 
strategies that can favor the performance of biological control 
agents, there is the preservation of areas of refuge (Van Driesche 
& Bellows, 1996; Menezes et al., 2017). In Brazil, some studies 
have evaluated the effects of fragments of native forest on natural 
enemies, in crops such as: Eucalyptus (Eucalyptus spp.) (Murta 
et al., 2008), corn (Zea mays L.) (Sousa et al., 2011) and sugar 
cane (Saccharum officinarum L.) (Demite et al., 2015; Duarte et 
al., 2015).

The lower number of individuals of both A. multipicta 
and M. punctatus in both environments was expected because 
Agelaia has the largest colony size among wasps (Zuchi et al., 
1995; Noll et al., 1997; London & Jeanne, 2000). The colonies 
of Agelaia and Polybia are founded by swarms, consequently 
with larger numbers of individuals than that of independent 
foundation such as Polistes or Mischocyttarus (Wenzel, 1998).

The higher number and frequency of social wasps in 
the Eucalyptus compared to the Atlantic Forest demonstrates 
the importance of maintaining refugee areas for biological 
control, as it can positively influence the diversity of social 
wasps in monoculture. However, the use of only the attractive 
trap methodology, may underestimate the results, due to 
differences in food supply in the areas, so we recommend the 
consortium between the active search methodologies and the 
attractive traps.

Acknowledgments

We thank the following Brazilian agencies “Conselho 
Nacional de Desenvolvimento Cientifico e Tecnológico, 
Coordenação de Aperfeiçoamento de Pessoal de Nível 
Superior (Finance Code 001), “Fundação de Amparo à 
Pesquisa do Estado de Minas Gerais” and “Programa 
Cooperativo sobre Proteção Florestal do Instituto de Pesquisas 
e Estudos Florestais” for scholarships and financial support.

References 

Brügger, B.P., La Cruz R.A., Carvalho, A.G., Soares, M.A., 

Prezoto, F & Zanuncio, J.C. (2019a). Polybia fasticiosuscula 
(Hymenoptera: Vespidae) foraging activity patterns. Florida 
Entomologist, 102(1): 264-265. doi: 10.1653/024.102.0150.

Brügger, B.P., Prezoto, F., Souza, L.S.A., Zanuncio, A.J.V., 
Soares, M.A & Zanuncio, J.C. (2019b). Use of fruit juice 
as a method for the collection of social wasps. Florida 
Entomologist, 102(3): 592-595. doi: 10.1653/024.102.0315.

CTFB. (2017). Catálogo taxonômico da fauna do Brasil. 
http://fauna.jbrj.gov.br (Accessed date: 18 July, 2018).

De Souza, A.R., Venâncio, D.F.A., Zanuncio, J.C. & Prezoto, F. 
(2011). Sampling methods for assessing social wasps species 
diversity in a eucalyptus plantation. Journal of Economic 
Entomology, 104(3): 1120-1123. doi: 10.1603/EC11060.

De Souza, M. M., Brunismann, Â. G & Clemente, M. A. 
(2017). Social wasp richness and species distributions among 
ecosystem types in Minas Gerais, Brazil. Sociobiology, 64(4): 
456-465. doi: 10.13102/sociobiology.v64i4.1839.

Carpenter, J. M & Marques, O. M. (2001). Contribuição 
ao estudo dos vespídios do Brasil (Insecta, Hymenoptera, 
Vespoidea, Vespidae) [CD-ROM]. Cruz das Almas - BA, 
Brasil. Universidade Federal da Bahia, Escola de Agronomia, 
Departamento de Fitotecnia/ Mestrado em Ciências Agrárias. 
Série Publicações Digitais, 2.

Demite, P.R., Feres, R.J.F & Lofego, A.C. (2015). Influence 
of agricultural environment on the plant mite community in 
forest fragments. Brazilian Journal of Biology, 75: 396-404. 
Doi: 10.1590/1519-6984.14913.

Duarte, M.E., Navia, D., Dos Santos, L.R., Rideiqui, P.J.S 
& Silva, E.S. (2015). Mites associated with sugarcane crop 
and with native trees from adjacent Atlantic forest fragment 
in Brazil. Experimental and Applied Acarology, 66: 529-540. 

Elisei, T., Nunes, J.V., Ribeiro Junior, C., Fernandes Junior, A.J 
& Prezoto, F. (2010). Use of social wasp Polistes versicolor on 
eucalyptus caterpillar control. Pesquisa Agropecuária Brasileira, 
45(9): 958-964. doi: 10.1590/S0100-204X2010000900004.

Jeanne, R.L. (1975). The adaptiveness of social wasp nest 
architecture. The Quarterly Review of Biology, 50(3): 267-287. 

Kato, M. (1996). Plant–pollinator interactions in the understory 
of a lowland mixed dipterocarp forest in Sarawak. American 
Journal of Botany, 83(6): 732-743. doi: 10.1002/j.1537-2197. 
1996.tb12762.x.

Kovac, H., Stabentheiner, A & Brodschneider, R. (2018). 
Foraging strategy of wasps–optimisation of intake rate or 
energetic efficiency? Journal of Experimental Biology, 221: 
jeb174169. doi: 10.1242/jeb.174169.

Lenz, A.M, Rosa, H.A., Mercante, E., Maggi, M.F., Mendes, 
I.S., Cattani, C.E.V., Johann, A., Ferruzzi, Y & Gurgacz, F. 
(2019). Expansion of eucalyptus energy plantations under a 
Livestock-Forestry Integration scenario for agroindustries in 



Sociobiology 67(2): 308-311 (June, 2020) 311

Western Paraná, Brazil. Ecological Indicators, 98: 39-48. doi: 
10.1016/j.ecolind.2018.10.051.

London, K.B & Jeanne, R.L. (2000). The interaction between 
mode of colony founding, nest architecture and ant defense in 
polistine wasps. Ethology Ecology & Evolution, 12(1): 13-
25. doi: 10.1080/03949370.2000.9728440.

Mandal, S. (2018). How do animals find their way back home? 
A brief overview of homing behavior with special reference 
to social Hymenoptera. Insectes Sociaux, 65(4): 521-536. doi: 
10.1007/s00040-018-0647-2.

Masson, MV., Tavares, W.S., Pereira, D.W.V., Matos, W. C., 
Lopes, F.A., Ferreira-Filho, P.J., Wilcken, C.F & Zanuncio, 
J.C. (2017). Management of Hylesia nanus (Lepidoptera: 
Saturniidae) on Eucalyptus (Myrtaceae) plantations. Florida 
Entomologist, 100(2): 380-384. doi: 10.1653/024.100.0239.

Menezes, R.S., Brady, S.G., Carvalho, A.F., Del Lama, M.A 
& Costa, M.A. (2017). The roles of barriers, refugia, and 
chromosomal clines underlying diversification in Atlantic 
Forest social wasps. Scientific Reports, 7(1): 1-16.

Munique, L.B & Calixto, E.S. (2018). Spatial and temporal 
variation of plant fragment removal by two species of atta 
leaf–cutting ants. Journal of Insect Behavior, 31(3): 255-263. 
doi: 10.1007/s10905-018-9673-1.

Murta, A.F., Ker, F.T.O., Costa, D.B., Espírito-Santo, M.M & 
Faria, M.L. (2008). Efeitos de remanescentes de Mata Atlântica 
no controle biológico de Euselasia apisaon (Dahman) 
(Lepidoptera: Riodinidae) por Trichogramma maxacalii 
(Voegelé e Pointel) (Hymenoptera: Trichogrammatidae). 
Neotropical Entomology, 37: 229-232. doi: 10.1590/S1519- 
566X2008000200019.

Noll, F.B., Simões, D., & Zucchi, R. (1997). Morphological 
caste differences in the neotropical swarm-founding Polistinae 
wasps: Agelaia m. A. multipicta and A. p. pallipes (Hymenoptera 
Vespidae). Ethology Ecology & Evolution, 9(4): 361-372. doi: 
10.1080/08927014.1997.9522878

Prezoto, F., Maciel, T.T., Detoni, M., Mayorquin, A.Z. & 
Barbosa, B.C. (2019). Pest control potential of social wasps 
in small farms and urban gardens. Insects, 10(7): 192. doi: 
10.3390/insects10070192.

Richards, O.W. (1978). Social wasps of the Americas excluding 
the Vespinae. British Museum (Natural History), 580 p.

Richter, M.R. (2000). Social wasp (Hymenoptera: Vespidae) 
foraging behavior. Annual Review of Entomology, 45(1): 
121-150. doi: 10.1146/annurev.ento.45.1.121.

Silva-Filho, R., Brügger, B.P., Corrêa, C.A., Souza, L.S.A., 
Cassino, P.C.R., Zanuncio, J.C., Ramalho-Silva, P.R., Soares, 
M.A., Zanuncio, A.J.V. (2020). Flight distance and return capacity 
of Polistes lanio lanio (Hymenoptera: Vespidae) workers. Florida 
Entomologist, 103(1): 38-40. doi: 10.1653/024.103.0406.

Silveira, O.T. (2002). Surveying neotropical social wasps: 
an evaluation of methods in the “Ferreira Penna” research 
station (ECFPn), in Caxiuanã, PA, Brazil (Hym., Vespidae, 
Polistinae). Papéis Avulsos de Zoologia, 42(12): 299-323. 
doi: 10.1590/S0031-10492002001200001.

Silveira, O.T., Felizardo, S.P.S & Santos, S.M.C. (2016). Note 
on predation of the brood of Mischocyttarus injucundus (de 
Saussure) by another social wasp in Caxiuanã, Pará, Brazil, with 
new records of species for the Ferreira Penna Research Station 
(Hymenoptera, Vespidae, Polistinae). Revista Brasileira de 
Entomologia, 60(1): 114-116. doi: 10.1016/j.rbe.2015.11.010.

Steinmetz, I & Schmolz, E. (2004). Influence of illuminance 
and forager experience on use of orientation cues in social 
wasps (Vespinae). Journal of Insect Behavior, 17(5): 599-
612. doi: 10.1023/B:JOIR.0000042543.64957.b9.

Somavilla, A., De Moraes Junior, R.N.M & Rafael, J.A. 
(2019). Is the social wasp fauna in the tree canopy different 
from the understory? Study of a particular area in the 
Brazilian Amazon Rainforest. Sociobiology, 66(1): 179-185. 
doi: 10.13102/sociobiology.v66i1.3568.

Sousa, E.H.S., Matos, M.C.B., Almeida, R.S. & Teodoro, A.V. 
2011. Forest fragments’ contribution to the natural biological 
control of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) 
in maize. Brazilian Archives of Biology and Technology, 54: 
755-760. doi: 10.1590/ S1516-89132011000400015.

Spiewok, S & Schmolz, E. (2005). Changes in temperature 
and light alter the flight speed of hornets (Vespa crabro 
L.). Physiological and Biochemical Zoology, 79(1): 188-193. 
doi: 10.1086/498181.

Van Driesche, R.G & Bellows, T.S. (1996). Biological control 
in support of nature conservation. In Biological Control (pp. 
424-443). Springer, Boston, MA.

Warrant, E.J., Kelber, A., Wallén, R. & Wcislo, W.T. 
(2006). Ocellar optics in nocturnal and diurnal bees and 
wasps. Arthropod Structure and Development, 35(4): 293-
305. doi: 10.1016/j.asd.2006.08.012.

Wenzel, J.W. (1998). A generic key to the nests of hornets, 
yellowjackets, and paper wasps worldwide (Vespidae, Vespinae, 
Polistinae). American Museum Novitates, 3224: 1-39.

Zanuncio, J.C., Cruz, A.P., Ramalho, F.S., Serrão, J.E., 
Wilcken, C.F., Silva, W.M., Santos-Júnior, V. C & Ferreira–
Filho, P.J. (2018). Environmental determinants affecting the 
occurrence of defoliator caterpillars on Eucalyptus (Myrtaceae) 
plantations in the Brazilian Amazonian region. Florida 
Entomologist, 101(3): 480-485. doi: 10.1653/024.101.0306.

Zucchi, R., Sakagami, S.F., Noll, F.B., Mechi, M.R., Mateus, 
S., Baio, M.V. & Shima, S.N. (1995). Agelaia vicina, a 
swarm–founding polistine with the largest colony size among 
wasps and bees (Hymenoptera: Vespidae). Journal of the New 
York Entomological Society, 103(2): 129-137.