DOI: 10.13102/sociobiology.v62i3.655Sociobiology 62(3): 364-373 (September, 2015) Open access journal: http://periodicos.uefs.br/ojs/index.php/sociobiology ISSN: 0361-6525 Two Cleptoparasitic Ant Crickets (Orthoptera: Myrmecophilidae) that Share Similar Host Ant Species Differentiate Their Habitat Use in Areas of Sympatry in Japan Introduction Habitat segregation may enable potentially competing organisms to coexist in a given region (Schoener, 1974). Habitat segregation has been well-studied in species pairs of various taxa, including herbivorous mammals (e.g. Main & Coblents, 1990; Conradt et al., 1999), birds (e.g. Lynch et al., 1985), and aquatic organisms (e.g. Hearn, 1987; Leibold, 1991). However, such segregation can be interpreted as a result of either interspecific competition (e.g. Chiba, 1996) or differences in habitat preference (e.g. Steen et al., 2014). There are only a few cricket taxa that are myrmecophilous and Myrmecophilus (Orthoptera: Myrmecophilidae) is one of them (Kistner, 1982; Ingrisch, 1995). These ant crickets live in ant nests and exploit debris, ant eggs and larvae, and other food resources in diverse ways (Wheeler, 1900; Wasmann, 1901; Hölldobler, 1947; Henderson & Akre, 1986; Sakai & Terayama, 1995; Akino et al., 1996; Komatsu et al., 2009). Some Myrmecophilus species mimic the ant colony’s chemistry by acquiring cuticular hydrocarbons from the ants via physical contact, Abstract Myrmecophilus crickets (Myrmecophilidae, Orthoptera) are typical ant guests. In Japan, about 10 species are recognized on the basis of morphological and molecular phylogenetic frameworks. We focused on two of these species, M. kinomurai and M. kubotai, and compared their host and habitat use. Previous work based on a limited sampling effort suggested that these two species share some ant species as hosts, but that their habitat preferences (open versus shaded) differ. Here, on the basis of exhaustive sampling across Japan, we confirmed that M. kinomurai and M. kubotai do not differ in their host ant preferences: both prefer formicine ants as hosts. As for habitat preferences, M. kubotai occurred significantly more often in open habitats than in shaded ones (P < 0.05). In contrast, M. kinomurai showed no habitat preference in areas where M. kubotai did not occur. However, M. kinomurai showed an obvious preference for shaded environments in areas of sympatry with its potential competitor M. kubotai. This pattern suggests that interspecific competition between M. kinomurai and M. Kubotai is a factor causing habitat differentiation in areas of sympatry. Sociobiology An international journal on social insects T Komatsu,1 M Maruyama,2 T Itino1 Article History Edited by Gilberto M. M. Santos, UEFS, Brazil Received 10 October 2014 Initial acceptance 21 January 2015 Final acceptance 30 April 2015 Keywords habitat segregation, host preference, competition. Corresponding author T. Komatsu Institute of Tropical Agriculture Kyushu University Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Fukuoka, Japan E-Mail: corocoro1232000@yahoo.co.jp causing the ants to recognize them as nest mates (Henderson & Akre, 1986; Sakai & Terayama, 1995; Akino et al., 1996). In Japan, at least 10 species of Myrmecophilus have been recognized on the basis of body surface structures, and each of these species has been collected from nests of specific ant species (Maruyama, 2004). By using molecular phylogenetic methods, Komatsu et al. (2008) detected seven well-supported mtDNA lineages in Japanese Myrmecophilus; these lineages do not completely agree with the morphological taxonomy. Komatsu et al. (2008) were able to group the lineages into at least two categories on the basis of their host specificity: specialists, which are commensally associated with a few ant species, and generalists, which are commensally associated with many ant species or genera. Additionally, each mtDNA lineage appeared to show a habitat use preference (Komatsu et al., 2008). In this study, we investigated host and habitat use by the two most commonly occurring species, M. kinomurai (mtDNA lineage D+G of Komatsu et al., 2008) and M. kubotai (lineage E+F of Komatsu et al., 2008), on the basis of exhaustive sampling across Japan. RESEARCH ARTICLE - ANTS 1 - Shinshu University, Nagano, Japan 2 - The Kyushu University Museum, Fukuoka, Japan Sociobiology 62(3): 364-373 (September, 2015) 365 Myrmecophilus kubotai is found only in Honshu and Shikoku, whereas M. kinomurai is distributed widely from Hokkaido to Kyushu. Thus, there is partial overlap in their distribution areas (Maruyama, 2006). Komatsu et al. (2008) investigated the host and habitat preferences of these two cricket species by random sampling in Honshu, where they coexist, and reported that both M. kubotai and M. kinomurai most frequently use formicine ants as host, and one particular formicine ant species, Lasius japonicus, was used by both cricket species (Komatsu et al., 2008). Moreover, Komatsu et al. (2008) reported that the collected M. kubotai samples were from open habitats such as grassland or wasteland whereas the collected M. kinomurai samples were from shaded habitats such as forests. These results may indicate that M. kubotai and M. kinomurai are in a competitive relationship for adequate host ant species and that they differentiate their habitat to avoid encountering each other. However, because Komatsu et al. (2008) sampled these two cricket species mainly in Honshu, where they coexist, they could not determine whether their habitat preferences would differ between the areas of coexistence (Honshu and Shikoku) and areas inhabited by only one (M. kinomurai) of the two species (Hokkaido and Kyushu). In this study, we conducted exhaustive sampling, mainly in Honshu, where these two cricket species coexist, but also in Hokkaido and Kyushu, where M. kubotai does not occur, and examined their habitat use and how it differed in different areas. We then compared host-ant and habitat use between the two cricket species. Materials and Methods Collection of samples Sampling was conducted from Hokkaido to Kyushu, Japan, in 2004-2008 (Appendix 1). Adult or nymph Myrmecophilus crickets were collected from randomly- selected ant nests. We collected as many crickets as possible by excavating the nest if it was subterranean or by spraying insect rejectant (repellent to keep mosquitoes out) into the nest if it was arboreal. The collected cricket samples were immediately preserved in absolute ethanol. When we collected samples, we recorded the habitat type (open versus shaded) where the host ant nests were located. If there were some sort of masking objects (e.g., trees) around the nest entrance (within 10m in radius), we determined the habitat as shaded. If not so, we determined the habitat as open. The collected cricket samples were identified by using field-emission scanning microscopy (JEOl, JSM-6390) or mtDNA sequencing (see below). The specimens were digitally micrographed without coating. Voucher specimens are deposited in the Institute of Tropical Agriculture, Kyushu University, Fukuoka, Japan. Some of the samples used in this study were also used by Komatsu et al. (2008, 2010). DNA analysis We used mitochondrial sequences of collected samples to distinguish the target lineages of M. kinomurai and M. kubotai (see below). Komatsu et al. (2008, 2010) used the cytochrome b (cytb) gene for molecular phylogenetic analysis. However, the primers for that gene region did not successfully amplify mtDNA in many of the M. kinomurai samples. Therefore, we used the 16S ribosomal RNA (16S rRNA) gene, which has a lower substitution rate and has been used in studies of several orthopteran insects (e.g. Allegrucci et al., 2005; Lu & Huang, 2006). DNA was extracted from the hind legs of the crickets by using a DNeasy Blood & Tissue Kit (QUIAGEN); the other body parts were preserved for morphological identification. A 511-bp fragment of the mitochondrial 16S ribosomal RNA (16S rRNA) gene corresponding to positions 12887–13398 in the Drosophila yakuba mtDNA genome was amplified by polymerase chain reaction (PCR) with the primers 16Sbr (5’- CCG GTC TGA ACT CAG ATC ACG T -3’) and 16Sar (5’- CGC CTG TTT AAC AAA AAC AT -3’) (Simon et al., 1994) and using the following temperature profile: 35 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 90 s. After amplification, the PCR products were purified using a QIAquick PCR purification kit (QUIAGEN). Cycle sequencing reactions were performed with BigDye Terminator Ver 1.1 Cycle Sequencing kit on an ABI 3100 automated sequencer. We used the obtained 16S rRNA dataset and MEGA4 software (Tamura et al., 2007) to reconstruct the phylogeny by the neighbor-joining (NJ) method. Our previous phylogenetic analysis based on the cytb gene revealed two cryptic lineages in both of the morphospecies M. kinomurai and M. kubotai (lineages D and G in M. kinomurai and lineages E and F in M. kubotai; Komatsu et al., 2008, 2010), and we recognized a similar split lineage in our analysis of the 16S rRNA gene. However, one 16S rRNA lineage of M. kinomurai, corresponding to lineage D of Komatsu et al. (2008), was quite rare and was collected from a fairly limited area. In addition, one 16S rRNA lineage of M. kubotai, corresponding to lineage F of Komatsu et al. (2008), almost exclusively used the myrmicine ant, Tetramorium tsushimae, as host. Therefore, we excluded samples of these lineages (corresponding to lineages D and F of Komatsu et al., 2008) from the analysis. Statistics Details of the sampled ant crickets (host ant species, collected habitats, etc.) are given in Appendix 1. We used one-way chi-squared test to compare the frequency of occurrence of M. kinomurai and M. kubotai in formicine ant nests relative to other ant subfamilies. We arbitrarily divided Japan into six occurrence areas: Hokkaido, Northern Honshu (Tohoku), Eastern Honshu (Kanto and Chubu), Western Honshu (Kansai and Chugoku), Shikoku, and Kyushu. T Komatsu, M Maruyama, T Itino - Two Myrmecophilus species differentiate their habitat use366 We next sorted the areas into two categories: coexistence areas (Eastern Honshu, Western Honshu and Shikoku) where both M. kinomurai and M. kubotai distributed and non- coexistence areas (Hokkaido, Northern Honshu, and Kyushu) where only M. kinomurai distributed. Within each of the two categorized area, the preference of the two cricket species for open or shaded habitats was determined by using a one- way chi-squared test. For example, the proportion of M. kinomurai individuals collected from open habitat among all collected M. kinomurai individuals (observed proportion in open habitat) in a given area was compared to the proportion of investigated ant nests in open habitats among the total investigated ants nests (expected proportion in open habitat). If the crickets inhabited the open habitat significantly more often than expected, we judged that they “preferred” that habitat. The statistical analyses were performed with the R software package (ver. 2.3.1; R Development Core Team, 2005). Results and Discussion We surveyed a total of 1250 ant colonies representing 69 species (Appendix 2). These 69 species were distributed among ant subfamilies as follows: Amblyoponinae (AM), 1 species (2 colonies); Formicinae (FO), 31 species (699 colonies); Dolichoderinae (DO), 2 species (17 colonies); Myrmicinae (MY), 24 species (459 colonies); Ponerinae (PO), 8 species (69 colonies); and Proceratiinae (PR), 3 species (4 colonies). In addition, one M. kubotai cricket individual was collected from a termite nest, and six individuals (including one each of M. kinomurai and M. kubotai) were collected from outside ant nests (e.g. on the ground) (Appendix 2). Host specificity We collected a total of 880 Myrmecophilus individuals (Appendix 2) of the five species, M. gigas, M. kinomurai, M. kubotai, M. sapporensis, and M. tertamorii. For M. kinomurai and M. kubotai, most individuals were collected from formicine ant nests (M. kinomurai vs. M. kubotai, %, AM: 0 vs. 0, FO: 93 vs. 88, DO: 0 vs. 0, MY: 5 vs. 8, PO: 0 vs. 0, PR: 0 vs. 0). In addition, one M. kubotai cricket individual was collected from a termite nest, and six individuals (including one each of M. kinomurai and M. kubotai) were collected from outside ant nests (e.g. on the ground) (Appendix 2). Thus, we confirmed the previous finding of Komatsu et al. (2008) that M. kinomurai and M. kubotai preferred Formicine ants as hosts. We detected no significant difference in preference toward Formicinae between M. kinomurai and M. kubotai (Chi-squared test for FO and MY, P = 0.54). Further, the most-preferred host ant species was the same (Lasius japonicus) between these two cricket species (M. kinomurai, 25 of 58 hosts; M. kubotai 24 of 52 hosts). Myrmecophilus kinomurai was collected in all six occurrence areas of Japan, but M. kubotai was collected only in Eastern Honshu, Western Honshu, and Shikoku (not in Hokkaido, Northern Honshu, or Kyushu). Phylogenetic analysis The DNA lineages of the M. kinomurai and M. kubotai samples were determined by NJ analysis of a 530-bp sequence of the mitochondrial 16S rRNA gene. Of the 110 analyzed samples, 58 belonged to M. kinomurai (corresponding to lineage G of Komatsu et al., 2008) and 52 belonged to M. kubotai (corresponding to lineage E of Komatsu et al., 2008). Habitat preferences In areas of sympatry with the closely related M. kinomurai (i.e. coexistence areas), M. kubotai occurred significantly more often in open habitats, whereas M. kinomurai showed an obvious preference for shaded environments (Table 1, Fig 1). In contrast, where M. kubotai Sampling area Species (No. of samples) Environment (No. of samples) Expected proportion (No. of investigated ant nests in that habitat / total investigated ant nests) Observed proportion (No. of crickets collected from that habitat / total collected crickets ) P Non-coexistence area M. kinomurai (27) Open (19) 250/393 19/27 ns Shaded (8) 143/393 8/27 M. kubotai (0) Open (0) - - - Shaded (0) - - Coexistence area M. kinomurai (31) Open (7) 487/857 7/31 + +(S) ++(O) Shaded (24) 370/857 24/31 M. kubotai (52) Open (43) 487/857 43/52 -     Shaded (9) 370/857 9/52 Table 1. Habitat specificity of the ant crickets determined by chi-squared test for biased habitat preferences of the ant crickets in those areas where only M. kinomurai occurred and where both crickets were distributed. If the crickets inhabited open (or shaded) habi- tats in a significantly higher proportion than the expected proportion (i.e., the proportion of that habitat among total available ant nests), they were judged to “prefer” that habitat. See text for details. ++, P < 0.01; ns, not significant. O, open habitat; S: shaded habitat. Sociobiology 62(3): 364-373 (September, 2015) 367 did not occur, M. kinomurai did not show an obvious preference for either habitat type (Table 1, Fig 1). These results suggest that interspecific competition between M. kinomurai and M. kubotai is a factor causing M. kinomurai to shift its habitat use in areas of sympatry. This observed habitat shift of M. kinomurai in areas of sympatry with its potential competitor M. kubotai can be interpreted in two ways. One possible interpretation is that the primary host ant species shows a habitat difference between coexistence areas (e.g. western Honshu) and non-coexistence areas (e.g. Hokkaido). In this study, many M. kinomurai individuals were collected from nests of Lasius japonicus (Appendix 2). The studied nests of L. japonicus were found mainly in open habitats both in coexistence areas (number of nests in open vs. shaded habitat, 99 vs. 35) and non-coexistence areas (99 vs. 10) although the habitat preference M. kinomurai was different between the areas (Chi-squared test, P < 0.01). Therefore, it is unlikely that the observed habitat difference of M. kinomurai between the two types of areas reflected a habitat difference of the primary host ant species between them. A second possible interpretation is that in the coexistence areas M. kinomurai shifts to a host ant species inhabiting open habitats rather than shaded habitats because of interspecific competition in those areas. In fact, the host ant species used by M. kinomurai differed significantly between the coexistence areas and non-coexistence areas (co-existence areas vs. non- coexistence areas, number of samples: Aj, 1 vs. 0; Cj, 1 vs. 2; Co, 0 vs. 1; Fj, 1 vs. 2; Fs, 1 vs. 0; Fy, 1 vs. 0; Lc, 1 vs. 0; Lf, 5 vs. 3; Lj, 6 vs. 19; Lni, 4 vs. 0; Lsp, 5 vs. 0; Lu, 1 vs. 0; Pl, 1 vs. 0; Ppu, 1 vs. 0; Tt, 1 vs. 0; out, 1 vs. 0; Chi-squared test; P = 0.03; see Appendix 1 for host ant species codes). In coexistence areas, M. kinomurai tended not to use L. japonicus, an openland dweller (as mentioned above); instead, it used shaded habitat dwellers such as L. nipponensis and L. spathepus. Moreover, most M. kinomurai were collected from shaded environments in coexistence areas (Fig 1). Therefore, in the coexistence areas M. kinomurai may shift to a host ant species preferring shaded environments. Divergence of habitat use resulting from interspecific competition between sympatric species has been reported before (i.e., a form of ecological character displacement; Chiba, 1996). Because M. kinomurai and M. kubotai are dominant species and share the same host ant taxon (Formicinae), it is plausible that there is competitive interaction between the two species. Because Myrmecophilus crickets use basically the same resource, the co-occurrence of more than one Myrmecophilus species within the same ant nest may threaten the survival of one the cricket species. Thus, M. kinomurai may shift its habitat by shifting its host ant species from an open habitat-dwelling ant species to a shaded habitat-dwelling species in areas in which it coexists with M. kubotai. Such avoidance may have another advantage. At least in Japanese Myrmecophilus, the morphological differentiation of genital characters among species is too minor to be used for taxonomic differentiation (Maruyama, 2006), which suggests that different species of Japanese Myrmecophilus can potentially mate with each other. Therefore, differentiation of habitat or host use, or both, may function as a premating isolation mechanism in this genus (i.e., a form of reproductive character displacement). The nature of the ecological or reproductive competition between M. kinomurai and M. kubotai remains unknown. The adverse effects of interactions between these species on their fitness and survival need to be investigated by examining interspecific behavioral interactions and their effect on fertility and survival experimentally, for example, by artificially introducing both species into a single host ant colony. Acknowledgments We thank S. Ueda for his comments on the manuscript, and T. Befu, Y. Hagiwara, K. Harukawa, A. Ichikawa, Y. Itino, S. Nomura, K. Kinomura, Y. Koshiyama, T. Kurihara, K. Maruyama, Y. Mori, T. Ito, T. Takagi, S. Takaishi, and Y. Tsuneoka for sampling. This work was supported by JSPS KAKENHI Grant Numbers 19-6495, 26-932 to T. K., and by Research and Education Funding for Japanese Alps Inter-Universities Cooperative Project, Ministry of Education, Culture, Sports, Science and Technology, Japan to T. I. References Akino, T., Mochizuki, R., Morimoto, M. & Yamaoka, R. (1996). Chemical camouflage of myrmecophilous cricket Myrmecophilus sp. to be integrated with several ant species. Japanese Journal of Applied Entomology and Zoology, 40: 39- 46. Allegrucci, G., Todisco, V. & Sbordoni, V. (2005). Molecular phylogeography of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae): A scenario suggested by mitochondrial DNA. Molecular Phylogenetics and Evolution, 37: 153-164. doi: 10.1016/j.ympev.2005.04.022. Chiba, S. (1996). Ecological and morphological diversification within single species and character displacement in Mandarina, endemic land snails of the Bonin Islands. Journal of Evolutionary Fig 1. Habitat preferences of M. kinomurai and M. kubotai in coexistence and non-coexistence areas of Japan. T Komatsu, M Maruyama, T Itino - Two Myrmecophilus species differentiate their habitat use368 Biology, 9: 277-291. doi: 10.1046/j.1420-9101.1996.9030277.x. Conradt, L., Clutton-Brock, T.H. & Thompson, D. (1999). Habitat segregation in ungulates: are males forced into suboptimal foraging habitats through indirect competition by females? Oecologia, 119: 367-377 Henderson, G. & Akre, R.D. (1986). Biology of the myrmecophilous cricket, Myrmecophila manni, Orthoptera: Gryllidae. Journal of the Kansas Entomological Society, 59: 454-467. Hölldobler, K. (1947). Studien über die Ameisengrille (Myrmecophila acervorum Panzer) im mittleren Maingebiet. Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 20: 607-648. Ingrisch, S. (1995). Eine neue Ameisengrille aus Borneo (Ensifera: Grylloidea). Entomologische Zeitschrift, 105: 421-440. Kistner, D.H. (1982). The social insects’ bestiary. In H.R. Hermann (Ed.). Social Insects vol. III (pp. 1-244). Academic Press, New York. Komatsu, T., Maruyama, M., Ueda, S. & Itino, T. (2008). mtDNA phylogeny of Japanese ant crickets (Orthoptera: Myrmecophilidae): diversification in host specificity and habitat use. Sociobiology, 52: 553-565. Komatsu, T., Maruyama, M. & Itino, T. (2009). Behavioral difference between two ant cricket species in Nansei Islands: host-specialist versus host-generalist. Insectes Sociaux, 56: 389-396. doi: 10.1007/s00040-009-0036-y. Komatsu, T., Maruyama, M. & Itino, T. (2010). Differences in host specificity and behavior of two ant cricket species (Orthoptera: Myrmecophilidae) in Honshu, Japanese Journal of Entomological Science, 45: 227-238. Leibold, M.A. (1991). Trophic interactions and habitat segregation between competing Daphnia species. Oecologia, 86: 510-520. doi: 10.1007/BF00318317. Lu, H.M., & Huang, Y. (2006). Phylogenetic relationship of 16 Oedipodidae species (Insecta: Orthoptera) based on the 16S rRNA gene sequences. Insect Science, 13: 103-108. Lynch, J.F., Morton, E.S. & Van der Voort, M.E. (1985). Habitat segregation between the sexes of wintering hooded warblers (Wilsonia citrina). The Auk, 102: 714-721. Main, M.B. & Coblentz, B.E. (1990). Sexual segregation among ungulates: a critique. Wildlife Society Bulletin, 18: 204-210. Maruyama, M. (2004). Four new species of Myrmecophilus (Orthoptera, Myrmecophilidae) from Japan. Bulletin of the National Science Museum Series A, Zoology, 30: 37-44. Maruyama, M. (2006). Family Myrmecophilidae Saussure, 1870. In Orthopterological Society of Japan (Ed.). Orthoptera of the Japanese archipelago in color (pp. 490-492). Hokkaido University Press, Sapporo. R Development Core Team. (2005). R: a language and environment for statistical computing. Vienna: R Foundation for statistical computing. http://www.R-project.org Sakai, H. & Terayama, T. (1995). Host records and some ecological information of the ant cricket Myrmecophilus sapporensis Matsumura. Ari, 19: 2-5. Schoener, T.W. (1974). Resource partitioning in ecological communities. Science, 185: 27-39. Simon, C., Frati, F., Beckenbach, A. & Crespi, B. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87: 651-701. Steen, D.A., McClure, C.J.W. & Brock, J.C. et al. (2014). Snake co-occurrence patterns are best explained by habitat and hypothesized effects of interspecific interactions. Journal of Animal Ecology, 83: 286-295. Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24: 1596-1599. doi: 10.1093/molbev/msm092. Wasmann, E. (1901). Zur Lebensweise der Ameisengrillen (Myrmecophila). Natur und Offenbarung, 47: 129-152. Wheeler, W.M. (1900). The habits of Myrmecophila nebrascensis Bruner. Psyche, 9: 111-115. Sociobiology 62(3): 364-373 (September, 2015) 369 Sp ec ie s Sa m pl e N o. H os t a nt L oc al ity ( ita lic s in di ca te no n- co ex is te nc e ar ea s) H ab ita t D at e (y y. m m .d d) C ol le ct or A lti tu de ( m ) A cc es si on N o. M . k in om ur ai 19 8b Fj A sa m us hi on se n, A om or i, A om or i S 05 .0 4. 29 K om at su T 11 2 A B 81 82 61 M . k in om ur ai h9 9a L j K ita , S ap po ro , H ok ka id o S 06 .0 9. 08 K om at su T 15 A B 81 82 57 M . k in om ur ai h9 9b L j K ita , S ap po ro , H ok ka id o S 06 .0 9. 08 K om at su T 15 A B 81 82 58 M . k in om ur ai h8 4 L j Ta ka do m ar i, F uk ag aw a, H ok ka id o S 06 .0 9. 06 K om at su T 10 0 A B 81 82 59 M . k in om ur ai h8 5 L j Ta ka do m ar i, F uk ag aw a, H ok ka id o S 06 .0 9. 06 K om at su T 10 0 A B 81 82 60 M . k in om ur ai h3 0a L j To yo ok a, H id ak a, H ok ka id o S 06 .0 8. 29 K om at su T 25 0 A B 81 82 62 M . k in om ur ai 10 27 L j K am ia ga ta , T su sh im a, N ag as ak i S 08 .0 4. 26 K om at su T 50 A B 81 82 91 M . k in om ur ai 10 54 L j K am ia ga ta , T su sh im a, N ag as ak i S 08 .0 4. 27 K om at su T 50 A B 81 82 92 M . k in om ur ai 20 0a C j Sa nn ai , A om or i, A om or i O 05 .0 6. 19 K om at su T 21 .5 A B 81 82 45 M . k in om ur ai 20 1 C j Sa nn ai , A om or i, A om or i O 05 .0 6. 19 K om at su T 21 .5 A B 81 82 46 M . k in om ur ai 25 6a C o H ita ch in ai , A ni , A ki ta O 05 .0 8. 26 K om at su T 25 0 A B 81 82 56 M . k in om ur ai h1 8 Fj To ya -k o, S ob et su , H ok ka id o O 04 .0 8. 28 K om at su T 25 0 A B 81 82 54 M . k in om ur ai h9 7a L f K ita , S ap po ro , H ok ka id o O 06 .0 9. 08 K om at su T 15 A B 81 82 43 M . k in om ur ai h5 8a L f P in ne si ri , N ak at on be ts u, H ok ka id o O 06 .0 9. 04 K om at su T 63 A B 81 82 49 M . k in om ur ai h5 8c L f P in ne si ri , N ak at on be ts u, H ok ka id o O 06 .0 9. 04 K om at su T 63 A B 81 82 50 M . k in om ur ai 20 2 L j Ta ka no za ki , I m ab et su , A om or i O 05 .0 6. 21 K om at su T 0 A B 81 82 39 M . k in om ur ai h1 7a L j M in am i- U su , D at e, H ok ka id o O 06 .0 8. 28 K om at su T 5 A B 81 82 40 M . k in om ur ai h1 7b L j M in am i- U su , D at e, H ok ka id o O 06 .0 8. 28 K om at su T 5 A B 81 82 41 M . k in om ur ai h1 7c L j M in am i- U su , D at e, H ok ka id o O 06 .0 8. 28 K om at su T 5 A B 81 82 42 M . k in om ur ai h9 6 L j K ita , S ap po ro , H ok ka id o O 06 .0 9. 08 K om at su T 15 A B 81 82 44 M . k in om ur ai 17 5 L j Sa nn ai , A om or i, A om or i O 04 .0 8. 12 K om at su T 22 A B 81 82 47 M . k in om ur ai 17 6 L j Sa nn ai , A om or i, A om or i O 04 .0 8. 13 K om at su T 22 A B 81 82 48 M . k in om ur ai h5 9g L j P in ne si ri , N ak at on be ts u, H ok ka id o O 06 .0 9. 04 K om at su T 63 A B 81 82 51 M . k in om ur ai h5 9h L j P in ne si ri , N ak at on be ts u, H ok ka id o O 06 .0 9. 04 K om at su T 63 A B 81 82 52 M . k in om ur ai 18 0b L j Ta pp i, M in m ay a, A om or i O 04 .0 8. 21 K om at su T 80 A B 81 82 53 M . k in om ur ai h2 0a L j To ya -k o, S ob et su , H ok ka id o O 04 .0 8. 28 K om at su T 25 0 A B 81 82 55 M . k in om ur ai 17 7a L j H ak ko ud a, A om or i, A om or i O 04 .0 8. 14 K om at su T 13 00 A B 81 82 63 M . k in om ur ai 18 2 A j Sa to ya m ab e, M at su m ot o, N ag an o S 04 .0 9. 13 K om at su T 65 0 A B 81 82 77 A pp en di x 1 . O ve rv ie w o f th e sa m pl ed s pe ci m en s of M . k in om ur ai ( m tD N A c yt b lin ea ge G ) an d M . k ub ot ai ( m tD N A c yt b lin ea ge E ) (h ab ita t p re fe re nc es a re s um m ar iz ed in F ig . 1 ) an d th ei r 16 S G en B an k ac ce ss io n nu m be rs . H os t a nt s pe ci es c od es : C j, C am po no tu s ja po ni cu s; C o, C am po no tu s ob sc ur ip es ; F j, F or m ic a ja po ni ca ; F s, F or m ic a sa ng ui ne a; F y, F or m ic a ye ss en si s; L c, L as iu s ca pi ta tu s; L f, La si us fl av us ; L fu , L as iu s fu ji; L j, La si us ja po ni cu s; L ni , L as iu s ni pp on en si s; L sa , L as iu s sa ka ga m ii; L sp , L as iu s sp at he pu s; L u, L as iu s um br at us ; M j, M yr m ic a je ss en si s; M k, M yr m ic a ko to ku i; Pl , P ol yr ha ch is la m el lid en s; P pu , P ri st om yr m ex p un ct at us ; P s, P ol ye rg us s am ur ai ; T rs , R et ic ul ite rm es s pe ra tu s; T t, Te tr am or iu m ts us hi m ae ; A j, A ph ae no ga st er ja po ni ca ; O ut , c ol le ct ed fr om o ut si de a n an t n es t. O , o pe n ha bi ta t; S, s ha de d ha bi ta t; -, no d at a. * , M . k in om ur ai m tD N A li ne ag e D ; * *, M . k ub ot ai m tD N A li ne ag e F. T Komatsu, M Maruyama, T Itino - Two Myrmecophilus species differentiate their habitat use370 Sp ec ie s Sa m pl e N o. H os t a nt L oc al ity ( ita lic s in di ca te no n- co ex is te nc e ar ea s) H ab ita t D at e (y y. m m .d d) C ol le ct or A lti tu de ( m ) A cc es si on N o. M . k in om ur ai 12 Fj Sa nd an i, Ta ka ya m a, G if u S 04 .0 6. 27 M ar uy am a M 11 00 A B 81 82 88 M . k in om ur ai 10 6 Fs Sa to ya m ab e, M at su m ot o, N ag an o S 04 .0 5. 24 K om at su T 65 0 A B 81 82 76 M . k in om ur ai 27 1 L c Sa to ya m ab e, M at su m ot o, N ag an o S 06 .0 7. 07 K om at su T 63 0 A B 81 82 74 M . k in om ur ai 44 C j Sa to ya m ab e, M at su m ot o, N ag an o S 04 .0 4. 17 K om at su T 65 0 A B 81 82 75 M . k in om ur ai s5 0a L f K am ih an ba ra , O no , F uk ui S 08 .0 9. 16 K os hi ya m a Y 90 0 A B 81 82 78 M . k in om ur ai s5 0b L f K am ih an ba ra , O no , F uk ui S 08 .0 9. 16 K os hi ya m a Y 90 0 A B 81 82 79 M . k in om ur ai s5 0c L f K am ih an ba ra , O no , F uk ui S 08 .0 9. 16 K os hi ya m a Y 90 0 A B 81 82 80 M . k in om ur ai 30 L j M iy am ot oh ig as hi ka ta , N ag ao ka , N iig at a S 04 .0 4. 11 K om at su T 60 A B 81 82 64 M . k in om ur ai 17 1b L j H ig as hi ka w ad e, A zu m in o, N ag an o S 04 .0 6. 30 K om at su T 62 0 A B 81 82 73 M . k in om ur ai 20 3 L j Ir iy am ab e, M at su m ot o, N ag an o S 05 .0 7. 01 K om at su T 14 00 A B 81 82 90 M . k in om ur ai 13 6b L ni A ri ga sa ki , M at su m ot o, N ag an o S 04 .0 6. 03 K om at su T 58 5 A B 81 82 68 M . k in om ur ai 13 6d L ni A ri ga sa ki , M at su m ot o, N ag an o S 04 .0 6. 03 K om at su T 58 5 A B 81 82 69 M . k in om ur ai 16 7 L ni A ri ga sa ki , M at su m ot o, N ag an o S 04 .0 6. 24 K om at su T 58 5 A B 81 82 70 M . k in om ur ai 17 2 L ni A ri ga sa ki , M at su m ot o, N ag an o S 04 .0 7. 01 K om at su T 58 5 A B 81 82 71 M . k in om ur ai s2 1a L sp Im am ur a, N eo , G if u S 04 .0 5. 08 M ar uy am a M 20 4 A B 81 82 66 M . k in om ur ai s2 1d L sp Im am ur a, N eo , G if u S 04 .0 5. 08 M ar uy am a M 20 4 A B 81 82 67 M . k in om ur ai s1 2d L sp To go , O ki , S hi m an e S 04 .0 8. 02 K om at su T 62 A B 81 82 93 M . k in om ur ai s4 3a L sp Te nn o- za n, O ya m az ak i, K yo to S 08 .0 9. 05 It o T 27 0 A B 81 82 94 M . k in om ur ai s4 3b L sp Te nn o- za n, O ya m az ak i, K yo to S 08 .0 9. 05 It o T 27 0 A B 81 82 95 M . k in om ur ai 19 9b L u Ir iy am ab e, M at su m ot o, N ag an o S 05 .0 6. 06 K om at su T 14 00 A B 81 82 89 M . k in om ur ai s3 b Pl H at og ay a, S hi ra ka w a, G if u S 05 .0 5. 25 M ar uy am a M 60 0 A B 81 82 72 M . k in om ur ai s3 9 Pp u K uc hi ka m og aw a, S hi m an to , K ou ch i S 08 .0 3. 16 B ef u T 30 0 A B 81 82 96 M . k in om ur ai s5 1 ou t N ak ao ku bo , T oy am a, T oy am a S 08 .1 0. 21 K os hi ya m a Y 82 A B 81 82 65 M . k in om ur ai 45 5a Fy N ag as ak a, S ak ae , N ag an o O 07 .0 5. 04 K om at su T 10 00 A B 81 82 81 M . k in om ur ai 83 2b L f O ku hi da on se n, T ak ay am a, G if u O 07 .0 8. 17 K om at su T 12 50 A B 81 82 83 M . k in om ur ai 15 1 L f Ir iy am ab e, M at su m ot o, N ag an o O 04 .0 6. 13 K om at su T 14 00 A B 81 82 87 M . k in om ur ai 45 8 L j N ag as ak a, S ak ae , N ag an o O 07 .0 5. 04 K om at su T 10 00 A B 81 82 82 M . k in om ur ai 20 6a L j H iji ri ko ge n, O m im ur a, N ag an o O 05 .0 7. 13 K om at su T 12 60 A B 81 82 84 A pp en di x 1. O ve rv ie w o f th e sa m pl ed s pe ci m en s of M . k in om ur ai ( m tD N A c yt b lin ea ge G ) an d M . k ub ot ai ( m tD N A c yt b lin ea ge E ) (h ab ita t p re fe re nc es a re s um m ar iz ed in F ig . 1 ) an d th ei r 16 S G en B an k ac ce ss io n nu m be rs . H os t a nt s pe ci es c od es : C j, C am po no tu s ja po ni cu s; C o, C am po no tu s ob sc ur ip es ; F j, F or m ic a ja po ni ca ; F s, F or m ic a sa ng ui ne a; F y, F or m ic a ye ss en si s; L c, L as iu s ca pi ta tu s; L f, La si us fl av us ; L fu , L as iu s fu ji; L j, La si us ja po ni cu s; L ni , L as iu s ni pp on en si s; L sa , L as iu s sa ka ga m ii; L sp , L as iu s sp at he pu s; L u, L as iu s um br at us ; M j, M yr m ic a je ss en si s; M k, M yr m ic a ko to ku i; Pl , P ol yr ha ch is la m el lid en s; P pu , P ri st om yr m ex p un ct at us ; P s, P ol ye rg us s am ur ai ; T rs , R et ic ul ite rm es s pe ra tu s; T t, Te tr am or iu m ts us hi m ae ; A j, A ph ae no ga st er ja po ni ca ; O ut , c ol le ct ed fr om o ut si de a n an t n es t. O , o pe n ha bi ta t; S, s ha de d ha bi ta t; -, no d at a. * , M . k in om ur ai m tD N A li ne ag e D ; * *, M . k ub ot ai m tD N A li ne ag e F. (C on tin ua tio n) Sociobiology 62(3): 364-373 (September, 2015) 371 Sp ec ie s Sa m pl e N o. H os t a nt L oc al ity ( ita lic s in di ca te no n- co ex is te nc e ar ea s) H ab ita t D at e (y y. m m .d d) C ol le ct or A lti tu de ( m ) A cc es si on N o. M . k in om ur ai 11 5 L j Ir iy am ab e, M at su m ot o, N ag an o O 04 .0 5. 29 K om at su T 14 00 A B 81 82 86 M . k in om ur ai 20 7 T t H iji ri ko ge n, O m im ur a, N ag an o O 05 .0 7. 13 K om at su T 12 60 A B 81 82 85 M . k ub ot ai 44 0 Fj U en o, T ai to , T ok yo S 07 .0 4. 21 K om at su T 10 A B 81 83 27 M . k ub ot ai 12 63 c L fu Y at a, M is hi m a, S hi zu ok a S 08 .0 8. 12 K om at su T 15 A B 81 83 28 M . k ub ot ai 12 63 d L fu Y at a, M is hi m a, S hi zu ok a S 08 .0 8. 12 K om at su T 15 A B 81 83 29 M . k ub ot ai s4 0 L j H at to ri -R yo ku ch i, To yo na ka , O sa ka S 08 .0 5. 30 Ic hi ka w a A 26 A B 81 83 44 M . k ub ot ai s4 2a L j A ka sh i- K ou en , A ka sh i, H yo go S 08 .0 9. 06 Ic hi ka w a A 28 A B 81 83 45 M . k ub ot ai s3 7a L j C hi sh im a, O sa ka , O sa ka S 08 .0 5. 11 Ic hi ka w a A 33 A B 81 83 46 M . k ub ot ai s3 8 L j C hi sh im a, O sa ka , O sa ka S 08 .0 5. 11 Ic hi ka w a A 33 A B 81 83 47 M . k ub ot ai 65 8 L j A id o, J in ze ki ko ge n, H ir os hi m a S 07 .0 6. 05 K om at su T 52 5 A B 81 83 48 M . k ub ot ai 18 3b L ni A ri ga sa ki , M at su m ot o, N ag an o S 04 .0 9. 22 K om at su T 58 5 A B 81 83 30 M . k ub ot ai 36 2a C j A w as hi m a, N um az u, S hi zu ok a O 05 .1 0. 20 K om at su T 0 A B 81 82 97 M . k ub ot ai 36 2b C j A w as hi m a, N um az u, S hi zu ok a O 05 .1 0. 20 K om at su T 0 A B 81 82 98 M . k ub ot ai 52 C j Ta ki be , A zu m in o, N ag an o O 04 .0 4. 21 K om at su T 57 1 A B 81 83 13 M . k ub ot ai 16 8 C j A sa hi , M at su m ot o, N ag an o O 04 .0 6. 25 K om at su T 62 0 A B 81 83 18 M . k ub ot ai 91 4a C j N ad a, K ob e, H yo go O 07 .0 9. 16 K om at su T 25 0 A B 81 83 39 M . k ub ot ai 60 Fj Sh im ok an uk i, N um az u, S hi zu ok a O 04 .0 4. 23 K om at su T 0 A B 81 83 01 M . k ub ot ai s2 7 Fj Is hi ok a, I ba ra ki O - Ts un eo ka Y 10 0 A B 81 83 06 M . k ub ot ai 24 1a Fj A sa hi , M at su m ot o, N ag an o O 05 .0 9. 30 K om at su T 62 0 A B 81 83 14 M . k ub ot ai 24 1b Fj A sa hi , M at su m ot o, N ag an o O 05 .0 9. 30 K om at su T 62 0 A B 81 83 15 M . k ub ot ai 97 b Fj A sa hi , M at su m ot o, N ag an o O 04 .0 5. 18 K om at su T 62 0 A B 81 83 16 M . k ub ot ai 97 d Fj A sa hi , M at su m ot o, N ag an o O 04 .0 5. 18 K om at su T 62 0 A B 81 83 17 A pp en di x 1. O ve rv ie w o f th e sa m pl ed s pe ci m en s of M . k in om ur ai ( m tD N A c yt b lin ea ge G ) an d M . k ub ot ai ( m tD N A c yt b lin ea ge E ) (h ab ita t p re fe re nc es a re s um m ar iz ed in F ig . 1 ) an d th ei r 16 S G en B an k ac ce ss io n nu m be rs . H os t a nt s pe ci es c od es : C j, C am po no tu s ja po ni cu s; C o, C am po no tu s ob sc ur ip es ; F j, F or m ic a ja po ni ca ; F s, F or m ic a sa ng ui ne a; F y, F or m ic a ye ss en si s; L c, L as iu s ca pi ta tu s; L f, La si us fl av us ; L fu , L as iu s fu ji; L j, La si us ja po ni cu s; L ni , L as iu s ni pp on en si s; L sa , L as iu s sa ka ga m ii; L sp , L as iu s sp at he pu s; L u, L as iu s um br at us ; M j, M yr m ic a je ss en si s; M k, M yr m ic a ko to ku i; Pl , P ol yr ha ch is la m el lid en s; P pu , P ri st om yr m ex p un ct at us ; P s, P ol ye rg us s am ur ai ; T rs , R et ic ul ite rm es s pe ra tu s; T t, Te tr am or iu m ts us hi m ae ; A j, A ph ae no ga st er ja po ni ca ; O ut , c ol le ct ed fr om o ut si de a n an t n es t. O , o pe n ha bi ta t; S, s ha de d ha bi ta t; -, no d at a. * , M . k in om ur ai m tD N A li ne ag e D ; * *, M . k ub ot ai m tD N A li ne ag e F. (C on tin ua tio n) T Komatsu, M Maruyama, T Itino - Two Myrmecophilus species differentiate their habitat use372 Ant Subfamily (No. of species) Genus Species No. of crickets found (Total nests surveyed) No. of M. kinomurai found No. of M. kubotai found Amblyoponinae (1) Amblyopone A. silvestrii 0 (2) 0 0 Formicinae (31) Acropyga A. nipponensis 0 (3) 0 0 Camponotus C. devestivus 0 (3) 0 0 C. japonicus 13 (43) 3 5 C. kiusiuensis 0 (2) 0 0 C. nawai 0 (1) 0 0 C. nipponicus 0 (1) 0 0 C. obscuripes 3 (4) 1 0 C. vitiosus 0 (4) 0 0 Formica F. fukaii 0 (1) 0 0 F. hayashi 13 (40) 0 0 F. japonica 206 (115) 3 9 F. lemani 0 (15) 0 0 F. sanguinea 5 (2) 1 0 F. yessensis 4 (8) 1 0 Lasius L. capitatus 3 (3) 1 1 L. flavus 56 (46) 8 0     L. fuji 6 (6) 0 2 Lasius L. hayashi 1 (22) 0 0 L. japonicus 221 (243) 25 24 L. nipponensis 13 (5) 4 3 L. orientalis 5 (2) 0 0 L. productus 0 (1) 0 0 L. sakagamii 5 (15) 0 2 L. spathepus 18 (9) 5 0 L. talpa 0 (3) 0 0 L. umbratus 2 (7) 1 0 Nylanderia N. flavipes 0 (87) 0 0 N. sakurae 0 (5) 0 0 Plagiolepis P. flavescens 0 (1) 0 0 Polyrhachis P. lamellidens 3 (1) 1 0 Prenolepis P. sp. 0 (1) 0 0 Dolichoderinae (2) Ochetellus O. glaber 0 (15) 0 0 Technomyrmex T. gibbosus 0 (2) 0 0 Appendix 2. Overview of ant nests surveyed and numbers of ant crickets found. Sociobiology 62(3): 364-373 (September, 2015) 373 Ant Subfamily (No. of species) Genus Species No. of crickets found (Total nests surveyed) No. of M. kinomurai found No. of M. kubotai found Myrmicinae (24) Aphaenogaster A. japonica 4 (23) 1 0 Cardiocondyla C. kagutsuchi 0 (1) 0 0 Crematogaster C. matsumurai 0 (4) 0 0 C. osakensis 0 (21) 0 0 C. vagula 0 (7) 0 0 Myrmica M. jessensis 1 (1) 0 1 Myrmica M. kotokui 6 (38) 0 1 M. taediosa 0 (2) 0 0 Pheidole P. fervida 1 (51) 0 0 P. noda 0 (26) 0 0 P. pieli 0 (5) 0 0 Pristomyrmex P. punctatus 2 (36) 1 0 Pyramica P. benten 0 (4) 0 0 P. hexamera 0 (1) 0 0 P. membranifera 0 (1) 0 0 Solenopsis S. japonica 0 (9) 0 0   Monomorium M. intrudens 0 (4) 0 0 Carebara C. yamatonis 0 (2) 0 0 Strumigenys S. lewisi 0 (25) 0 0 Temnothorax T. spinosior 0 (2) 0 0 Tetramorium T. bicarinatum 0 (3) 0 0 T. tsushimae 281 (159) 1 2 Vollenhovia V. emeryi 0 (10) 0 0 Ponerinae (8) Cryptopone C. sauteri 0 (8) 0 0 Hypoponera H. nubatama 0 (6) 0 0 H. sauteri 0 (1) 0 0 Pachycondyla P. chinensis 0 (35) 0 0 Pachycondyla P. javana 0 (5) 0 0 P. pilosior 0 (11) 0 0 Ponera P. japonica 0 (1) 0 0 P. scabra 0 (2) 0 0 Proceratiinae (3) Proceratium P. itoi 0 (1) 0 0 P. japonicum 0 (1) 0 0     P. watasei 0 (2) 0 0 Termite (1) Reticulitermes R. speratus 1 0 1 Outside nest 6 1 1 Total     880 (1250) 58 52 Appendix 2. Overview of ant nests surveyed and numbers of ant crickets found (Continuation).