

 Peer Reviewed Article Vol.3(2) September 2001

Automatic extraction and analysis of financial data from
the EDGAR database
Christoph Leinemann
schlottmann@aifb.uni-karlsruhe.de
Institute AIFB, University of Karlsruhe (TH)

Frank Schlottmann
schlottmann@aifb.uni-karlsruhe.de
Institute AIFB, University of Karlsruhe (TH)

Detlef Seese
seese@aifb.uni-karlsruhe.de
Institute AIFB, University of Karlsruhe (TH)

Thomas Stuempert
stuempert@aifb.uni-karlsruhe.de
Institute AIFB, University of Karlsruhe (TH)

Contents

1. Introduction
2. Structure of SEC 10-K filings containing semistructured company data
3. Dextrapi wrapper
4. Edgar2xml
5. Ongoing work
6. References

1. Introduction

Contemporary financial markets cause a growing need for quick access to information
supporting trading decisions. Since the amount of information available on the World-Wide
Web is exponentially growing, it is a huge problem to find useful and reliable information
efficiently and at the right time. Intelligent systems (e.g. Almeida Ribeiro et al. 1999;
Goonatilaki and Treleaven 1995; Frick et al. 1996; Hermann et al. 1998) and the new
technology of software agents (Klusch 1999) can be useful tools for accomplishing this task.

We follow the latter approach by implementing Edgar2xml, a software agent which extracts
fundamental company data from the Electronic Data Gathering, Analysis and Retrieval
(EDGAR) database of the United States Securities and Exchange Commission (SEC) and
outputs this data in a format which is useful to support stock market trading decisions. The
SEC is a regulatory authority for securities markets in the United States with the task to

protect investors and to maintain fair, honest and efficient markets. Registered companies are
required to file certain financial company data on forms (e.g. 'form 10-Q' for quarterly
financial reports and 'form 10-K' for annual reports), which are then made publically
available on the EDGAR database. The database can be accessed via a WWW interface and
contains documents reaching back to 1994. According to their high relevance for investor
decisions, we will concentrate on data extraction from form 10-K filings, although the
methods presented in this article can be applied to any other type of filing as well.

While companies use some SGML tags in their filings, documents in the EDGAR database
generally contain only very few tags, for example <TABLE> at the beginning and
</TABLE> at the end of balance sheet information on some but not all 10-K forms. The
balance sheet itself is pure ASCII text and can easily exceed a size of 200 KB. There is a
need for automatic extraction of relevant data, because investors who are interested in
quantitative balance sheet information naturally prefer immediate online access to relevant
data over having to read the entire 10-K filing.

Currently several EDGAR agents exist, for example EDGAR online, 10-K Wizard and
FRAANK(Kogan et al. 1998). They are used on portal sites for general financial information
(e.g. at Yahoo! and BigCharts). These EDGAR agents, however, do not fragment a balance
sheet into its components but can only extract well structured passages, that is, extract a
whole balance sheet. They are unable to extract detailed information like single balance sheet
items from the ASCII passages.

If not only the online extraction of entire balance sheets but also the process of online
financial analysis is supported by software, investors will be able to analyse companies faster
and more conveniently. This is the goal of our software agent, Edgar2xml, which will be
introduced in the following sections.

2. Structure of SEC 10-K filings containing semistructured company data

Automatic extraction of unstructured information is an almost impossible task. Hence our
agent uses the semistructure found in some SEC 10-K filings. Valid for a specific company
and a single year, form 10-K is divided into four parts. Each part consists of several different
sections of the annual report of the company which are organized as numbered items. An
overview of form 10-K's structure with special respect to those items containing balance
sheets and other financial information is given below (Skousen 1991; Leinemann 2000).

Figure 1 Overview of form 10-K structure

We focused our work on items 8 and 14, which contain audited balance sheets for two years
as well as three audited annual statements of income and cash flow, and supplemental
financial data schedules (FDS). The FDS consist of aggregated financial information and

 top

selected financial ratios.

Only the FDS are sufficiently tagged to be machine understandable in the sense of XML.
Our software agent, however, implements a new Java-based methodology for mining even
other, semistructured parts of a balance sheet.

We cannot query SEC filings in a database-like fashion based on their underlying structure.
However, we can provide database-like querying for semi-structured sources by building
wrappers around these sources. Each source is wrapped with a translator (or wrapper) that
logically converts the underlying data objects into a common information format. Before we
will be able to introduce Edgar2xml agent it is therefore necessary to have a closer look at
dextrapi wrapper, a general API for Data EXTRaction.

3. Dextrapi wrapper

3.1 Overview

The dextrapi wrapper is a framework for extracting information, for example financial data,
from any text-based resource. The extracted information is transformed into XML syntax.
Most wrapper approaches (Azavant and Sahuguet 1999; Huck et al. 1998) need a fixed
structure, for example HTML structure, in the file they have to extract from. Dextrapi is able
to process even ASCII text sources with changing structure, that is dextrapi detects the
beginning of a balance sheet whether the beginning is marked with a tag or special ASCII
text. The following picture shows the architecture of dextrapi:

Figure 2 Dextrapi architecture

The data extraction process is accomplished as follows:

1. Text from external sources is written into an input buffer.

2. The text in the input buffer is read by a parser.

3. The knowledge database of the document manager provides the parser with regular
expressions . These regular expressions are needed for section and keyword identification.
We define section identification as identification of the position where the extraction process

 top

starts or ends, for example the beginning of some table. Keyword identification detects items
which should be extracted. The document manager organizes the parsing process.

4. For section identification, the parser fires an event if a regular expression in the parser's
knowledge base matches some ASCII text in the input buffer. This event activates the data
listener.

5. The data listener is activated on receiving an event from the parser. Extraction within a
document's section is done by the parser. The parser reads out the input buffer until the data
listener detects a structure specified by a regular expression. If the specified structure is
detected, relevant information has been found and the parser's data event class fires an event
to the listener.

6. Each detected keyword is transformed to a Document Object Model (DOM) element by
the listener, that is, the content of a section is transformed to be part of a DOM tree, elements
of this DOM tree are generated and sent to the document manager.

7. The internal data structure of the document manager generates a DOM tree from the DOM
fragments of the data listener. Each DOM element represents relevant information that is
specified by regular expressions and that is to be extracted. The section listener generates a
representation of the text document's structure which is then passed to the internal data
structure of the document manager.

8. The document manager writes elements of the DOM tree to an XML output stream which
conforms to an XML schema.

3.2 Parser

The parser gets its information from the knowledge database that describes when to fire an
event. We define parser knowledge as a set of keywords and regular expressions that the
parser needs to fire events if an ASCII text matches some element of this set. Parser
knowledge consists of section knowledge and data knowledge. The section knowledge for
identification of the sections (e.g. SEC Header for company identification, balance sheet,
FDS) has the columns as shown in Table 1.

Table 1 Section knowledge

Name Name of a section
sectionID key for identification of the section
section-

Beginning
contains a regular expression matching the beginning of
a section

sectionEnding contains a regular expression matching the ending of a
section

subSectionOf contains the sectionID of its parent section or '-1' if it is
the root section. There can only be one root section

beginning-
Scope

can have the value 'cursor' or 'buffer' and relates to the
scope which is subject to the match of the beginning
regular expression

endingScope
can have the value 'cursor' or 'buffer' and relates to the
scope which is subject to the match of the regular
ending expression

We use section knowledge and data knowledge to optimise the parsing process, which is
organized in two steps. In the first step, interesting sections (SEC-Header, a whole balance
sheet, the Financial Data Schedules) are identified. In the second step, data knowledge is
used for keyword detection, identifying the data (financial items) in a section that is to be
extracted. The separation of structural information, like the beginning of a section, from data
extraction information (e.g. keywords detecting a certain structure in the underlying ASCII
text) results in an efficient parsing process.

The data knowledge consists of knowledge about the data in a section that is to be extracted
and has the columns as shown in Table 2.

Table 2 Data knowledge

The parser reads the SEC filing through a buffer that consists of several lines. Within the
buffer one line represents the cursor. While the buffer moves through the file, the buffer fires
two kind of events, section events and data events. The list of section events which are fired
is dynamically changing according to the section knowledge from the knowledge database.
For every section that is entered, the possible subsection events and the section ending event
are loaded into the firing list. The firing list for data events is changed with the parser's
plugKnowledge(String section) method, which queries the database for the data events that
occur in a section and adds them to the firing list. This is useful when only data of a certain
section is of interest, like a balance sheet section, because it avoids redundant data events to
be fired throughout the whole document.

The parser registers and unregisters data event listeners and section event listeners. When
dealing with section events, the parser performs event-single-casting, that is that only one
listener object can register to the parser. Concerning data events the parser serves as an
event-multi-caster, that is several data listener objects can register to receive data events. The
document manager registers itself as a section listener and manages which regular
expressions of its knowledge database (see Figure 2) are activated and therefore sent to the

burnable

can have the value true or false. If true the section
occurs only once per encapsulating section. If false the
section can occur several times within it’s parent section

Name Name of the data to be extracted
dataId serving as a primary key

data a regular expression matching the data associated with the
name

parent
a sectionID within this data occurs. This is a foreign key
and relates to the field 'sectionID' in the section knowledge
entity

priority an integer determining the order in which the events are
fired in case they occur in the same scope

scope this field is the same as the scope of the section knowledge
entity

depth the number of bracket pairs the data of the match is
embraced in

burnable
can have the value true or false. If true the data occurs only
once per encapsulating section. If false the data can occur
several times within its parent section

listener registry. The registry administers these regular expressions, if a regular expression is
not needed any more, it will be deleted from the registry. One or several data listener objects
can register to map data. The firing process is called every time when a new line is added to
the buffer. According to the regular expressions that have matched buffer and cursor some
events are instantiated and methods of the registered listeners are called passing the
appropriate event as a parameter.

3.3 Listener

The listener interface requires the methods data(DataEvent). The data() method is supplied
with a formal parameter of type DataEvent. The DataEvent object encapsulates two objects.
One is the match-object encapsulating the data that has been retrieved and the other one is a
string-object representing the name of the data. The listener stores information in its internal
DOM representation.

The data listener returns a DOM element representing the document fragment that the data
listener has created. The data event object encapsulates two objects of type match and string.
The match object encapsulates the data that has been retrieved. It can be accessed through its
toString() method. Invoking the getName() method on data event returns a string
representing the name of the data. The data will be stored in an appropriate place within an
internal DOM element, for example by appending a DOM text node that includes the data or
by appending an attribute name-value-pair or by creating a sub-element and then appending a
text node. A mapping to an internal DOM structure can be performed. Invoking the getData()
method on data listener returns the internal DOM element that has been modified through
data method invocations. This element now contains a document fragment that can be further
processed from the document manager that has invoked getData().

The section listener returns a DOM object that represents the whole document that has been
parsed. Two more methods, sectionBeginning(SectionEvent) and sectionEnding
(SectionEvent) are required, they are invoked when sections as defined in section knowledge
begin and end.

3.4 Document manager

The document manager consists of section listeners and holds a reference on the parser
creating data listener objects if the document manager gets an event for extracting a section.
The sectionBeginning() method supplies the parser with a certain class of events to fire and
registers the matching data listener object. This class of events can be queried from the parser
knowledge database according to the current section.

The number of events the parser fires and the number of listeners that are registered is crucial
to the performance of the parser. To achieve high performance the sectionEnding() method
removes data knowledge from the parser by deleting the class of events associated with the
ending section from the parser's firing list and data listener objects will be set unregistered.
This improves the speed of the parsing process because the number of target methods which
are called while firing an event are reduced.

Now we are able to describe Edgar2xml, the agent for extracting financial data from SEC
filings.

4. Edgar2xml

 top

First we give an overview of the Edgar2xml agent architecture and explain the components,
that is, the different layers (see Figure 3).

Figure 3 Overview of Edgar2xml's architecture

4.1 Data acquisition layer

The data acquisition layer is responsible for retrieving the target file and for opening a data
input stream that is passed to the data extraction layer, that is it extracts the text-based data
from the EDGAR database and writes it to the input buffer. The data acquisition layer
receives a request with the parameters company identification and year from the processing
layer and the data acquisition layer sends the text-based data to the data extraction layer.

4.2 Data extraction layer

The data extraction layer performs the text mining process. It receives the data in its
proprietary format and processes it. A parser reads the data input stream and fires
corresponding events identifying relevant data that hane been found. The parser reads regular
expressions from the knowledge database.

In Figure 4 a typical sample input file is presented showing the architecture of a 10-K filing.
Keywords for detecting the balance sheet section are in this case 'balance', 'sheet', '<table>'
and 'Current assets'. In this example there are only two listed balance sheet items, namely
'Cash and cash equivalents' and 'Short-term investments'.

Figure 4 Excerpt from form 10-K for Intel Corp.

<SEC-DOCUMENT>0001012870-00-001562-index.html : 20000324

<SEC-HEADER>0001012870-00-001562.hdr.sgml : 20000324

ACCESSION NUMBER: 0001012870-00-001562

CONFORMED SUBMISSION TYPE: 10-K

PUBLIC DOCUMENT COUNT: 6

CONFORMED PERIOD OF REPORT: 19991225

FILED AS OF DATE: 20000323

The task of the listeners is the following:

Listeners get the events and generate an internal object representation of the events they

FILER:

 COMPANY DATA:

 COMPANY CONFORMED NAME: INTEL CORP

 CENTRAL INDEX KEY: 0000050863

 STANDARD INDUSTRIAL CLASSIFICATION: SEMICONDUCTORS & RELATED DEVICES
[3674]

 IRS NUMBER:941672743

.

.

Page 14

<PAGE>

 Consolidated balance sheets

December 25, 1999 and December 26, 1998

(In millions--except per share amounts)

<TABLE>

<CAPTION>

1999 1998

-------- --------

<S> <C> <C>

Assets

Current assets:

 Cash and cash equivalents $ 3,695 $ 2,038

 Short-term investments 7,705 5,272

.

.(..... items of a balance sheet)

. Liabilities

.

.(.... items of a balance sheet)

receive. This object representation of the data can be accessed by the data processing layer.
The data extraction layer applies both object-model and event-driven parsing: We use the
event driven concept for the identification of the different sections, that is items of a form 10-
K and the object model approach, that is a DOM parser, for the representation of the data
extracted from these sections. This combination guarantees good performance without a lack
of power in rendering the data.

4.3 Data processing layer

The extraction layers store balance sheet items in a DOM object. Now the data processing
layer transforms the DOM elements into an XML data output stream. Figure 5 displays such
an XML output which contains each detected financial item. Balance sheet items have been
converted to XML. This XML data conform to an XML schema, XML Data Reduced
(XDR), that is registered at Biztalk, a public repository for XML schemata, that is a set of
rules for describing the underlying document structure of the XML document.

Figure 5 Excerpt from an XML output for form 10-K of Intel Corp.

<?xml version='1.0'?>

<SECFiling>

<SECHeader>

 <CompanyData>

 <SIC>

 <SICName>SEMICONDUCTORS &
RELATED DEVICES </SICName>

 </SIC>

<CompanyConformedName>INTEL CORP

</CompanyConformedName>

 <IRS>941672743</IRS>

 </CompanyData>

</SECHeader>

<BalanceSheet>

 <BalanceSheetHeader>

 <columns>

 <year>1999</year>

 <year>1998</year>

 </columns>

 <Multiplier>1000000</Multiplier>

 <Currency>USD</Currency>

 </BalanceSheetHeader>

<AssetsFixed>

 <constructionInProgress>

 <number year='1999'>1460</number>

 <number year='1998'>1622</number>

 </constructionInProgress>

 </AssetsFixed>

</BalanceSheet>

<EX_27>

.... <EX-27Header>

 <Legend> THIS SCHEDULE CONTAINS
SUMMARY

INFORMATION EXTRACTED FROM INTEL
CORPORATION'S

CONSOLIDATED STATEMENTS OF INCOME
AND

CONSOLIDATED BALANCE SHEETS

</Legend>

 <Multiplier>1000000</Multiplier>

 <PeriodType>12</PeriodType>

 <FiscalYearEnd>DEC-25-
1999</FiscalYearEnd>

 <PeriodEnd>DEC-25-1999</PeriodEnd>

 </EX-27Header>

Several recommendations exist at the World-Wide Web Consortium for XML schemas, for
example XML-Schema, XML-Data, Document Content Description (DCD) and Document
Type Definitions (DTDs). Each XML schema has its own syntax for constructing these rules
and each XML schema has a different set of features for defining the rules. This data can be
used as a message for other applications like a financial analysis tool that will use XML data
for calculating ratios etc. Document Type Definitions do not allow to define data types like
integer or real numbers which are necessary for processing financial data. Therefore we use
the XDR schema, in which data types for each financial ratio can be defined. For
presentation purposes the XML data are transformed by an XSL-processor into formats like
HTML or WML.

5. Ongoing work

The activities of building agents for the automatic transformation of fundamental company
data into a representation that enables and supports quick trading decisions cannot be
separated from standardization activities. In September 1999 the XFRML workgroup was
founded from AICPA with the aim to develop a standardized computer language for
describing financial reports with only one XML vocabulary. The XFRML specification, a
XML dialect for financial applications named XBRL (Extensible Business Reporting
Language), is still in use. At the moment XFRML shows only a sample 10-K filing which
adapts XML tags to each ASCII-10-K output. Therefore there is a strong need for only one
specification for all 10-K filings which enable quick access to 10-K filings supporting
financial analysis and fast trading decisions. We have shown that it is possible to
automatically extract financial data and transform the data into XML. With the usage of
XML for describing financial data, the data become machine understandable and reusable. At
the moment we do not detect all balance sheet items. Therefore the scope of Edgar2xml can
be extended in two dimensions:

Improving extraction quality: Include more financial items in a single balance sheet
and detect synonyms (financial items of different types but with the same meaning).
This task could be done by modelling financial data with an ontology.
Extending extraction scope: Extract not only balance sheet information but also a
consolidated statement of income and consolidated statement of cash flow.

Up to now Edgar2xml has been capable of extracting the financial data of balance sheets and
the financial data schedules. By specifying new data events in the database and by
implementing new listeners the functionality can be extended to other applications.

 <Assets>

 <AssetsCurrent>

 <CashAndEquivalents>

 <number year='1999'>3695</number>

 <number year='1998'>2038</number>

 </CashAndEquivalents>

 </AssetsCurrent>

 <Assets TotalAssets='43849'>

 <CurrentAssets TotalCurrentAssets='17819'>

 <Cash>3695</Cash>

 <Securities>8093</Securities>

</EX_27>

</SECFiling

 top

Acknowledgement

The authors would like to thank Tobias Dietrich for reading the manuscript and for many
helpful suggestions.

6. References

Almeida Ribeiro, R., Zimmermann, H.-J., Yager, R. and Kacprzyk, J. 1999. Soft computing
in financial engineering, studies in fuzziness and soft computing. Heidelberg: Springer.

Azavant, F. and Sahuguet, A. 1999. Web ecology: recycling HTML pages as XML
documents using W4F. Submitted to WebDB'99, Philadelphia, June 1999.

Goonatilake, S. and Treleaven, P. (eds.) 1995. Intelligent systems for finance and business.
Chichester: Wiley.

Frick, A., Herrmann, R., Kreidler, M., Narr, A. and Seese, D. 1996. A genetic-based
approach for the derivation of trading strategies on the German stock market. In Amari, S.;
Xu, L; Chan, L.-W.; King, I. and Leung, K.-S. (eds.) Proceedings of the 3rd International
Conference on Neural Information Processing, Hong Kong, September 1996. Singapore:
Springer, 1996, pp. 766-770.

Herrmann, R., Kreidler, M., Seese, D. and Zabel, K. 1998. A fuzzy-hybrid approach to stock
trading. In Usui, S. and Omori, T. (eds.) Proceedings of ICONIP'98-Kitakyushu, The Fifth
International Conference on Neural Information Processing, Kitakyushu, Japan, October
1998. Amsterdam: IOS Press, 1998, pp. 1028-1032.

Huck, G., Fankhauser, P.,Aberer, K. and Neuhold, E. 1998. JEDI: Extracting and
synthesizing information from the Web. Submitted to COOPIS 98, New York: IEEE
Computer Society Press.

Klusch, M. 1999. Intelligent information agents - agent-based information discovery and
management on the Internet. Springer.

Kogan, A., Nelson, K., Srivastava, R., Vasarhelyi, M. and Lu, H. 1998. FRAANK: Financial
reporting and auditing agent with Net Knowledge. Collected abstracts of the American
Accounting Association Annual Meeting, 1998.

Leinemann, C. 2000. Examination of public companies' financial information dissemination
in Europe and the USA. Proposal and sample implementation of a software agent for the use
of extracting and disseminating financial information for the purpose of maximal reusability,
diploma thesis, Institute AIFB, University of Karlsruhe (TH).

Skousen, F. 1991. An introduction to the SEC. Cincinnati: South-Western.

 top

 top

Disclaimer

Articles published in SAJIM are the opinions of the authors and do not
necessarily reflect the opinion of the Editor, Board, Publisher, Webmaster
or the Rand Afrikaans University. The user hereby waives any claim

he/she/they may have or acquire against the publisher, its suppliers,
licensees and sub licensees and indemnifies all said persons from any
claims, lawsuits, proceedings, costs, special, incidental, consequential or
indirect damages, including damages for loss of profits, loss of business or
downtime arising out of or relating to the user’s use of the Website.

 top

ISSN 1560-683X

Published by InterWord Communications for the Centre for Research in Web-based Applications,
Rand Afrikaans University

