Open access journal: http://periodicos.uefs.br/ojs/index.php/sociobiology ISSN: 0361-6525 DOI: 10.13102/sociobiology.v67i3.5083Sociobiology 67(3): 343-357 (September, 2020) Introduction The Brazilian Atlantic Forest is considered a global conservation hotspot (Myers, 2000; Mittermeier et al., 2005), as it is one of the richest biomes in biodiversity as well as one of the most threatened on the planet, since only 12.4% of forest remnants remain compared to the original coverage of 1,315,460 km2 in the 16th Century (SOS Mata Atlântica, 2018; INPE, 2018). With this significant reduction of its original coverage, the current landscape of the Atlantic Forest is composed by a mosaic of native vegetation fragments and crop areas, including forest remnants of over 3 hectares of different shapes and sizes, of these two main forest formations: Abstract Composed of two main forest formations, Ombrophilous Forest and Seasonal Forest, the Brazilian Atlantic Forest biome is constituted currently by a mosaic of forest remnants and secondary vegetation. Representatives of the Ponerinae ant genus Neoponera are observed mainly in both wet and seasonally dry forests. The aim of this study was to approach the diversity of the genus Neoponera in the north of the Atlantic Forest of Brazil (from the extreme north of its distribution to the Doce River hydrographic basin in the south), associating the occurrence of ant species with the types of vegetation. We have compiled occurrence data from the collection of the Myrmecology Laboratory of the Cocoa Research Center, on internet, or available in literature. We found information on 23 species of Neoponera, including a new record for the Atlantic Forest, Neoponera globularia (Mackay & Mackay, 2010), and a new record for Brazil, Neoponera fiebrigi Forel, 1912. The relative composition of the Neoponera assemblages was evaluated according to the types of vegetation. We found that the occurrence of the genus Neoponera is mainly related to the types of vegetation of the focus region, principally dense forests where a higher diversity was observed. Sociobiology An international journal on social insects PS Silva1,2, EBA Koch2, A Arnhold2,3, ES Araujo4, JHC Delabie2,5, CSF Mariano4 Article History Edited by Gilberto M. M. Santos, UEFS, Brazil Received 06 March 2020 Initial acceptance 15 April 2020 Final acceptance 23 June 2020 Publication date 30 September 2020 Keywords Geographic distribution, species richness, forest fragmentation, forest formations, vegetation types, Doce River. Corresponding author Priscila Santos Silva Laboratory of Myrmecology Cocoa Research Center – CEPEC/CEPLAC Caixa Postal 7, CEP: 45.600-970 Itabuna, Bahia, Brasil. E-Mail: priscilapitth@hotmail.com Ombrophilous Forest and Seasonal Forest (Ribeiro et al., 2009; Tabarelli et al., 2010; SOS Mata Atlântica, 2018; INPE, 2018; MMA, 2018). In perennial ombrophilous forests, the incidence of sunlight is low at the lower strata and the trees are tall; on the other hand, in semideciduous or deciduous seasonal forests, a considerable part of the foliage is lost during the dry season, which favors the penetration of sunlight until the floor, contributing to the formation of a more open vegetation structure with few epiphytes (Pereira, 2009; Colombo & Joly, 2010). Studies on the structure and composition of animal and plant communities are essential for the recovery and preservation of forest remnants (Ferreira et al., 2018), as well as for the conservation of biological diversity. However, we 1 - Graduate Program in Ecology and Biodiversity Conservation, Santa Cruz State University (UESC), Ilhéus, Bahia, Brazil 2 - Laboratory of Myrmecology, Cocoa Research Center, CEPLAC, Itabuna, Bahia, Brazil 3 - Federal University of Southern Bahia (UFSB), Training Center in Agroforestry Sciences, CEPLAC, Ilhéus, Bahia, Brazil 4 - Laboratory of Social Arthropods DCB/UESC, Ilhéus, Bahia, Brazil 5 - DCAA/UESC, Ilhéus, Bahia, Brazil RESEARCH ARTICLE - ANTS Diversity of the Ant Genus Neoponera Emery, 1901 (Formicidae: Ponerinae) in the North of the Brazilian Atlantic Forest, with New Records of Occurrence PS Silva, EBA Koch , A Arnhold, ES Araujo, JHC Delabie, CSF Mariano – Diversity of the Neoponera in the North of the Brazilian Atlantic Forest344 must understand first the main patterns of their geographic distribution to carry out these studies (Papes & Gaubert, 2007; Sigrist & Carvalho, 2008). In view of their high diversity and sensitivity to changes in the physical and biological environment, the insects, especially the ants (Hymenoptera: Formicidae), are useful for such studies (Santos et al., 2006; Ribas et al., 2012; Schmidt et al., 2013). Some ants directly or indirectly control the availability of resources, changing the state of biotic or abiotic conditions for other organisms (Jones et al., 1997). Their role as ecosystem engineers, coupled with their abundance in terrestrial ecosystems, reveals the ecological importance of this group (Folgarait, 1998). These ants contribute to structure the environment through soil ventilation and nutrient cycling, seed dispersal, mutualistic associations with plants and animals, on evolutionary as well as ecological scales (Moreau et al., 2006; Klimes et al., 2012; Dejean et al., 2014). Ponerinae is one of the most diverse groups within Formicidae with regard to morphology and behavior. In this subfamily, Neoponera is the second more genus in the Neotropical Region (after Leptogenys) with 57 species (Mackay & Mackay, 2010; Schmidt & Shattuck, 2014), occurring from southern Texas and northern Mexico to northern Argentina and southern Brazil (Mackay & Mackay, 2010). To date, 35 species of Neoponera have been recorded in Brazil (Feitosa, 2015), with representatives found throughout the country, preferably in humid forests, at ground level or in trees, but also in dry forests with seasonal rainfall (Lattke, 2003; 2015). Ants of the genus Neoponera generally are much more frequent in conserved areas than in anthropized lands (Campiolo et al., 2015). This fact strongly suggests that a set of information on the distribution of this group can help in monitoring environment quality and, furthermore, will provide valuable arguments to justify policies aiming at the implantation of conservation units. Although the pattern of global ant diversity is similar to that of other taxa (for example, vascular plants), many regions have much less recorded diversity than expected. This can be related to several factors, including climate change and migration, emphasizing that regions with still unknown diversity are often the regions where deforestation is occurring most rapidly (Guénard et al., 2012), such like the Atlantic Forest. The present study aimed to analyze the current diversity for the Neoponera genus in the northern part of the Brazilian Atlantic Forest biome, inserting new records, evaluating the richness and the association of Neoponera species with different forest formations (types of vegetation) within the biome. Material and methods Study area The Atlantic Forest covers an area of approximately 1,110,182 km² (IBGE, 2004a), being composed of the two main formations: coastal forest (perennials ombrophilous forests) and tropical seasonal forest (Morellato & Haddad, 2000), subdivided into different vegetation types according to the classification of the Brazilian Institute of Geography and Statistics (IBGE) (Fig 1/Table1), such as the: Pioneer Formation Areas under Marine and Fluvial Influence (Pf), Pioneer Formation under Marine Influence (Pm), Pioneer Formations with Agricultural Activities (AA.P), Savannah/Seasonal Forest with Agricultural Activities (AA.SN), Savannah/Ombrophilous Forest with Agricultural Activities (AA.SO), Dense Ombrophilous Forest of Lowlands (Db), Savannah/Ombrophilous Forest (SO), Open Ombrophilous Vegetation - Secondary Vegetation and Agrarian Activities (VS-AA.A), Seasonal Deciduous Forest - Secondary Vegetation and Agrarian Activities (VS- AA.C), Dense Ombrophilous Forest - Secondary Vegetation and Agrarian Activities (VS-AA.D) and Semideciduous Seasonal Forest (Secondary Vegetation and Agrarian Activities) (VS.AA.F). In addition to associated ecosystems such as mangroves, sea shore vegetation, highland fields, inland swamps and forest entrances in the Northeast, housing thousands of species of plants and animals (Ribeiro et al., 2009; Tabarelli et al., 2010; SOS Mata Atlântica, 2018; MMA, 2018). We defined the Doce River as the southern geographic boundary to outline the studied area, which is the northern part of the Brazilian Atlantic Forest (Fig 1). The Doce River Fig 1. Map of the study area. Sociobiology 67(3): 343-357 (September, 2020) 345 is one of the larger Brazilian rivers and its hydrographic basin presents a worrying picture of environmental degradation, since it is within the limits of two global biodiversity hotspots, 98% of its area is in the Atlantic Forest and the remaining 2% in the Cerrado (Mittermeier et al., 2005; Azevedo-Santos et al., 2016; Pires et al., 2017). The Doce River flows 888 km and its basin has an area of about 84,000 km2, of which 86% are in the state of Minas Gerais and 14% in that of Espírito Santo. It is considered as an effective biogeographical barrier at least since the Pleistocene (Carnaval & Moritz, 2008). Thus, the analyzed area covers from the Southeast of Brazil, from the north of Espírito Santo and part of Minas Gerais, to the Northeast of the country, and includes the states of Bahia, Sergipe, Alagoas, Pernambuco, Paraíba and Rio Grande do Norte. In the Northeast, the biome is limited to the Caatinga and in the Southeast, to the Cerrado (Pereira, 2009). In general, it presents precipitation index above 1,000 mm3 per year and several climatic types, such as humid tropical, hot and super humid, tropical altitudinal and mesothermal climates according to the Köppen-Geiger classification (Pereira, 2009). Data collection Neoponera species data were set up from the Myrmecology Laboratory collection of the Cocoa Research Center (CPDC), at Ilhéus-BA, Brazil, looking for information on specimen collection locations and geographic coordinates. Occurrence data were also compiled from the online data networks Antweb.org (accessed on 2018/2019) and Antmaps. org (accessed on 2018/2019). Another search was performed based on literature, using the species names as keywords. We consider the possibility that the species was registered with an outdated name, especially when included in the genus Pachychondyla before the revision of this genus by Schmidt and Shattuck (2014). We reviewed information about these species across Brazil and, subsequently, analyze their distribution in the north of the Brazilian Atlantic Forest biome to compile the list of species and data (reference codes are available in Table 5). Statistical analysis We built a spreadsheet with data compiled for the occurrence of species recorded in different locations in the north of the Atlantic Forest biome. We assessed the structure of Neoponera assemblages according to the types of vegetation (Table 1; Fig 1). For that purpose, we evaluated the similarity of Neoponera assemblages (species presence/absence) according the vegetation types using the Jaccard’s index. In addition, the association between species and vegetation types was illustrated using a multidimensional non-metric ordering (NMDS) using the Bray-Curtis index. These analyzes were performed using the software R v. 3.6.1(R Development Core Team 2019). Description of classified vegetation Classification legend Pioneer Formations under Marine and Fluvial Influence Pf Pioneer Formations under Marine Influence Pm Pioneer Formations with Agriculture AA.P Savanna/Seasonal Forest with Agriculture AA.SN Savanna/Ombrophilous Forest with Agriculture AA.SO Dense Ombrophilous Forest of Lowlands Db Savanna/Ombrophilous Forest SO Open Ombrophilous Vegetation (Secondary Vegetation and Agriculture) VS-AA.A Seasonal Deciduous Forest (Secondary Vegetation and Agriculture) VS-AA.C Dense Ombrophilous Forest (Secondary Vegetation and Agriculture) VS-AA.D Semideciduous Seasonal Forest (Secondary Vegetation and Agriculture) VS-AA.F Source: Vegetation map of Brazil (IBGE, 2004b available online at http:// www.ibge. gov.br). Table 1. Description and classification of vegetation types currently found in the Atlantic Forest in the studied region, Brazil. Results The total number of records of the survey comprises 23 species (Table 2) of Neoponera, distributed in the Atlantic Forest above the geographical boundary of Doce River (Tables 3 and 4). Between these, Neoponera globularia (Mackay & Mackay, 2010) is a new record for the Atlantic Forest, and Neoponera fiebrigi Forel, 1912 a new record for Brazil. We also found records of Neoponera goeldii Forel, 1912 (species previously known from the Amazonian biome only) in the state of Bahia at least at 1,500 km further east from the nearest record. The species recorded in the higher number of vegetation types (Table 2) were Neoponera apicalis (Latreille, 1802) (recorded in seven vegetation types, 63.6%), Neoponera villosa (Fabricius, 1804) and Neoponera curvinodis (Forel, 1899) (five vegetation types, 45.4% each). Among the other species, seven were recorded in a single type of vegetation. The species with the highest number of occurrences by type of vegetation were N. apicalis (48 records), Neoponera concava (Mackay & Mackay, 2010) (52), Neoponera bucki (Borgmeier, 1927) (18), and Neoponera inversa (Smith, 1858) (14), all for the vegetation VS-AA.D (Table 2). The types of vegetation that presented a higher number of species of Neoponera were: VS-AA.D (19 spp.), VS-AA.C (10) VS-AA.F (7) and SO (6). The number of species in the other types of vegetation varied from one to three (Fig 2). Three vegetation types presented only a single species: VS- AA.A and Db (N. apicalis) and AA-SN (N. villosa) (Fig 2). PS Silva, EBA Koch , A Arnhold, ES Araujo, JHC Delabie, CSF Mariano – Diversity of the Neoponera in the North of the Brazilian Atlantic Forest346 When we test the similarity between vegetation types according to the presence/absence of Neoponera species, we observed that Db and VS-AA.A share the same assemblages (Fig 3). In general, the other types of vegetation present low similarity between them (less than 50%), especially VS- AA.D and VS-AA.C (about 40% of similarity). It is worth noting that the assemblages found in vegetation types Pf and AA.P (38% similarity between them) have low similarity with the other vegetation types (Fig 3). The relative superposition of certain vegetation types with some Neoponera is observed on NMDS graph (Fig 4). The grouping with the species found in the same vegetation types is evident, such as N. globularia, N. goeldii, Neoponera laevigata (Smith, 1858), Neoponera schultzi (Mackay & Mackay, 2010), Neoponera venusta Forel, 1912 occurring in VS-AA.D. The same occurs for N. fiebrigi, Neoponera marginata (Roger, 1861) and Neoponera moesta (Mayr, 1870) in VS-AA.C, as well as for Neoponera carinulata (Roger, 1861) in Pm. The greatest distance was observed for Neoponera Species Vegetation types AA.P AA.SN AA.SO Db Pf Pm SO VS-AA.A VS-AA.C VS-AA.D VS-AA.F Neoponera apicalis (Latreille, 1802) 1 1 1 1 2 38 4 Neoponera bactronica (Fernandes, De Oliveira & Delabie, 2014) 1 1 5 Neoponera bucki (Borgmeier, 1927) 1 16 1 Neoponera carinulata (Roger, 1861) 1 4 Neoponera cavinodis Mann, 1916 1 1 Neoponera concava (Mackay, W.P. & Mackay, E.E., 2010) 5 42 5 Neoponera crenata (Roger, 1861) 1 2 Neoponera curvinodis (Forel, 1899) 1 1 2 2 3 Neoponera fiebrigi Forel, 1912 2 Neoponera globularia (Mackay, W.P. & Mackay, E.E., 2010) 2 Neoponera goeldii Forel, 1912 1 Neoponera inversa (Smith, F., 1858) 2 3 9 Neoponera laevigata (Smith, F., 1858) 2 Neoponera magnifica (Borgmeier, 1929) 1 1 1 Neoponera marginata (Roger, 1861) 1 Neoponera moesta Mayr, 1870 2 Neoponera obscuricornis (Emery, 1890) 1 Neoponera schultzi (Mackay, W.P. & Mackay, E.E., 2010) 3 Neoponera striatinodis Emery, 1890 1 1 Neoponera unidentata Mayr, 1862 1 1 2 4 Neoponera venusta Forel, 1912 3 Neoponera verenae (Forel, 1922) 1 5 Neoponera villosa (Fabricius, 1804) 1 1 2 4 1 Table 2. List of Neoponera species recorded in different vegetation types in the Brazilian Atlantic Forest biome. The values represent the number of records. Fig 2. Neoponera diversity according to types of vegetation of the Brazilian Atlantic Forest biome. The codes on the X axis correspond to the types of vegetation listed in Table 1. Sociobiology 67(3): 343-357 (September, 2020) 347 obscuricornis (Emery, 1890), an exclusive species of AA.SO (Fig 4). Some species, although found in more than a single type of vegetation, were more frequent with one or two certain types, for example, Neoponera cavinodis Mann, 1916 with N. villosa, Neoponera magnifica (Borgmeier, 1929) and Neoponera bactronica (Fernandes, Oliveira & Delabie, 2014) with VS-AA.C and AA.SN. In turn, Neoponera verenae Forel, 1922, Neoponera striatinodis (Emery, 1890) and Neoponera crenata (Roger, 1861) group together more with VS-AA.F and AA.P (Fig 4). Fig 3. Dendrogram of similarity (Jaccard’s distance) comparing the vegetation types of the Atlantic Forest biome, according to the assemblages of species of the genus Neoponera. Fig 4. Non-Metric Multidimensional Scaling (NMDS) of vegetation types in the Brazilian Atlantic Forest based on Neoponera frequency of occurrence. Circles filled with the same color = exclusive occurrence in the type of vegetation with equivalent color. PS Silva, EBA Koch , A Arnhold, ES Araujo, JHC Delabie, CSF Mariano – Diversity of the Neoponera in the North of the Brazilian Atlantic Forest348 Species Code Neoponera apicalis 2, 7, 10, 11, 12, 14, 15, 19, 24, 25, 28, 29, 35, 38, 39, 42, 43, 46, 47, 48, 57, 59, 64, 66, 67, 72, 73, 74, 76, 77, 78, 79, 82, 88 Neoponera bactronica 5, 24, 32, 41, 61, 63, 92 Neoponera bucki 1, 3, 7, 10, 22, 26, 27, 28, 37, 50, 55, 74, 76, 80, 83 Neoponera carinulata 10, 29, 64, 78, 83 Neoponera cavinodis 13, 29 Neoponera concava 1, 2, 3, 9, 10, 12, 13, 15, 23, 25, 26, 29, 33, 37, 40, 46, 55, 56, 66, 68, 71, 75, 77, 78 Neoponera crenata 4, 31, 85 Neoponera curvinodis 18, 24, 29, 34, 44, 49, 81, 90, 91 Neoponera fiebrigi* 8, 81 Neoponera globularia** 6, 32 Neoponera goeldii 33 Neoponera inversa 9, 13, 21, 24, 26, 29, 37, 53, 55, 68, 77, 78 Neoponera laevigata 29, 78 Neoponera magnifica 4, 17, 81 Neoponera marginata 62 Neoponera moesta 4, 81 Neoponera obscuricornis 7 Neoponera schultzi 43, 51 Neoponera striatinodis 45, 86 Neoponera unidentata 7, 20, 23, 54, 65, 69, 70, 77 Neoponera venusta 29, 77, 83 Neoponera verenae 16, 24, 46, 52, 80, 90 Neoponera villosa 30, 36, 46, 50, 58, 83, 84, 87, 89 Table 4. List of Neoponera species reported from the study area. The codes of localities follow Table 3. (*) new record for Brazil, (**) new record for Atlantic Forest. Discussion So far 35 species were recorded for the Neoponera genus in Brazil (Feitosa, 2015). With this survey and insertion of new records and occurrences, this number can be updated to 36 species, 23 of which are found in the northern part of the Atlantic Forest biome. Thus, N. fiebrigi, previously registered only in Paraguay, Argentina (Mackay & Mackay 2010) and Panama (Schmidt & Schattuck, 2014), constitutes a new record for Brazil and the Atlantic Forest. We observed that the occurrence of many species of the genus Neoponera in the Brazilian Atlantic Forest is related to dense vegetation, such like secondary forests or vegetation at climax. These environments offer a higher number of records and species richness than opened environments. The same was observed by Campiolo et al. (2015) in a study that points out the Ponerinae preferences for forest-type habitats with dense vegetation cover. These characteristics results from the particular habitat requirements of each species of the genus. For example, N. apicalis, N. villosa, N. carinulata, N. crenata, N. curvinodis and N. inversa are arboreal (Mackay & Mackay, 2010). Some species can also nest in undergrowth, trunks and hollow branches fallen on the ground, where moisture and shade conditions are suitable, such as for example, N. verenae (Delabie et al., 2008, Araujo et al., 2019). The species recorded in a higher number of vegetation types, N. apicalis, is known to occur in both primary and secondary moist forests (Mackay & Mackay, 2010). However, Delabie et al. (2008) suggest that the apicalis group of Neoponera (sensu Wild, 2005) is in fact a complex of at least nine cryptic species, including N. apicalis, N. obscuricornis and N. verenae (Ferreira et al., 2010), which could explain the range of habitats chosen by the ants. The type of vegetation with the higher diversity of Neoponera was the Ombrophilous Dense Forest. This kind of forests presents moist soil covered by a thick layer of leaf-litter (Pereira, 2009). Because it uses to be more heterogeneous in diversified environments, the leaf-litter offers certainly a range of niches and, as a result, a well-diversified community of soil fauna; in addition, we can expect that the greater the amount of leaf-litter, the greater the availability of resources, such as food and nesting sites (Santos et al., 2006; Ferreira et al., 2018). However, the seasonal deciduous and semideciduous forests, which occur in places with 2 to 5 months of dry season (Colombo & Joly, 2010), also showed a relatively high species richness. Lattke (2003) had already pointed out that some Neoponera species are able to colonize dry forest areas with a marked rainfall regime. Our observations point out some particularities such as the occurrence of N. goeldii in the Atlantic Forest biome, with an extremely reduced population living isolated in the Península de Maraú, Bahia (J.H.C. Delabie, personal communication, December, 2019), while this species is common in Amazon (Mackay & Mackay, 2010). In fact, there are numerous physiographic, floristic, fauna and climatic similarities between the Atlantic Forest biome, in the coastal strip which runs from the south of the state of Bahia to the north of the state of Espírito Santo (“Central Corridor of the Mata Atlântica”), and the Amazon Forest (Pereira, 2009). According to Joly et al. (1999), the occurrence of species typical of the Amazon region in the Atlantic Forest of southern Bahia confirms that these biomes have undergone expansion and retraction processes during the Pleistocene climatic fluctuations. In other words, at one or several intervals in this period, transition bridges occurred allowing the arrival of typically Amazonian species in the Atlantic Forest biome (Ab’Saber, 2003; Costa, 2003). The ant species Neoponera globularia, N. goeldii, N. laevigata, N. schultzi and N. venusta follow the same patterns of geographical distribution in the Atlantic Forest, occupying exclusively areas of Ombrophilous Dense Forest. The same occurs with N fiebrigi, N. marginata and N. moesta, in the Seasonal Deciduous Forest. Neoponera schultzi and N. venusta, Sociobiology 67(3): 343-357 (September, 2020) 349 State County Coordinate Vegetation type Code Alagoas Quebrângulo 9.3167S, 36.4667W VS-AA.F 1 9.322S, 36.476W VS-AA.F Bahia Arataca 15.2195S, 39.4243W VS-AA.D 2 15.2803S, 39.3919W VS-AA.D Aurelino Leal 14.3311S, 39.3589W VS-AA.D 3 14.3679S, 39.4657W VS-AA.D 14.3828S, 39.4156W VS-AA.D Barra do Choça 14.8081S, 40.5897W VS-AA.D 4 14.8333S, 40.5536W VS-AA.D 14.8659S, 40.5779W VS-AA.D Barra do Rocha 14.2068S, 39.6031W VS-AA.C 5 Barro Preto 14.8097S, 39.4233W VS-AA.D 6 Belmonte 16.0951S, 39.2745W VS-AA.D 7 16.1333S, 39.25W AA.SO 16.1S, 39.2833W AA.SO Boa Nova 14.3656S, 40.2075W AA.SO 8 Buerarema 14.6333S, 39.8833W VS-AA.D 9 14.7583S, 39.2411W VS-AA.C 15.0144S, 39.2999W VS-AA.F Camacan 15.3833S, 39.55W VS-AA.D 10 15.4011S, 39.5664W VS-AA.D 15.4167S, 39.4833W VS-AA.D 15.4201S, 39.4964W VS-AA.D 15.4573S, 39.4516W VS-AA.D 15.5006S, 39.2206W VS-AA.D 15.5036S, 39.5156W VS-AA.D 15.6011S, 39.5211W VS-AA.D Camaçari 12.6972S, 38.3332W VS-AA.D 11 Camamu 13.9443S, 39.1046W VS-AA.D 12 14.0142S, 39.1667W VS-AA.D 14.1369S, 39.2775W VS-AA.D Canavieiras 14.4094S, 39.0337W VS-AA.C 13 15.6752S, 38.9969W VS-AA.D 15.6775S, 39.9783W VS-AA.D Caravelas 17.6794S, 39.6105W Pm 14 Cruz das Almas 12.6736S, 39.1017W VS-AA.F 15 12.6799S, 39.0891W VS-AA.D Ecoporanga 18.3709S, 40.8329W VS-AA.F 16 Esplanada 12.1144S, 37.6969W VS-AA.D 17 Estância 11.2687S, 37.4385W SO 18 Eunápolis 16.372S, 39.5825W VS-AA.F 19 Firmino Alves 14.9247S, 39.9196W VS-AA.D 20 Floresta Azul 14.8761S, 39.6931W VS-AA.C 21 Gongogi 14.2742S, 39.4842W VS-AA.D 22 15.2742S, 39.4842W VS-AA.D Governador Lomanto Junior 14.8158S, 39.4839W VS-AA.D 23 Guaratinga 16.5625S, 39.899W VS-AA.D 24 16.5867S, 39.7753W VS-AA.D 16.5867S, 39.7808W VS-AA.D 16.6286S, 39.7983W VS-AA.D Ibicaraí 14.8583S, 39.5918W VS-AA.D 25 14.9042S, 39.4836W VS-AA.F Ibirapitanga 14.0709S, 39.4243W VS-AA.D 26 Table 3. Information from the sampled sites. The abbreviations vegetation type follows those reported in Table 1. PS Silva, EBA Koch , A Arnhold, ES Araujo, JHC Delabie, CSF Mariano – Diversity of the Neoponera in the North of the Brazilian Atlantic Forest350 14.1942S, 39.4231W VS-AA.F Igrapiúna 13.8448S, 39.1127W VS-AA.D 27 Iguaí 14.6416S, 39.198W VS-AA.D 28 14.6439S, 40.1533W VS-AA.D Ilhéus 14.255S, 39.2314W VS-AA.D 29 14.4274S, 39.5705W VS-AA.D 14.5006S, 39.0676W VS-AA.D 14.5294S, 39.0661W VS-AA.D 14.5533S, 39.4275W VS-AA.D 14.6207S, 39.1397W VS-AA.D 14.6808S, 39.2567W VS-AA.D 14.6935S, 39.0966W VS-AA.D 14.7422S, 39.1056W VS-AA.D 14.755S, 39.2314W VS-AA.D 14.7561S, 39.2314W VS-AA.D 14.7813S, 39.0795W VS-AA.D 14.7935S, 39.0774W VS-AA.D 14.7961S, 39.211W VS-AA.D 14.7972S, 39.0798W VS-AA.D 14.798S, 39.1722W VS-AA.D 14.8239S, 39.1W VS-AA.D 14.9197S, 39.1997W VS-AA.D 14.9504S, 39.0631W VS-AA.F 14.9903S, 39.0583W VS-AA.F Ipiaú 14.1349S, 39.7386W VS-AA.D 30 Itabira 19.7501S, 43.2323W VS-AA.D 31 Itabuna 14.7772S, 39.3674W VS-AA.D 32 14.78S, 39.2784W VS-AA.D Itacaré 14.2794S, 39.4852W VS-AA.F 33 14.3092S, 39.0194W VS-AA.D 14.3568S, 39.1752W VS-AA.F Itagi 14.2329S, 39.8579W VS-AA.C 34 Itagibá 14.233S, 39.8579W VS-AA.D 35 Itaju do Colônia 15.1652S, 39.7756W VS-AA.D 36 Itajuípe 14.6757S, 39.3725W VS-AA.D 37 14.7033S, 39.4981W VS-AA.D Itamaraju 16.8675S, 39.9175W VS-AA.D 38 16.9167S, 39.2667W VS-AA.D 16.9917S, 39.4553W VS-AA.D 17.0382S, 39.5389W VS-AA.D Itamari 13.7273S, 39.6312W VS-AA.D 39 Itambé 14.6519S, 40.3397W VS-AA.F 40 Itapebi 15.9693S, 39.5321W VS-AA.D 41 Itapetinga 15.2461S, 39.9403W VS-AA.D 42 Itapitanga 14.4228S, 39.565W VS-AA.D 43 14.4319S, 39.565W VS-AA.F 14.5108S, 39.6105W VS-AA.D Itaquara 13.4537S, 39.8785W VS-AA.D 44 Itati 13.9572S, 40.0308W VS-AA.C 45 Itororó 14.9586S, 39.0643W VS-AA.C 46 14.9586S, 40.0425W VS-AA.F 14.9614S, 40.0425W VS-AA.D 14.9778S, 40.0364W VS-AA.D Table 3. Information from the sampled sites. The abbreviations vegetation type follows those reported in Table 1. (Continuation) State County Coordinate Vegetation type Code Sociobiology 67(3): 343-357 (September, 2020) 351 15.1185S, 40.0661W VS-AA.D 15.4744S, 40.0503W VS-AA.D Ituberá 13.736S, 39.1466W VS-AA.C 47 Jaguaripe 13.1956S, 39.0239W VS-AA.D 48 Jequié 13.8591S, 40.0838W AA.SN 49 Jiquiriçá 13.3193S, 39.5899W VS-AA.D 50 Jussari 15.1406S, 39.5247W VS-AA.D 51 15.1535S, 39.5167W AA.P Laje 13.1761S, 39.3414W Pm 52 Lauro de Freitas 12.8642S, 38.2697W VS-AA.D 53 Macarani 15.5303S, 40.3905W VS-AA.D 54 Maraú 14.1503S, 39.1127W SO 55 Mascote 13.7189S, 39.41W VS-AA.D 56 15.5636S, 39.3094W VS-AA.D 15.5772S, 39.41W SO 15.6969S, 39.445W VS-AA.D 15.7344S, 39.3844W VS-AA.D Mucuri 18.0825S, 39.8909W VS-AA.D 57 Mutuípe 13.2288S, 39.5047W VS-AA.D 58 Nazaré 13.0399S, 39.0034W VS-AA.D 59 Nilo Peçanha 13.6494S, 39.2103W VS-AA.D 60 Pau Brasil 15.4897S, 39.6931W VS-AA.D 61 Planalto 14.6991S, 40.4772W VS-AA.C 62 Poções 14.6147S, 40.3411W VS-AA.C 63 Porto Seguro 15.6694S, 38.9942W Pm 64 16.3883S, 39.1814W Db 16.4444S, 39.0984W VS-AA.D Pratas 15.1956S, 39.4453W VS-AA.D 65 Presidente Tancredo Neves 13.3911S, 39.3183W VS-AA.D 66 Salvador 12.9292S, 38.5014W VS-AA.D 67 12.9722S, 38.5014W VS-AA.D Santa Luzia 15.3897S, 39.305W VS-AA.D 68 15.4233S, 39.2791W VS-AA.D Santo Amaro 12.5465S, 38.7111W VS-AA.D 69 São Francisco do Conde 12.6655S, 38.59W VS-AA.D 70 São José da Vitória 15.0517S, 39.3133W VS-AA.D 71 15.0617S, 39.3442W VS-AA.D Simões Filho 12.7701S, 38.4219W VS-AA.D 72 12.7717S, 39.5219W VS-AA.C Teixeira de Freitas 17.54S, 39.7422W VS-AA.D 73 Ubaíra 13.1192S, 39.6594W VS-AA.D 74 Ubaitaba 14.2503S, 39.3214W VS-AA.D 75 14.2503S, 39.3242W VS-AA.D 14.3089S, 39.3226W VS-AA.D 14.4247S, 39.3233W VS-AA.D Ubatã 14.0699S, 39.5278W VS-AA.D 76 14.2256S, 39.4656W VS-AA.D Una 15.0892S, 39.295W VS-AA.D 77 15.177S, 39.1055W VS-AA.D 15.1844S, 39.0546W SO 15.2028S, 39.0531W SO 15.2091S, 39.196W VS-AA.D 15.2336S, 39.1844W VS-AA.D Table 3. Information from the sampled sites. The abbreviations vegetation type follows those reported in Table 1. (Continuation) State County Coordinate Vegetation type Code PS Silva, EBA Koch , A Arnhold, ES Araujo, JHC Delabie, CSF Mariano – Diversity of the Neoponera in the North of the Brazilian Atlantic Forest352 15.2617S, 39.1533W SO 15.2792S, 39.0414W SO 15.2792S, 39.0914W SO 15.2795S, 39.0769W SO 15.2808S, 39.089W SO 15.2858S, 39.1175W SO 15.3897S, 39.1975W SO Uruçuca 14.4514S, 39.0478W VS-AA.D 78 14.4649S, 39.0532W VS-AA.D 14.465S, 39.0567W VS-AA.D 14.5125S, 39.2003W VS-AA.D 14.5155S, 39.2999W VS-AA.D 14.5653S, 39.2739W VS-AA.D 14.6S, 39.2667W VS-AA.D Valença 13.3422S, 39.1953W VS-AA.D 79 13.3709S, 39.0759W VS-AA.D Vera Cruz 13.0229S, 38.7159W VS-AA.D 80 Vitória da Conquista 14.7936S, 40.7231W VS-AA.C 81 14.8411S, 40.8389W VS-AA.C 14.8619S, 40.8445W VS-AA.C 14.8892S, 40.8034W VS-AA.D 15.0392S, 40.9097W VS-AA.C Wenceslau Guimarães 13.5539S, 39.7019W VS-AA.D 82 13.5832S, 39.6931W VS-AA.D Espírito Santo Linhares 19.1514S, 40.0708W VS-AA.C 83 19.15S, 40.05W VS-AA.D 19.3947S, 40.0653W VS-AA.D 19.6455S, 39.855W VS-AA.D São Mateus 18.7002S, 40.0633W VS-AA.D 84 Minas Gerais Guanhães 18.7667S, 42.9167W VS-AA.D 85 Timóteo 19.5816S, 42.6475W VS-AA.F 86 Paraíba João Pessoa 7.1195S, 34.855W VS-AA.D 87 Pernambuco São Lourenço da Mata 7.9S, 35.0833W VS-AA.A 88 Rio Grande do Norte Parnamirim 5.9072S, 35.1984W Pm 89 Sergipe Laranjeiras 10.8122S, 37.1711W VS-AA.D 90 Santa Luzia do Itanhy 11.419S, 37.4284W AA.P 91 São Cristóvão 10.9238S, 37.1019W Pf 92 Table 3. Information from the sampled sites. The abbreviations vegetation type follows those reported in Table 1. (Continuation) together with N. concava, which likewise predominates in dense forest, are endemic from Brazil (Mackay & Mackay, 2010). In the Atlantic Forest, four areas of endemism are reported (Silva et al., 2004; Sigrist & Carvalho, 2008; Peres et al., 2020), and three of which are considered in our area of study: i) Central Bahia, ii) Central Corridor of the Atlantic Forest, and iii) Pernambuco. These are biogeographic regions supported by several taxonomic groups, being a valid representation of regionalization for studies and conservation of biodiversity (Peres et al., 2020). The Neoponera data obtained in our study basically comprise records for the Central Corridor of the Atlantic Forest, an area of endemism that extends from the south of the state of Bahia to the north of Espírito Santo, with N. schultzi being an endemic species of that region. Thus, we understand that the occurrences of ants reinforce the importance of the conservation of these ants in the Central Corridor of the Atlantic Forest. Some studies carried out in the Atlantic Forest (Santos et al., 2006; Silva et al., 2007) have shown that ant communities use to be affected by anthropogenic disturbances. It is expected that in areas where landscape fragmentation is dominant and land use is excessive and disordered, many species will not be able to face climatic changes and migrate at a sufficient rate to maintain their population (Pearson & Dawson, 2003). State County Coordinate Vegetation type Code Sociobiology 67(3): 343-357 (September, 2020) 353 Table 5. References of the data sources used in the study. Species State References Neoponera apicalis Bahia 1, 3, 9, 11, 14, 19, 22, 23, 25, 26, 31, 34 Pernambuco 33 Neoponera bactronica Bahia 1, 5, 12, 13, 15, 35 Sergipe 1, 13 Neoponera bucki Alagoas 10, 36 Bahia 1, 34 Espírito Santo 2, 36 Neoponera carinulata Bahia 1, 23, 25, 34 Espírito Santo 1 Neoponera cavinodis Bahia 1, 6, 34 Neoponera concava Alagoas 1 Bahia 1, 6, 26, 28, 32, 34 Espírito Santo 2 Sergipe 1 Neoponera crenata Alagoas 10 Bahia 1, 2, 5, 7, 15, 23, 24, 25, 27, 34 Minas Gerais 1 Neoponera curvinodis Bahia 1, 3, 7, 13, 25, 27, 34, 35 Sergipe 1, 13 Neoponera fiebrigi Bahia 1 Neoponera globularia Bahia 1 Neoponera goeldii Bahia 1, 18, 21 Neoponera inversa Alagoas 10 Bahia 1, 3, 5, 7, 8, 10, 13, 15, 17, 20, 25, 35, 37 Espírito Santo 13 Neoponera laevigata Bahia 1, 28 Neoponera magnifica Bahia 1, 15, 26 Neoponera marginata Bahia 1, 34 Neoponera moesta Bahia 1, 7, 8, 15, 24, 25, 34 Neoponera obscuricornis Bahia 1, 31 Neoponera schultzi Bahia 1, 34 Neoponera striatinodis Bahia 1, 19, 34 Minas Gerais 1 Neoponera unidentata Bahia 1, 5, 7, 11, 14, 15, 21, 22, 23, 25 Neoponera venusta Alagoas 30 Bahia 1, 4, 9, 11, 14, 21, 25, 28, 30, 31 Espírito Santo 1, 2, 11, 36 Neoponera verenae Bahia 1, 3, 11, 19, 25, 26, 30, 34 Espírito Santo 1, 2 Sergipe 1, 16 Neoponera villosa Bahia 1, 5, 7, 8, 9, 12, 13, 14, 20, 23, 25, 29, 31, 34, 35 Espírito Santo 1, 13, 35 Paraíba 1, 13 Rio Grande do Norte 1 References corresponding to the codes are available in the annex. Nevertheless, we observed here that the vegetation types with the higher diversity of Neoponera correspond to landscapes with secondary forests in association with agriculture. This has important implications for the future of the biome conservation, since it suggests that secondary forests conserve an important pool of species that, face to the climatic changes, will contribute to the genus resilience in the region. Since ants are organisms faithful for a specific type of habitat, and may allow inferences about the rehabilitation of an area (Schmidt et al., 2013), the occurrence of some Neoponera in more than a single type of vegetation, like N. apicalis, N. villosa, N. bucki, N. curvinodis, Neoponera unidentata (Mayr, 1862) and N. inversa (Fig 4), strongly suggest the connectivity between vegetation types. Thus, the conservation of forest PS Silva, EBA Koch , A Arnhold, ES Araujo, JHC Delabie, CSF Mariano – Diversity of the Neoponera in the North of the Brazilian Atlantic Forest354 remnants and even some kinds of agriculture which maintains a forest structure (cocoa agroforestry, for example) can be decisive for the conservation of this group of ants (Delabie et al., 2007; Campiolo et al., 2015). Further studies should evaluate the relationships between the occurrence and distribution of the species of Neoponera and the habitat conservation including also the other areas covered by the biome. Acknowledgments This study is part of the requirements for the obtention of the first author’s Master Degree. Thanks are due to the Programa de Pós-Graduação em Zoologia of State University of Santa Cruz (UESC). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. PSS acknowledges her study grant from CAPES; JHCD and CSFM thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for their research grants. Author Contributions All authors conceived this study, PSS and EA conducted performed research/acquisition of data. E.B.A.K performed the data analyses. All authors contributed to the writing, discussed the results and commented on the manuscript. References Ab’Sáber, A. N. (2003). Os domínios de natureza no Brasil: potencialidades paisagísticas. 3. ed. São Paulo: Ateliê Editorial. Antmaps.org. (2018). Available from https://antmaps.org (accessed date: July-September 2018). AntWeb.org. 2018. Available from https://www.antweb.org (accessed date: July-September 2018). Araujo, E.S., Koch, E.B.A., Delabie, J.H.C., Zeppelini, D., DaRocha, W.D., Castaño-Meneses, G. & Mariano, C.S.F. (2019): Diversity of commensals within nests of ants of the genus Neoponera (Hymenoptera: Formicidae: Ponerinae) in Bahia, Brazil. Annales de la Société entomologique de France (N.S.), 55: 291-299. doi: 10.1080/00379271.2019.1629837 Azevedo-Santos, V.M., Castilho, M.C.A., Pelicice, F.M., Vitule, J.R.S., Garcia, D.A.Z. & Esteves, F.A. (2016). A dura lição com a tragédia do rio Doce. Boletim AB Limno, 42: 09- 13. doi: 10.13140/RG.2.1.1270.5688 Campiolo, S., Rosario, N. A., Strenzel, G.M.R., Feitosa, R. & Delabie, J.H.C. (2015). Conservação de Poneromorfas no Brasil. In: Delabie, J.H.C., Feitosa, R., Serrão, J. E., Mariano, C.S.F. & Majer, J.D. (org.), As formigas Poneromorfas do Brasil. (pp. 447-462). Editus, Ilhéus–BA, Brasil. Carnaval, A.C. & Moritz, C. (2008). Historical climate modelling predicts patters of current biodiversity in the Brazilian Atlantic Forest. Journal of Biogeography, 35: 187-1201. doi: 10.1111/j. 1365-2699.2007.01870.x Colombo, A.F. & Joly, C.A. (2010). Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Brazilian Journal of Biology, 70: 697-708. doi: 10.1590/S1519- 69842010000400002 Costa, L.P. (2003). The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. Journal of Biogeography, 30: 71-86. doi: 10.1046/j.1365-2699.2003.00792.x Dejean, A., Labrière, N., Touchard, A., Petitclerc, F. & Roux, O. (2014). Nesting habits shape feeding preferences and predatory behavior in an ant genus. Naturwissenschaften, 101: 323–330. doi: 10.1007/s00114-014-1159-1 Delabie, J.H.C., Jahyny, B., Nascimento, I.C., Mariano, C.S.F., Lacau, S., Campiolo, S., Philpott, S.M. & Leponce, M. (2007). Contribution of cocoa plantations to the conservation of native ants (Insecta: Hymenoptera: Formicidae) with a special emphasis on the Atlantic Forest fauna of southern Bahia, Brazil. Biodiversity and Conservation, 16: 2359-2384. doi: doi: 10.1007/s10531-007-9190-6 Delabie, J.H.C., Mariano, C.S.F., Mendes, L.F., Pompolo, S.G. & Fresneau, D. (2008). Problemas apontados por estudos morfológicos, ecológicos e citogenéticos no gênero Pachycondyla na região neotropical: o caso do complexo apicalis. In: Vilela, E.F., Santos, I.A., Schoereder, J.H., Serrão, J.E., Campos, L.A.O. & Lino Neto, J. (Org.), Insetos Sociais da Biologia à Aplicação (pp. 197-222). Viçosa, Ed. UFV. Feitosa, R. (2015). Lista das formigas poneromorfas do Brasil. In: Delabie, J.H.C., Feitosa, R., Serrão, J.E., Mariano, C.S.F. & Majer, J. As formigas poneromorfas do Brasil (pp. 95-101). Editus, Ilhéus - BA, Brasil. Ferreira, R.S., Poteaux, C., Delabie, J.H.C., Fresneau, D. & Rybak, F. (2010). Stridulations reveal cryptic speciation in Neotropical sympatric ants. Plos One, 5: e15363. doi: 10.1371/journal.pone.0015363 Ferreira, C.R., Correia, M.E.F., Camara, R., Resende, A.S., Anjos, L.H.C. & Pereira, M.G. (2018). Soil fauna changes across Atlantic Forest succession. Comunicata Scientiae, 9: 162-174. doi: 10.14295/CS.v9i2.2388 Folgarait, P. J. (1998). Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity Conservation, 7: 1221-1244. doi: 10.1023/A:1008891901953 Guénard, B., Weiser, M.D. & Dunn, R.R. (2012). Global models of ant diversity suggest regions where new discoveries are most likely are under disproportionate deforestation threat. PNAS, 109: 7368-7373. doi: 10.1073/pnas.1113867109 Instituto Brasileiro de geografia e Estatística (IBGE) (2004a). Mapa de Biomas do Brasil, Primeira Aproximação. Available Sociobiology 67(3): 343-357 (September, 2020) 355 online at http://www.ibge.gov.br (accessed date: December 2018). Instituto Brasileiro de geografia e Estatística (IBGE) (2004b). Mapa de Vegetação do Brasil, Terceira Edição. Available online at http://www.ibge.gov.br (accessed date: December 2018). Instituto Nacional de Pesquisas Espaciais (INPE) (2018). Available online at http://www.inpe.br (accessed date: August- September 2018). Joly, C.A., Aidar, M.P.M., Klink, C.A., MCgrath, D.G., Moreira, A.G., Moutinho, P., Nepstad, D.C., Oliveira, A.A., Pott, A., Rodal, M.J.N. & Sampaio, E.V.S.B. (1999). Evolution of the Brazilian phytogeography classification systems: implications for biodiversity conservation. Ciência e Cultura, 51: 331-348. Jones, C.G., Lawton, J.H. & Shachak, M. (1997). Positive and negative efects of organisms as physical ecosystem engineers. Ecology, 78: 1946-1957. doi: 10.2307/2265935 Klimes, P., Idigel, C., Rimandai, M., Fayle, T.M., Janda, M., Weiblen, G.D. & Novotny, V. (2012). Why are there more arboreal ant species in primary than in secondary tropical forests? Journal of Animal Ecology, 81: 1103-1112. doi: 10.11 11/j.1365-2656.2012.02002.x Lattke, J.E. (2003). Subfamília Ponerinae. In: Fernandes, F. (ed). Introduccion a las Hormigas de la Region Neotropical (pp. 261-276). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colômbia. XXVI. Lattke, J.E. (2015). Estado da arte sobre a taxonomia e filogenia de Ponerinae do Brasil. In: Delabie, J.H.C., Feitosa, R., Serrão, J.E., Mariano, C.S.F. & Majer, J. As formigas poneromorfas do Brasil (pp. 55-73). Editus, Ilhéus - BA, Brasil. Mackay, W.P. & Mackay, E.E. (2010). The Systematics and Biology of the New World Ants of the Genus Pachycondyla (Hym.: Formicidae). Edwin Mellon Press, Lewiston, 2010. Mittermeier, R.A., Gil, R.P., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreux, J. & Fonseca, G.A.B. (2005). Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions, 2. ed. University of Chicago Press, Boston. Moreau, C.S., Bell, C.D., Vila, R., Archibald, S.B. & Pierce, N.E. (2006). Phylogeny of the ants: diversification in the age of angiosperms. Science, 312: 101-104. doi: 10.1126/ science.1124891 Morellato, L.P.C. & Haddad, C.F.B. (2000). Introduction: The Brazilian Atlantic Forest. Biotropica, 32(4b): 786-792. doi: 10.1111/j.1744-7429.2000.tb00618.x Ministério do Meio Ambiente (MMA) (2018). Available online at https://www.mma.gov.br (accessed date: August- September 2018). Myers, N., Mittermeier, R.A., Mittermeier, C.G., Fonseca, G.A.B. & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403: 853-858. doi: 10.1038/35002501 Papes, M. & Gaubert, P. (2007). Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Diversity and Distributions, 13: 890- 902. doi: 10.1111/j.1472-4642.2007.00392.x Pearson, R.G. & Dawson, T.E. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12: 361-371. doi: 10.1046/j.1466-822X.2003.00042.x Pereira, A.B. (2009). Mata Atlântica: Uma abordagem geográfica. Nucleus, 6: 27-52. doi: 10.3738/1982.2278.152 Peres, E.A., Pinto-da-Rocha, R., Lohmann, L.G., Michelangeli, F.A., Miyaki, C.Y., Carnaval, A. C. (2020). Patterns of Species and Lineage Diversity in the Atlantic Rainforest of Brazil. In: Rull V., Carnaval A. (eds) Neotropical Diversification: Patterns and Processes. Fascinating Life Sciences. Springer, Cham. doi: 10.1007/978-3-030-31167-416 Pires, A.P.F., Rezende, C.L., Assad, E.D., Loyola, R. & Scarano, F.R. (2017). Forest restoration can increase the Rio Doce watershed resilience. Perspectives in Ecology and Conservation, 15: 187-193. doi: 10.1016/j.pecon.2017.08.003 R Development Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available in: http:// www.project.org/ Ribas, C.R., Schmidt, F.A., Solar, R.R.C., Campos, R.B.F., Valentim, C.L. & Schoereder, J. H. (2012). Ants as indicators in Brazil: A review with suggestions to improve the use of ants in environmental monitoring programs. Restoration Ecology, 20: 712-720. doi: 10.1111/j.1526-100X.2011.00831.x Ribeiro, M.C., Metzger, J.P., Martensen, A.C., Ponzoni, F.J. & Hirota, M.M. (2009). The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142: 1141-1153. doi: 10.1016/j.biocon.2009.02.021 Santos, M., Louzada, J.N.C., Dias, N., Zanetti. R., Delabie, J.H.C. & Nascimento, I.C. (2006). Riqueza de formigas (Hymenoptera, Formicidae) da serapilheira em fragmentos de floresta semidecídua da Mata Atlântica na região do Alto do Rio Grande, MG, Brasil. Iheringia, Sér. Zool., Porto Alegre 96: 95-101. doi: 10.1590/S0073-47212006000100017 Schmidt, F.A., Ribas, C.R. & Schoereder, J.H. (2013). How predictable is the response of ant assemblages to natural forest recovery? Implications of their use as bioindicators. Ecological Indicators, 24: 158-166. doi: 10.1016/j.ecolind. 2012.05.031 Schmidt, C.A. & Shattuck, S.O. (2014). The higher classification of the ant subfamily Ponerinae (Hymenoptera: Formicidae), with a review of ponerine ecology and behavior. Zootaxa. 3817: 1-242. doi: 10.11646/zootaxa.3817.1.1 PS Silva, EBA Koch , A Arnhold, ES Araujo, JHC Delabie, CSF Mariano – Diversity of the Neoponera in the North of the Brazilian Atlantic Forest356 1. CPDC 2. Antmaps/Antweb 3. Araújo, E.S., Koch, E.B.A., Delabie, J.H.C., Zeppelini, D., Darocha, W.D., Castaño-Meneses, G. & Mariano, C.S.F. (2019). Diversity of commensals within nests of ants of the genus Neoponera (Hymenoptera: Formicidae: Ponerinae) in Bahia, Brazil. Annales de la Société entomologique de France, 55 (4): 291-299. doi: 10.1080/00379271.2019.1629837 4. Campiolo, S. & Delabie, J. H. C. (2000). Caractérisation de la myrmécofaune de la litière de la Forêt Atlantique du sud de Bahia - Brésil. Actes des Colloques Insectes Sociaux. 13: 65-70. 5. Cobb, M., Watkins, K., Silva, E. N., Nascimento, I. C. & Delabie, J. H. C.(2006). An exploratory study on the use of bamboo pieces for trapping entire colonies of arboreal ants. Sociobiology 47 (1): 215-223. 6. Conceição, E. S., Delabie, J. H. C., Costa Neto, A. O., Moura, J. I. L. (2009). Atividade de formigas nas inflorescências do coqueiro no sudeste baiano, com enfoque sobre o período entre a antese e a formação do fruto. Agrotrópica 21(2): 113-122. 7. Conceição, E.S., Della Lucia, T.M.C., Costa-Neto, A.O., Araújo, E.S., Koch, E.B.A. & Delabie, J.H.C. (2019). Ant community evolution according aging in Brazilian cocoa tree plantations. Sociobiology, 66(1): 33-43. Doi:10.13102/sociobiology.v66i1.2705 8. DaRocha, W.D., Ribeiro, S.P., Neves, F.S., Fernandes, G.W., Leponce, M. & Delabie, J.H.C. (2015). How does bromeliad distribution structure the arboreal ant assemblage (Hymenoptera: Formicidae) on a single tree in a Brazilian Atlantic forest agroecosystem? Myrmecological News, 21: 83-92. ISSN 1994-4136 (print), ISSN 1997-3500 (online) 9. Delabie, J.H.C. & Fowler, H.G. (1995). Soil and litter cryptic ant assemblages of Bahian cocoa plantations, Pedobiologia, 39: 423-433. 10. Delabie, J.H.C., Godé, L., Nascimento, I.C., Santos, J.R.M., Carmo, A.F.R., Mariano, C.S.F. & Souza, P.R. (2015). Formigas (Hymenoptera) da Reserva de Pedra Talhada. In: Studer, A., Nusbaumer, L. & Spichiger, R. (ed.). Biodiversidade da Reserva Biológica de Pedra Talhada (Alagoas, Pernambuco - Brasil). Boissiera 68: 277-288. ISBN 978-2-8277-0084-4, ISSN 0373-2975. 11. Delabie, J.H.C., Lacau, S., Nascimento, I.C., Casimiro, A.B. & Cazorla, I.M. (1997). Communauté des fourmis des souches d’arbres morts dans trois réserves de la forêt Atlantique brésilienne (Hymenoptera, Formicidae). Ecologia Austral, 1997, 7: 95-103. 12. D’Ettorre, P., Kellner, K, Delabie, J.H.C. & Heinze, J. (2005). Number of queens in founding associations of the ponerine ant Pachycondyla villosa. Insectes Sociaux 52: 327-332. Doi:10.1007/s00040-005-0815-z 13. Fernandes, I.O., Oliveira, M.L. & Delabie, J.H.C. (2014). Description of two new species in the Neotropical Pachycondyla foetida complex (Hymenoptera: Formicidae: Ponerinae) and taxonomic notes on the genus. Myrmecological News, 19: 133-163. ISSN 1994-4136 (print), ISSN 1997-3500 (online). 14. Fowler, H.G. & Delabie, J. H. C. (1995). Resource partitioning among epigaeic and hypogaeic ants (Hymenoptera: Formicidae) of a Brazilian cocoa plantation. Ecologia Austral, 5: 117-124. 15. Freitas, J.M.S., Delabie, J.H.C. & Lacau, S. (2014). Composition and diversity of ant species into leaf litter of two fragments of a semi- deciduous seasonal forest in the Atlantic forest biome in Barra do Choça, Bahia, Brazil. Sociobiology 61(1): 9-20. doi:10.13102/sociobiology. v61i1.9-20 16. Gomes E.C.F., Ribeiro, G. T., Souza, T.M.S. & Sousa-Souto, L. (2014). Ant assemblages (Hymenoptera: Formicidae) in three different stages of forest regeneration in a fragment of Atlantic Forest in Sergipe, Brazil. Sociobiology, 61(3): 250-257. Doi:10.13102/sociobiology.v61i3.250-257 Sigrist, M.S. & Carvalho, C.J.B. (2008). Detection of areas of endemism on two spatial scales using Parsimony Analysis of Endemicity (PAE): The Neotropical region and the Atlantic Forest. Biota Neotropica, 8: 33-42. doi: 10.1590/S1676- 06032008000400002 Silva, J.M.C., Souza, M.C. & Castelletti, C.H.M. (2004). Areas of endemism for passerine birds in the Atlantic forest, South America. Global Ecology and Biogeography, 13: 85- 92. doi: 10.1111/j.1466-882X.2004.00077.x Silva, R.R., Feitosa, R.M.S. & Eberhard, F. (2007). Reduced ant diversity along a habitat regeneration gradient in the southern Brazilian Atlantic Forest. Forest Ecology and Management, 240: 61-69. doi: 10.1016/j.foreco.2006.12.002 SOS Mata Atlântica (2018). Available online at https:// www.sosma.org.br/wp-content/uploads/2019/05/Atlas-mata- atlantica_17-18.pdf (accessed date: December 2018). Tabarelli, M., Aguiar, A.V., Ribeiro, M.C., Metzger, J.P. & Peres, C.P. (2010). Prospects for biodiversity conservation in the Atlantic Forest: Lessons from aging human-modified landscapes. Biological Conservation, 143: 2328-2340. doi: 10.1016/j.biocon.2010.02.005 Wild, A.L. 2005. Taxonomic revision of the Pachycondyla apicalis species complex (Hymenoptera: Formicidae). Zootaxa, 834: 1-25. doi: 10.11646/zootaxa.834.1.1 Appendix References corresponding to the codes of the Table 5. Sociobiology 67(3): 343-357 (September, 2020) 357 17. Heinze, J., Trunzer, B., Hölldobler, B. & Delabie, J. H. C. (2001). Reproductive skew and queen relatedness in an ant with primary polygyny. Insectes Sociaux, 48: 149-153. Doi:10.1007/PL00001758 18. Kempf, W.W. (1972). Catálogo abreviado das formigas da região Neotropical (Hym. Formicidae) Studia Entomologica 15(1-4). 19. Koch, E. B. A, Santos, J. R. M., Nascimento, I. C. & Delabie, J. H. C. (2019). Comparative evaluation of taxonomic and functional diversities of leaf-litter ants of the Brazilian Atlantic Forest. Turkish Journal of Zoology, 43: 437-456. Doi:10.3906/zoo-1811-7 20. Lucas, C., Fresneau, D., Kolmer, K., Heinze, J., Delabie, J. H. C. & Pho, D. B. (2002). A mutidisciplinary approach to discrimining different taxa in the species complex Pachycondyla villosa (Formicidae). Biological Journal of the Linnean Society, 75: 249-259. Doi:10.1046/ j.1095-8312.2002.00017.x 21. Mackay, W.P. & Mackay, E.E. (2010). The Systematics and Biology of the New World Ants of the Genus Pachycondyla (Hymenoptera: Formicidae). Edwin Mellon Press, Lewiston. 22. Majer, J.D., Delabie, J.H.C. & Mckenzie, N. L. (1997). Ant litter fauna of forest edge and adjacent grassland in the Atlantic rain forest region of Bahia, Brazil. Insectes Sociaux, 44: 255-266. Doi:10.1007/s000400050046 23. Majer, J.D. & Delabie, J.H.C. (1999). Impact of tree isolation on arboreal and ground ant communities in cleared pasture in the Atlantic rain forest region of Bahia, Brazil. Insectes Sociaux, 46 (3): 281-290. doi:10.1007/s000400050147 24. Mariano, C.S.F., Pompolo, S.G., Borges, D.S. & Delabie, J.H.C. (2006). Are the Neotropical ants Pachycondyla crenata (Roger) and Pachycondyla mesonotalis (Santschi) (Formicidae, Ponerinae) good species? A cytogenetic approach. Myrmecologische Nachrichten/ Myrmecological News 8 (Stefan Schoedl Memorial Volume): 277-280. 25. Mariano, C.S.F., POMPOLO, S.G., Silva, J.G. & Delabie, J.H.C. (2012). Contribution of cytogenetics to the debate on the paraphyly of Pachycondyla spp. (Hymenoptera; Formicidae; Ponerinae). Psyche, vol. 2012, Article ID 973897, 9 pages. doi:10.1155/2012/973897. 26. Melo, T.S., Peres, M.C.L., Chavari, J L., Brescovit, A.D. & Delabie, J.H.C. (2014). Ants (Formicidae) and spiders (Araneae) listed from the metropolitan region of Salvador, Brazil. Check List, 10(2): 355-365. Doi:10.15560/10.2.355 27. Oliveira, G. V., Corrêa, M. M., Góes, I. M. A., Machado, A. F., Sá-Neto, R. J. & Delabie, J. H. C. (2015). Interactions between Cecropia (Urticaceae) and ants (Hymenoptera: Formicidae) along a longitudinal east-west transect in the Brazilian Northeast. Annales de la Société Entomologique de France, 51(2): 153-160. doi: 10.1080/00379271.2015.1061231. 28. Peres, M.C.L., Benati, K., Dias, M.A., Uzel-Sena, D., Andrade, A.R.S., Melo, T.S., Guimarães, M.V.A. & Delabie, J.H.C. (2017). Are leaf-litter ants (Formicidae) distributed differentiatedly between inner zones of natural treefall gaps? International Journal of Research Studies in Biosciences, 5(7): 60-68. Doi:10.20431/2349-0365.0507009 29. Pessoa, W.P.B., Silva, L.C.C., Dias, L.O., Delabie, J.H.C., Costa, H. & Romano, C.C. (2016). Analysis of protein composition and bioactivity of Neoponera villosa venom (Hymenoptera: Formicidae). International Journal of Molecular Sciences, 17: 513. doi: 10.3390/ijms17040513 30. Resende, J. J., Santos, G. M. M., Nascimento, I. C., Delabie J. H. C. & Silva, E. M. (2011). Communities of ants (Hymenoptera - Formicidae) in different Atlantic Rain Forest phytophysionomies. Sociobiology, 58(3): 779-799. 31. Resende, J. J., Peixoto, P. E. C., Silva, E. N., Delabie, J. H. C. & Santos, G. M. M. (2013). Arboreal ant assemblages respond differently to food source and vegetation physiognomies: a study in the Brazilian Atlantic Rain Forest. Sociobiology 60 (2): 174-182. doi: 10.13102/sociobiology 32. Santana, F. D., Cazetta, E. & Delabie, J. H. C. (2013). Interactions between ants and non-myrmecochorous diaspores in a tropical wet forest in southern Bahia, Brazil. Journal of Tropical Ecology, 21(1): 71-80. doi: 10.1017/S0266467412000715. 33. Santos, M.P.C.J., Carrano-Moreira, A.F. & Torres, J.B. (2012). Diversity of soil ant (Hymenoptera: Formicidae) in dense Atlantic Forest and sugarcane plantations in the County of Igarassu-PE. Revista Brasileira de Ciências Agrárias, 7(4): 648-656. doi: 10.5039/agraria.v7i4a1927 34. Santos, R.J., Koch, E. B. A., Machado, C., Leite, P., Porto, T. J. & Delabie, J. H. C. (2017). An assessment of leaf-litter and epigaeic ants (Hymenoptera: Formicidae) living in different landscapes of the Atlantic Forest Biome in the State of Bahia, Brazil. Journal of Insect Biodiversity, 5(19): 1-19. doi: 10.12976/jib/2017.5.19 35. Santos, R.P., Mariano, C.S.F., Delabie, J.H.C., Costa, M.A., Lima, K.M., Pompolo, S.G., Fernandes, I.O., Miranda, E. A., Carvalho, A.F. & Silva, J.G. (2018). Genetic characterization of some Neoponera (Hymenoptera: Formicidae) populations within the foetida species complex. Journal of Insect Science,18 (4): 11; 1-7. doi: 10.1093/jisesa/iey079 36. Silva, R. R. & C. Brandão, R. F. (2014). Ecosystem-Wide Morphological Structure of Leaf-Litter Ant Communities along a Tropical Latitudinal Gradient. PlosOne 9(3): e93049. doi: 10.1371/journal.pone.0093049 37. Tentschert, J., Kolmer, K., Hölldobler, B., Bestmann, H. J., Delabie, J. H. C. & Heinze, J. (2001). Chemical profiles, division of labor and social status in Pachycondyla queens (Hymenoptera: Formicidae). Naturwissenschaften, 88: 175-178. doi: 10.1007/s001140100218