DOI: 10.13102/sociobiology.v67i2.4834Sociobiology 67(2): 308-311 (June, 2020) Open access journal: http://periodicos.uefs.br/ojs/index.php/sociobiology ISSN: 0361-6525 Introduction The Brazilian fauna is composed of 22 genera of 304 species of registered social wasps, of which 104 occur exclusively in Brazilian territory (Silveira et al., 2016). Three tribes occur in Brazil: Mischocyttarini (Mischocyttarus), Polistini (Polistes) and Epiponini (Carpenter & Marques 2001; CTFB, 2017). These wasps have high predation potential and are important in population regulation of pest insects (Richards, 1978; Richter, 2000; Brügger et al., 2019a; Prezoto et al., 2019). Social insects forage for food resources (proteins, carbohydrates) material for building nests (plant fibers and clay), and water (Richter, 2000; Brügger et al., 2019b). Environmental factors such as humidity, sunlight, and temperature regulate these activities (Kovac et al., 2018). Brazil has a large insect fauna and wasp diversity is poorly Abstract Social wasps play an important role in communities, whether in natural or agricultural ecosystems, performing pollination and/ or predation on other organisms, especially caterpillars, which reveals their potential for biological control. We register species of predatory wasps found in a eucalypt reforested area compared with a native rainforest. Five species of social wasps were found: Agelaia myrmecophila (Ducke), Mischocyttarus punctatus (Ducke), Polistes carnifex (Fabricius), Polybia liliacea (Fabricius), and Polybia striata (Fabricius), with higher numbers in the eucalypt monoculture than in the Atlantic rainforest, suggesting no negative impact of the monoculture on the population of that natural enemies. Sociobiology An international journal on social insects R Silva-Filho1, BP Brügger2, JC Zanuncio2, PCR Cassino3 Article History Edited by Gilberto M. M. Santos, UEFS, Brazil Received 22 October 2019 Initial acceptance 12 December 2019 Final acceptance 07 April 2020 Publication date 30 June 2020 Keywords Epiponini; Mischocyttarini; occurrence; Polistini; predator. Corresponding author Bruno Pandelo Brügger Departamento de Entomologia/BIOAGRO Universidade Federal de Viçosa, CEP 36570-900, Viçosa, Minas Gerais, Brasil. E-Mail: brunopb2002@yahoo.com.br known, so new records may contribute to the understanding of species diversity and richness in an area (De Souza et al., 2017; Brügger et al., 2019b; Somavilla et al., 2019). Eucalyptus trees play an important role in the Brazilian economy. Because they are locally abundant, this type of biomass is used as an energy source in agribusiness (Lenz et al., 2019), but its monoculture can favor the occurrence of pests such as defoliator caterpillars, which must be controlled to reduce their damage (Masson et al., 2017; Munique et al., 2018; Zanuncio et al., 2018). The collection and identification of social wasps in a given region provide information for studies on the ecology of these organisms and their interactions with the environment (Silveira et al., 2002). Therefore, the objective was to record the occurrence of social wasps in an area with Eucalyptus and Atlantic Forest. 1 - Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa-MG, Brazil 2 - Departamento de Entomologia e Fitopatologia, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, Brazil 3 - Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa-MG, Brazil RESEARCH ARTICLE - WASPS Social Wasps in Exotic Forest Planting and Atlantic Rainforest in the Neotropical Region Sociobiology 67(2): 308-311 (June, 2020) 309 Materials and Methods Social wasps were collected from May 2008 to March 2009 in an area of 117.07 ha with four-year hybrid Eucalyptus (Eucalyptus grandis x Eucalyptus urograndis) and in 35.05 ha of secondary Atlantic Forest in the municipality of Dionísio, Minas Gerais; Brazil (19º 48 ‘S 42º 45’ W and 315 m elevation). The distance between the areas was 953 meters. PET bottle traps with three 2.5 cm diameter side openings adapted to 200 ml plastic pots containing baits (sardines or honey) were used to capture wasps (Fig 1). Thirty traps were used in the eucalyptus plantation or Atlantic Forest, being 15 with fish and 15 with honey, spaced every 50 m, 1.60 m high and verified every 24 hours for 5 days, every month for 12 months. Species frequency was calculated with the equation F = / ΣS1.100 / ΣS2, where S1 = total number of species and S2 = <0 .0001) and the areas of Eucalyptus (F = 65.91, p <0.001). The average of all wasp species was higher in Eucalyptus than in the Atlantic Forest, and those of A. myrmecophila higher and M. punctatus lower in both environments (Fig 2). Species Atlantic rainforest Eucalypt number frequency (%) number frequency (%) Agelaia myrmecophila 224 63.8 559 67.6 Polybia striata 54 15.4 111 13.4 Polistes carnifex carnifex 43 12.2 99 12.0 Polybia liliacea 22 6.3 42 5.1 Mischoyttarus punctatus 8 2.3 16 1.9 Total 351 827 Table 1. Social wasps sampled in eucalypt and Atlantic rainforest from May 2008 to March 2009 in the municipality of Dionísio, Minas Gerais State, Brazil. total number of wasps collected. Results Five species, 827 and 351 individuals of social wasps, Agelaia myrmecophila (Ducke) (559 and 224), Polybia striata (Fabricius) (111 and 54), Polistes carnifex carnifex (Fabricius) (99 and 43), Polybia liliacea (Fabricius) (42 and 22) and, Mischocyttarus punctatus (Ducke) ( 16 and 08) were collected in the areas of Eucalyptus or Atlantic forest respectively (Table 1). The number of individuals of A. myrmecophila (F = 59.68, p <0.001), M. punctatus (F = 6.32, p = 0.003), P. carnifex carnifex (F = 9.47, p = 0.001), P. liliacea (F = 7.34, p = 0.0038) and P. striata (F = 10.57, p <0.0001) were significantly different between Atlantic forest (F = 35.87, p Fig 1. Trap used for wasp capture (Silva-Filho, 2008). Discussion The largest number wasp individuals in the Eucalyptus area in relation to the Atlantic Forest is due to the abundance of prey in this area, which may be present in trees or in the understory (Kato, 1996; De Souza et al., 2011). Eucalyptus monoculture has defoliating caterpillars (Zanuncio et al., 2018), Fig 2. Number of wasp individuals (average ± standard error) of the social wasps Agelaia myrmecophila (A.m.), Mischocyttarus punctatus (M.p.), Polistes carnifex carnifex (P.c.c.), Polybia liliacea (P.l.) and Polybia striata (P.s.) (Hymenoptera: Vespidae: Polistinae) captured with traps from May 2008 to March 2009 in eucalypts reforested and native Atlantic rainforest areas. Municipality of Dionísio, Minas Gerais State, Brazil. Bars with the same letters (comparison within a species between two environments) and the same small letters (comparison within a species within an environment) Tukey’s test (p> 0.05). R Silva-Filho, BP Brügger, JC Zanuncio, PCR Cassino – Social wasps in forest planting and Atlantic rainforest310 favoring the wasps due to pest insect outbreaks (Elisei et al., 2010). However, the use of only attractive traps, may have influenced the result, since in environments with less food availability (Eucalyptus) (De Souza et al., 2011) it may have captured more social wasps in relation to an environment rich in food (Atlantic forest) (Brügger et al.,2019b). In addition, the higher light intensity in Eucalyptus monoculture than in the Atlantic Forest may have contributed to the number of wasp individuals, as these insects use marked clues or points for short or long-distance orientation in relation to their nests (Steinmetz & Schmolz, 2004; Warrant et al., 2006; Mandal, 2018; Silva-Filho et al., 2020). Daytime insects can make navigation errors in low sunlight conditions (Spiewok & Schmolz, 2005). In social wasps it is common for the colonies’ foundations to be in forest areas due to their cryptic aspect, using monoculture only as a foraging site (Jeanne, 1975). The maintenance of Atlantic forest areas is important because among the management strategies that can favor the performance of biological control agents, there is the preservation of areas of refuge (Van Driesche & Bellows, 1996; Menezes et al., 2017). In Brazil, some studies have evaluated the effects of fragments of native forest on natural enemies, in crops such as: Eucalyptus (Eucalyptus spp.) (Murta et al., 2008), corn (Zea mays L.) (Sousa et al., 2011) and sugar cane (Saccharum officinarum L.) (Demite et al., 2015; Duarte et al., 2015). The lower number of individuals of both A. multipicta and M. punctatus in both environments was expected because Agelaia has the largest colony size among wasps (Zuchi et al., 1995; Noll et al., 1997; London & Jeanne, 2000). The colonies of Agelaia and Polybia are founded by swarms, consequently with larger numbers of individuals than that of independent foundation such as Polistes or Mischocyttarus (Wenzel, 1998). The higher number and frequency of social wasps in the Eucalyptus compared to the Atlantic Forest demonstrates the importance of maintaining refugee areas for biological control, as it can positively influence the diversity of social wasps in monoculture. However, the use of only the attractive trap methodology, may underestimate the results, due to differences in food supply in the areas, so we recommend the consortium between the active search methodologies and the attractive traps. Acknowledgments We thank the following Brazilian agencies “Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Finance Code 001), “Fundação de Amparo à Pesquisa do Estado de Minas Gerais” and “Programa Cooperativo sobre Proteção Florestal do Instituto de Pesquisas e Estudos Florestais” for scholarships and financial support. References Brügger, B.P., La Cruz R.A., Carvalho, A.G., Soares, M.A., Prezoto, F & Zanuncio, J.C. (2019a). Polybia fasticiosuscula (Hymenoptera: Vespidae) foraging activity patterns. Florida Entomologist, 102(1): 264-265. doi: 10.1653/024.102.0150. Brügger, B.P., Prezoto, F., Souza, L.S.A., Zanuncio, A.J.V., Soares, M.A & Zanuncio, J.C. (2019b). Use of fruit juice as a method for the collection of social wasps. Florida Entomologist, 102(3): 592-595. doi: 10.1653/024.102.0315. CTFB. (2017). Catálogo taxonômico da fauna do Brasil. http://fauna.jbrj.gov.br (Accessed date: 18 July, 2018). De Souza, A.R., Venâncio, D.F.A., Zanuncio, J.C. & Prezoto, F. (2011). Sampling methods for assessing social wasps species diversity in a eucalyptus plantation. Journal of Economic Entomology, 104(3): 1120-1123. doi: 10.1603/EC11060. De Souza, M. M., Brunismann, Â. G & Clemente, M. A. (2017). Social wasp richness and species distributions among ecosystem types in Minas Gerais, Brazil. Sociobiology, 64(4): 456-465. doi: 10.13102/sociobiology.v64i4.1839. Carpenter, J. M & Marques, O. M. (2001). Contribuição ao estudo dos vespídios do Brasil (Insecta, Hymenoptera, Vespoidea, Vespidae) [CD-ROM]. Cruz das Almas - BA, Brasil. Universidade Federal da Bahia, Escola de Agronomia, Departamento de Fitotecnia/ Mestrado em Ciências Agrárias. Série Publicações Digitais, 2. Demite, P.R., Feres, R.J.F & Lofego, A.C. (2015). Influence of agricultural environment on the plant mite community in forest fragments. Brazilian Journal of Biology, 75: 396-404. Doi: 10.1590/1519-6984.14913. Duarte, M.E., Navia, D., Dos Santos, L.R., Rideiqui, P.J.S & Silva, E.S. (2015). Mites associated with sugarcane crop and with native trees from adjacent Atlantic forest fragment in Brazil. Experimental and Applied Acarology, 66: 529-540. Elisei, T., Nunes, J.V., Ribeiro Junior, C., Fernandes Junior, A.J & Prezoto, F. (2010). Use of social wasp Polistes versicolor on eucalyptus caterpillar control. Pesquisa Agropecuária Brasileira, 45(9): 958-964. doi: 10.1590/S0100-204X2010000900004. Jeanne, R.L. (1975). The adaptiveness of social wasp nest architecture. The Quarterly Review of Biology, 50(3): 267-287. Kato, M. (1996). Plant–pollinator interactions in the understory of a lowland mixed dipterocarp forest in Sarawak. American Journal of Botany, 83(6): 732-743. doi: 10.1002/j.1537-2197. 1996.tb12762.x. Kovac, H., Stabentheiner, A & Brodschneider, R. (2018). Foraging strategy of wasps–optimisation of intake rate or energetic efficiency? Journal of Experimental Biology, 221: jeb174169. doi: 10.1242/jeb.174169. Lenz, A.M, Rosa, H.A., Mercante, E., Maggi, M.F., Mendes, I.S., Cattani, C.E.V., Johann, A., Ferruzzi, Y & Gurgacz, F. (2019). Expansion of eucalyptus energy plantations under a Livestock-Forestry Integration scenario for agroindustries in Sociobiology 67(2): 308-311 (June, 2020) 311 Western Paraná, Brazil. Ecological Indicators, 98: 39-48. doi: 10.1016/j.ecolind.2018.10.051. London, K.B & Jeanne, R.L. (2000). The interaction between mode of colony founding, nest architecture and ant defense in polistine wasps. Ethology Ecology & Evolution, 12(1): 13- 25. doi: 10.1080/03949370.2000.9728440. Mandal, S. (2018). How do animals find their way back home? A brief overview of homing behavior with special reference to social Hymenoptera. Insectes Sociaux, 65(4): 521-536. doi: 10.1007/s00040-018-0647-2. Masson, MV., Tavares, W.S., Pereira, D.W.V., Matos, W. C., Lopes, F.A., Ferreira-Filho, P.J., Wilcken, C.F & Zanuncio, J.C. (2017). Management of Hylesia nanus (Lepidoptera: Saturniidae) on Eucalyptus (Myrtaceae) plantations. Florida Entomologist, 100(2): 380-384. doi: 10.1653/024.100.0239. Menezes, R.S., Brady, S.G., Carvalho, A.F., Del Lama, M.A & Costa, M.A. (2017). The roles of barriers, refugia, and chromosomal clines underlying diversification in Atlantic Forest social wasps. Scientific Reports, 7(1): 1-16. Munique, L.B & Calixto, E.S. (2018). Spatial and temporal variation of plant fragment removal by two species of atta leaf–cutting ants. Journal of Insect Behavior, 31(3): 255-263. doi: 10.1007/s10905-018-9673-1. Murta, A.F., Ker, F.T.O., Costa, D.B., Espírito-Santo, M.M & Faria, M.L. (2008). Efeitos de remanescentes de Mata Atlântica no controle biológico de Euselasia apisaon (Dahman) (Lepidoptera: Riodinidae) por Trichogramma maxacalii (Voegelé e Pointel) (Hymenoptera: Trichogrammatidae). Neotropical Entomology, 37: 229-232. doi: 10.1590/S1519- 566X2008000200019. Noll, F.B., Simões, D., & Zucchi, R. (1997). Morphological caste differences in the neotropical swarm-founding Polistinae wasps: Agelaia m. A. multipicta and A. p. pallipes (Hymenoptera Vespidae). Ethology Ecology & Evolution, 9(4): 361-372. doi: 10.1080/08927014.1997.9522878 Prezoto, F., Maciel, T.T., Detoni, M., Mayorquin, A.Z. & Barbosa, B.C. (2019). Pest control potential of social wasps in small farms and urban gardens. Insects, 10(7): 192. doi: 10.3390/insects10070192. Richards, O.W. (1978). Social wasps of the Americas excluding the Vespinae. British Museum (Natural History), 580 p. Richter, M.R. (2000). Social wasp (Hymenoptera: Vespidae) foraging behavior. Annual Review of Entomology, 45(1): 121-150. doi: 10.1146/annurev.ento.45.1.121. Silva-Filho, R., Brügger, B.P., Corrêa, C.A., Souza, L.S.A., Cassino, P.C.R., Zanuncio, J.C., Ramalho-Silva, P.R., Soares, M.A., Zanuncio, A.J.V. (2020). Flight distance and return capacity of Polistes lanio lanio (Hymenoptera: Vespidae) workers. Florida Entomologist, 103(1): 38-40. doi: 10.1653/024.103.0406. Silveira, O.T. (2002). Surveying neotropical social wasps: an evaluation of methods in the “Ferreira Penna” research station (ECFPn), in Caxiuanã, PA, Brazil (Hym., Vespidae, Polistinae). Papéis Avulsos de Zoologia, 42(12): 299-323. doi: 10.1590/S0031-10492002001200001. Silveira, O.T., Felizardo, S.P.S & Santos, S.M.C. (2016). Note on predation of the brood of Mischocyttarus injucundus (de Saussure) by another social wasp in Caxiuanã, Pará, Brazil, with new records of species for the Ferreira Penna Research Station (Hymenoptera, Vespidae, Polistinae). Revista Brasileira de Entomologia, 60(1): 114-116. doi: 10.1016/j.rbe.2015.11.010. Steinmetz, I & Schmolz, E. (2004). Influence of illuminance and forager experience on use of orientation cues in social wasps (Vespinae). Journal of Insect Behavior, 17(5): 599- 612. doi: 10.1023/B:JOIR.0000042543.64957.b9. Somavilla, A., De Moraes Junior, R.N.M & Rafael, J.A. (2019). Is the social wasp fauna in the tree canopy different from the understory? Study of a particular area in the Brazilian Amazon Rainforest. Sociobiology, 66(1): 179-185. doi: 10.13102/sociobiology.v66i1.3568. Sousa, E.H.S., Matos, M.C.B., Almeida, R.S. & Teodoro, A.V. 2011. Forest fragments’ contribution to the natural biological control of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) in maize. Brazilian Archives of Biology and Technology, 54: 755-760. doi: 10.1590/ S1516-89132011000400015. Spiewok, S & Schmolz, E. (2005). Changes in temperature and light alter the flight speed of hornets (Vespa crabro L.). Physiological and Biochemical Zoology, 79(1): 188-193. doi: 10.1086/498181. Van Driesche, R.G & Bellows, T.S. (1996). Biological control in support of nature conservation. In Biological Control (pp. 424-443). Springer, Boston, MA. Warrant, E.J., Kelber, A., Wallén, R. & Wcislo, W.T. (2006). Ocellar optics in nocturnal and diurnal bees and wasps. Arthropod Structure and Development, 35(4): 293- 305. doi: 10.1016/j.asd.2006.08.012. Wenzel, J.W. (1998). A generic key to the nests of hornets, yellowjackets, and paper wasps worldwide (Vespidae, Vespinae, Polistinae). American Museum Novitates, 3224: 1-39. Zanuncio, J.C., Cruz, A.P., Ramalho, F.S., Serrão, J.E., Wilcken, C.F., Silva, W.M., Santos-Júnior, V. C & Ferreira– Filho, P.J. (2018). Environmental determinants affecting the occurrence of defoliator caterpillars on Eucalyptus (Myrtaceae) plantations in the Brazilian Amazonian region. Florida Entomologist, 101(3): 480-485. doi: 10.1653/024.101.0306. Zucchi, R., Sakagami, S.F., Noll, F.B., Mechi, M.R., Mateus, S., Baio, M.V. & Shima, S.N. (1995). Agelaia vicina, a swarm–founding polistine with the largest colony size among wasps and bees (Hymenoptera: Vespidae). Journal of the New York Entomological Society, 103(2): 129-137.