Introduction Acute and chronic musculoskeletal soft-tissue injuries are common during participation in physical activity.1 Multiple extrinsic and in- trinsic risk factors are implicated in the aetiology of these complex injuries.2,3 In two specific injuries, anterior cruciate ligament (ACL) ruptures and chronic Achilles tendinopathy, genetic components have been identified as intrinsic risk factors. Among the genetic risk factors identified, the CO5A1 BstUI restriction fragment length poly- morphism (RFLP) has been associated with both chronic Achilles tendinopathy and ACL ruptures.3-5 The CC genotype of the COL5A1 BstUI RFLP was significantly over-represented in asymptomatic participants compared with those with chronic Achilles tendinopathy – both in South African4 and Australian3 populations. A similar finding was reported when female participants with ACL ruptures were compared with asymptomatic female controls.5 All control groups in these studies were matched for physical activity and physiological characteristics. These data suggest that individuals with a CC genotype are protected, despite the particular load and/or external forces applied to their musculoskeletal soft tissues. However, the CC genotype of the COL5A1 BstUI RFLP was not over-represented in male subjects with ACL ruptures compared with asymptomatic male controls.5 Owing to the reported increased risk of ACL ruptures among females, the ACL study analysed males and females separately. The previous two Achilles tendinopathy studies only analysed males and females as one group. Interestingly, the CC genotype frequency of the male asymptomatic participants of the ACL study was distinctly lower than the CC genotype frequencies of the asymptomatic control cohorts in which the CC genotype was over-represented.3-5 Furthermore, the male asymptomatic participants of the ACL study were approximately 10 years younger than the asymptomatic control groups in the previous two Achilles tendinopathy studies. orIgInal research arTIcle The COL5A1 gene and musculoskeletal soft-tissue injuries abstract Background. It has been shown that there is an association be- tween various genetic variants and Achilles tendon injuries as well as anterior cruciate ligament (ACL) ruptures. Among other variants the BstUI restriction fragment length polymorphism (RFLP) within the COL5A1 gene has been shown to be over-rep- resented in asymptomatic participants when compared with those with chronic Achilles tendinopathy, and in asymptomatic female participants when compared with those with ACL ruptures. The male asymptomatic control participants in the ACL study, which were 10 years younger than previously investigated cohorts, had a distinctly different genotype frequency. aim. The aim of this study was therefore to determine whether the distribution of the COL5A1 BstUI RFLP in the combined asymptomatic participants without any known history of tendon injuries is age dependent, particularly among males. results. When the 265 male asymptomatic participants from all studies were pooled and divided into age-group tertiles, there was a significant linear increase in the CC genotype frequency (p=0.032) among the male age groups, with the youngest group having the lowest frequency (CC genotype frequency, 13%) and the oldest group having the highest (CC genotype frequency, 27%) frequency. There was however a similar CC genotype con- tent in all three female (N=231) age groups (CC genotype fre- quency, 24 - 27%; p=0.795). correspondence: Dr Michael Posthumus UCT/MRC Research Unit for Exercise Science and Sports Medicine PO Box 115 Newlands, 7725 Tel: +27 21 650 4572 Fax: +27 21 686 7530 E-mail: mposthumus@mweb.co.za Michael posthumus (phd)1,3 alison V september (phd) 1,3 Martin p schwellnus (MB Bch, Msc (Med), Md, FacsM, FFIMs)1,3 Malcolm collins (phd) 2,1,3 1 UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town 2 South African Medical Research Council, Cape Town 3 The International Olympic Committee Centre of Excellence, Newlands, Cape Town 38 saJsM Vol 22 no. 2 2010 conclusion. The practical implication is that the selection of asymptomatic groups is of critical importance when future stud- ies of this nature are designed. Future research investigating this genetic variant as a risk factor for soft-tissue injuries should con- sider these findings when selecting asymptomatic participants. saJsM Vol 22 no. 2 2010 39 The objective of this study was therefore to further examine the age- and sex-related changes in the COL5A1 BstUI RFLP genotype frequency among the combined asymptomatic participants. More specifically, our primary aim was to determine if the CC genotype frequency of the COL5A1 BstUI RFLP among male and female subjects without a previous history of tendon injury is age dependent. Methods All 496 asymptomatic participants (265 male and 231 female) with- out a reported history of tendon injuries that were previously investi- gated in three separate publications were included in this analysis.3-5 Because of the design of the previous tendinopathy studies, it was not possible to exclude those with a history of ligament injuries. Prior to participation in these original studies, all participants gave writ- ten informed consent and completed a medical history questionnaire form. All descriptive data for the subjects with Achilles tendinopa- thy, as well as the asymptomatic control groups, were previously reported.3-5 All three studies were approved by the Research Eth- ics Committee of the Faculty of Health Sciences of the University of Cape Town and/or the Human Ethics Committee of La Trobe Univer- sity, Melbourne, Australia. The participants were combined and divided into three male and three female age groups: (i) ≤25 years old; (ii) 26 - 42 years old; and (iii) ≥43 years old. A chi-squared (χ2) test, Fisher’s exact test or χ2 test for linear trends was used to analyse differences in genotype and any other categorical data between the groups. Data were analysed using STATISTICA Version 8.0 (Statsoft Inc., Tulsa, Oklahoma, USA) and Graphpad InStat Version 3 (Graphpad Software, San Diego, California, USA) statistical programs. Statistical significance was accepted when p<0.05. A one-way analysis of variance (ANOVA) was used to determine any significant difference between the characteristics of the male and female age groups. Hardy-Weinberg equilibrium values were established using the program Genepop web version 3.4 (http://genepop.curtin.edu.au/). results There was a significant linear trend (p=0.032) for the CC genotype frequency among the male age groups (Fig. 1A). The youngest group had the lowest CC frequency (13%), and the oldest group the highest CC frequency (27%) (Fig. 1A). The CC genotype content in all three female age groups (24 - 27%) was similar (p=0.795, Fig. 1B). The general characteristics of the male and female age group tertiles are described in Table I. Table I. The general physiological characteristics of the male and female age group tertiles ≤25-year group 26 - 42-year group ≥43-year group p-value Males N=83 N=112 N=70 Age (yrs) 22.3±1.7*† 33.0±5.0*‡ 52.6±8.2†‡ (18 - 25) (26 - 42) (43 - 77) <0.001 Height (cm) 180±6 180±6 178±7 (168 - 195) (167 - 201) (164 - 195) 0.590 Weight (kg) 79.9±11.5 81.4±12.2 81.9±15.0 (61.7 - 110.0) (59.7 - 137.0) (58.0 - 136.0) 0.065 BMI (kg/m2) 24.5±2.8§ 25.2±3.4 26.0±4.3§ (18.5 - 31.7) (19.9 - 38.4) (20.2 - 39.3) 0.036 South African born (%) 79.5*† 47.7* 40.5† <0.001 Australian born (%) 10.3 29.4 36.2 Females N=63 N=108 N=60 Age (yrs) 22.6±1.7*† 32.4±4.5*‡ 52.0±6.7†‡ (19 - 25) (26 - 42) (43 - 72) <0.001 Height (cm) 166±7 168±7‡ 164±8‡ (152 - 179) (152 - 187) (145 - 181) 0.004 Weight (kg) 61.2±6.5 64.4±9.0 81.9±15.0 (49.0 - 79.2) (48.0 - 87.0) (47.0 - 115.0) 0.051 BMI (kg/m2) 22.1±2.1† 22.9±3.0 24.1±4.6† (18.1 - 28.1) (18.1 - 33.2) (18.6 - 46.7) 0.005 South African born (%) 66.1*† 31.5* 21.7† <0.001 Australian born (%) 25.4 48.2 56.7 Values are expressed as mean ± standard deviation with the range in parentheses or as a frequency. The number (N) of male and female participants in each age group is also indicated. BMI – body mass index. Post-hoc analysis: *<0.001; † <0.003; ‡ ≤0.002; § =0.026. discussion The main finding of this study was that there is a significant age- dependent increase in the distribution of the COL5A1 BstUI RFLP CC genotype in the pooled asymptomatic male participants of the three studies which investigated this polymorphism as a possible risk factor for musculoskeletal soft-tissue injuries. No similar trends were observed in the female subjects. We propose that the reported finding indicates that the youngest group of asymptomatic male participants consists of a mixture of individuals, similar to the general population, who are at low and high risk of musculoskeletal soft-tissue injuries (Fig. 2). However, when older subjects (who would have had a greater amount of exposure to extrinsic factors) are analysed, individuals who may have been previously uninjured, would have developed an injury. Therefore, when older asymptomatic participants are analysed, the group will contain a highly selected sample of the population at low risk of musculoskeletal soft-tissue injuries. This could explain the finding of a significant linear trend in the COL5A1 BstUI RFLP CC genotype frequency and an increased chronological age in the male subjects analysed. This proposed explanation is further supported by a departure from Hardy-Weinberg equilibrium as observed in some of the groups presented in our previous studies.3 It remains unknown why a similar trend was not observed in females. It does however suggest that the COL5A1 BstUI RFLP, as a risk factor for musculoskeletal soft-tissue injuries, is not age dependent in females. A limitation of this study was that it was not possible to analyse the South African and Australian data separately owing to small sample sizes and uneven genotype distribution. A further limitation was that, although all participants were asymptomatic with regard to a previous history of tendon injuries,3-5 not all were free of ligament injuries (owing to the study designs). In conclusion, there was an age-dependent significant increase in distribution of the COL5A1 BstUI RFLP CC genotype in the pooled asymptomatic male participants of the three studies which previously investigated this polymorphism as a possible risk factor for soft-tissue injuries. The practical implication of this finding is that the selection of control groups is of critical importance when future studies of this nature are designed. Future research investigating this genetic variant as a risk factor for soft-tissue injuries should consider the findings of this study when selecting an asymptomatic control group. perspective Genetic variants, such as the COL5A1 BstUI RFLP, may have a significant impact on the prevention of musculoskeletal soft-tissue injures.6 Genetic variants, together with other intrinsic and extrin- sic risk factors, should eventually be used to identify individuals at increased risk of injury. Once individuals are identified as ‘at risk’, carefully designed intervention programmes should be prescribed to 40 saJsM Vol 22 no. 2 2010 Fig. 2. Proposed explanation for the significant linear trend in CC genotype frequency among the asymptomatic male subjects when divided into the three age groups (<25 years, 25 - 41 years, and >41 years). It is proposed that asymptomatic subjects in the age category <25 years will more than likely consist of individu- als at high (black shaded) and low (no shade) risk of muscu- loskeletal soft-tissue injury. Among older asymptomatic groups of participants (25 - 41 years, and >41 years) the relative propor- tion of individuals at high risk of injury will be reduced, as the likelihood of high-risk individuals becoming injured over time is greater than the likelihood of low-risk individuals becoming injured. Fig. 1. The genotype frequency of the COL5A1 BstUI restric- tion fragment length polymorphism (RFLP) in all (A) male and (B) female asymptomatic participants divided according to age into participants (≤25 years old black bars), 26 - 42 years old (thatched bars), and >42 years old (clear bars). A significant linear trend (p=0.032) for the CC genotype content among the male age groups was found. The number of subjects (n) within each category, as well as the Hardy-Weinberg equilibrium (HWE) p-values, are shown in parentheses. saJsM Vol 22 no. 2 2010 41 prevent the injury from occurring and to assist the clinical manage- ment of these individuals. The current study provides further infor- mation on the COL5A1 BstUI RFLP. The findings may help future studies investigating this genetic variant as a risk factor for musculo- skeletal soft-tissue injuries and thereby assist future multifactorial risk models. acknowledgements This study was supported in part by funds from the National Research Foundation (NRF) of South Africa (Grant No. FA2005021700015 and FA2007032700010), the University of Cape Town, and the South Af- rican Medical Research Council (MRC). AVS was supported by the postdoctoral innovation award of the NRF. competing interests. None. references 1. Clayton RA, Court-Brown CM. The epidemiology of musculoskeletal tendi- nous and ligamentous injuries. Injury 2008;39(12):1338-1344. 2. Meeuwisse WH. Assesing causation in sport injury: a multifactorial model. Clin J Sport Med 1994;4:166-1670. 3. September AV, Cook J, Handley CJ, Van der Merwe L, Schwellnus MP, Collins M. Variants within the COL5A1 gene are associated with Achilles tendinopathy in two populations. Br J Sports Med 2009;43(5):357-365. 4. Mokone GG, Schwellnus MP, Noakes TD, Collins M. The COL5A1 gene and Achilles tendon pathology. Scand J Med Sci Sports 2006;16(1):19- 26. 5. Posthumus M, September AV, O’Cuinneagain D, van der Merwe W, Schwellnus MP, Collins M. The COL5A1 gene is associated with in- creased risk of anterior cruciate ligament ruptures in female participants. Am J Sports Med 2009;37(11):2234-2240. 6. Collins M. Genetic risk factors for soft tissue injuries 101: A practical sum- mary to help clinicians understand the role of genetics and ‘personalised medicine’. Br J Sports Med (in press) Available on EPUB: http://www. ncbi.nlm.nih.gov/pubmed/19553227 Guidance on Prescribing Alimentary Tract and Metabolism Blood and Blood-forming Organs Cardiovascular System Dermatologicals Genitourinary System and Sex Hormones Systemic Hormonal Preparations General Anti-infectives for Systemic Use Antineoplastic and Immunomodulating Agents Musculoskeletal System Central Nervous System Antiparasitic Products Respiratory System Sensory Organs Contrast Media Treatment of Poisoning Published by the South African Medical Association, the formulary is aimed at doctors, pharmacists, nurses, dentists and others concerned with the safe and cost-effective prescribing of medicines. The South African Medicines Formulary is researched and written by members of the Division of Clinical Pharmacology of the University of Cape Town, in collaboration with health care professionals. The South African Medical Association, Health and Medical Publishing Group, Private Bag X1, Pinelands 7430 ISBN 978-1-875098-43-9978-1-875098-43-9 S outh A frican M edicines Form ulary Ninth Edition 9 NINTH EDITION Produced by the Division of Clinical Pharmacology, Faculty of Health Sciences, University of Cape Town. Published by the Health and Medical Publishing Group of the South African Medical Association. South African Medicines Formulary SAMF SAM F The ESSENTIAL REFERENCE for ever y healthcare professional! The carefully and thoroughly updated 9th edition of the South African Medicines Formulary (SAMF) can now be ordered. It is your essential reference to rational, safe and cost-efficient use of medicines. That is why you should not prescribe without it. The newly published SAMF provides easy access to the latest, most scientifically accurate information – including full drug profiles, clinical notes and special prescriberʼs points. The convenient pocket-size design enables you to fit it comfortably into your bag or hospital coat pocket – always at hand for ready reference. W H Y YO U S H O U L D N ’ T B E W I T H O U T T H E S A M F 9 T H E D I T I O N The new 9th edition of SAMF provides expanded information on key issues facing South African healthcare professionals today, including antiretrovirals, TB treatment guidelines, management guidelines for asthma and chronic heart failure, other common chronic conditions and prescribing in sport. • It presents practical, new approaches to the management of venomous bites and stings. • It outlines extensively the acute adverse reactions to drugs of abuse, and their management. • It features new as well as existing drugs, indexed by both trade and generic names. • It offers fresh insights into informed prescribing and carries cautionary guidelines on drug interactions and a range of special risk patients and conditions. And, as always, you can rely on... • the professional compilation and editing by a team from the Division of Clinical Pharmacology, UCT • an independent and unbiased guide on prescribing in South Africa today • the indication of agents included in the SA and WHO essential drug lists • support of the SA national drug policy • guidance for prescribing during pregnancy and lactation, and in patients with porphyria, liver disease and renal impairment (including tables with drug dosage adjustments); and • indexed and page tabs for quick and easy access to each section. Y O U R S A T I S F A C T I O N I S G U A R A N T E E D 3 e a s y o r d e r o p t i o n s : 1. PHONE EDWARD OR BYRON - 021 6817000 2. FAX the completed SAMF order form to 0866006218 3. EMAIL: edwardm@hmpg.co.za OR byronm@hmpg.co.za Guidance on Prescribing Alimentary Tract and Metabolism Blood and Blood-forming Organs Cardiovascular System Dermatologicals Genitourinary System and Sex Hormones Systemic Hormonal Preparations General Anti-infectives for Systemic Use Antineoplastic and Immunomodulating AgentsMusculoskeletal System Central Nervous System Antiparasitic Products Respiratory System Sensory Organs Contrast Media Treatment of Poisoning Published by the South African Medical Association, the formulary is aimed at doctors, pharmacists, nurses, dentists and others concerned with the safe and cost-effective prescribing of medicines.The South African Medicines Formulary is researched and written by members of the Division of Clinical Pharmacology of the University of Cape Town, in collaboration with health care professionals. The South African Medical Association, Health and Medical Publishing Group, Private Bag X1, Pinelands 7430 ISBN 978-1-875098-43-9 978-1-875098-43-9 S outh A frican M edicines Form ulary Ninth Edition 9 NINTH EDITIONProduced by the Division of Clinical Pharmacology, Faculty of Health Sciences, University of Cape Town.Published by the Health and Medical Publishing Groupof the South African Medical Association. South African Medicines Formulary SAMF SAM F