SQU Journal for Science, 2017, 22(2), 89-95 DOI: http://dx.doi.org/10.24200/squjs.vol22iss2pp89-95 Sultan Qaboos University 89 Approximation Properties of de la Vallรฉe- Poussin sums in Morrey spaces Ahmed Kinj*, Mohammad Ali and Suleiman Mahmoud Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria. *Email: A.Kinj@tishreen.edu.sy. ABSTRACT: In this paper, we investigate the problem of the deviation of a function ๐‘“ from its de la Vallรฉe-Poussin sums of Fourier series in Morrey spaces defined on the unite circle in terms of the best approximation to ๐‘“. Moreover, approximation properties of de la Vallรฉe-Poussin sums of Faber series in Morrey-Smirnov classes of analytic functions, defined on a simply connected domain bounded by a curve satisfying Dini's smoothness condition are obtained. Keywords: de la Vallรฉe-Poussin; Faber polynomials; modulus of smoothness; Morrey Smirnov classes. ุฏูŠ ุงู„ ูุงู„ูŠ ุจูˆุงุณูˆู† ููŠ ูุถุงุกุงุช ู…ูˆุฑูŠุชู‚ุฑูŠุจ ุงู„ุฏูˆุงู„ ุจูˆุงุณุทุฉ ู…ุฌุงู…ูŠุน ุฎูˆุงุต ู…ุญู…ุฏ ุนู„ูŠ ูˆุณู„ูŠู…ุงู† ู…ุญู…ูˆุฏุŒ ุฃุญู…ุฏ ูƒู†ุฌ ููŠ ูุถุงุกุงุช ู…ูˆุฑูŠ ุงู„ู…ุนุฑูุฉ ุนู„ู‰ ุฏุงุฆุฑุฉ ๐‘“ุนู† ู…ุฌุงู…ูŠุน ุฏูŠ ุงู„ ูุงู„ูŠ ุจูˆุงุณูˆู† ู„ู…ุชุณู„ุณู„ุฉ ููˆุฑูŠูŠู‡ ู„ู„ุฏุงู„ุฉ ๐‘“ุจุญุซู†ุง ููŠ ู‡ุฐู‡ ุงู„ูˆุฑู‚ุฉ ู…ุณุฃู„ุฉ ุงู†ุญุฑุงู ุฏุงู„ุฉ :ุตู„ุฎู…ุงู„ ุญุตู„ู†ุง ุนู„ู‰ ุฎูˆุงุต ุชู‚ุฑูŠุจ ุงู„ุฏูˆุงู„ ู…ู† ุตููˆู ู…ูˆุฑูŠ ุณู…ูŠุฑู†ูˆู ุงู„ู…ุนุฑูุฉ ุนู„ู‰ ู…ู†ุทู‚ุฉ ุจุณูŠุทุฉ . ูˆุนุงู„ูˆุฉ ุนู„ู‰ ุฐู„ูƒุŒ ๐‘“ุงู„ูˆุงุญุฏุฉ ููŠ ุถูˆุก ุฃูุถู„ ุชู‚ุฑูŠุจ ู„ู„ุฏุงู„ุฉ ุงู„ุชุฑุงุจุท )ุงุงู„ุชุตุงู„( ูˆู…ุญุงุทุฉ ุจู…ู†ุญูู† ูŠุญู‚ู‚ ุดุฑุท ุฏูŠู†ูŠ ู„ู„ู…ู„ูˆุณุฉ ุจู…ุฌุงู…ูŠุน ุฏูŠ ุงู„ ูุงู„ูŠ ุจูˆุงุณูˆู† ู„ู…ุชุณู„ุณู„ุฉ ูุงุจูŠุฑ. .ุฏูŠ ูุงู„ูŠ ุจูˆุงุณูˆู†ุŒ ูƒุซูŠุฑุงุช ุญุฏูˆุฏ ูุงุจูŠุฑุŒ ู…ุนุงู…ู„ ุงู„ู…ู„ูˆุณุฉุŒ ุตููˆู ุณู…ูŠุฑู†ูˆู ู…ูˆุฑูŠ: ู…ูุชุงุญูŠุฉุงู„ูƒู„ู…ุงุช ุงู„ 1. Introduction ain approximation problems in Lebesgue spaces have been studied by several authors [1, 2]. The approximation of functions of Lebesgue spaces by partial sum of Faber-Laurent series was obtained by Israfilov [3]. These results are generalized to Muckenhoupt weighted Lebesgue's spaces [4]. Approximation properties of Faber series in weighted and non-weighted Orlicz spaces were dealt with by Jafarov and Israfilov [5-7]. The concept of Morrey space, introduced by C. Morrey [8] in 1938, has been studied intensively by various authors and plays an important role in many areas such as applied mathematics, the theory of differential equations, potential theory, and maximal and singular operator theory. Currently there are several investigations relating to the fundamental problems in this space [9-14]. Therefore, the investigation into the approximation of functions by means of Fourier trigonometric series in Morrey spaces is also important in these areas of research. In the present paper, we investigate the problems of estimating the deviation of functions from their de la Vallรฉe - Poussin sums in Morrey spaces. Similar results in weighted Smirnov spaces and weighted Smirnov Orlicz spaces can be found in the papers [15-17]. 2. Notation and Basic definitions Let ๐บ be a finite simply connected domain in the complex plane โ„‚ bounded by a rectifiable Jordan curve ฮ“ and ๐บ โˆ’ โˆถ= ๐‘’๐‘ฅ๐‘ก ๐›ค. Without loss of generality, we suppose that 0 โˆˆ ๐บ. Further, let ๐›พ0 โˆถ= {๐‘ค โˆˆ โ„‚ โˆถ |๐‘ค| = 1}, ๐ท: = ๐‘–๐‘›๐‘ก ๐›พ0, ๐ทโˆ’ โˆถ= ๐‘’๐‘ฅ๐‘ก ๐›พ0. We denote by ๐‘ค = ๐œ‘(๐‘ง) the conformal mapping of ๐บ โˆ’ onto domain ๐ทโˆ’ normalized by the conditions ๐œ‘(โˆž) = โˆž, ๐‘™๐‘–๐‘š ๐‘งโ†’โˆž ๐œ‘(๐‘ง) ๐‘ง > 0, and let ๐œ“ be the inverse mapping of ๐œ‘. We begin with the following definitions: M mailto:A.Kinj@tishreen.edu.sy AHMED KINJ ET AL 90 Definition 2.1 [18] For 0 โ‰ค ๐›ผ โ‰ค 2 and 1 โ‰ค ๐‘ < โˆž, we denote by ๐ฟ๐‘,๐›ผ (ฮ“) the Morrey space, as the set of locally integrable function ๐‘“, with a finite norm: โ€–๐‘“โ€–๐ฟ๐‘,๐›ผ(ฮ“) โ‰” {sup ๐ต 1 |๐ต โˆฉ ฮ“| ฮ“ 1โˆ’ ๐›ผ 2 โˆซ |๐‘“(๐‘ง)|๐‘|๐‘‘๐‘ง| ๐ตโˆฉฮ“ } 1 ๐‘ < โˆž, where ๐ต is an arbitrary disk centered on ฮ“ and |๐ต โˆฉ ฮ“|ฮ“ is the linear Lebesgue measure of the set ๐ต โˆฉ ฮ“. In the case of ฮ“ = ๐›พ0 โ‰” {๐‘ค โˆˆ โ„‚: |๐‘ค| = 1} we obtain the space ๐ฟ ๐‘,๐›ผ (ฮณ0). Under this definition ๐ฟ๐‘,๐›ผ (ฮ“) is a Banach space. If ๐›ผ = 2 then the class ๐ฟ๐‘,2(ฮ“) coincides with the class ๐ฟ๐‘ (ฮ“), and for ๐›ผ = 0 the class ๐ฟ๐‘,0(ฮ“) coincides with the class ๐ฟโˆž(ฮ“). Moreover, ๐ฟ๐‘,๐›ผ1 (ฮ“) โŠ‚ ๐ฟ๐‘,๐›ผ2 (ฮ“) for 0 โ‰ค ๐›ผ1 โ‰ค ๐›ผ2. Thus, ๐ฟ๐‘,๐›ผ (ฮ“) โŠ‚ ๐ฟ1(ฮ“), โˆ€๐›ผ โˆˆ [0,2]. For given ๐‘“ โˆˆ ๐ฟ1(๐›พ0), let ๐‘Ž0 2 + โˆ‘ ๐‘Ž๐‘˜ (๐‘“) cos ๐‘˜๐‘ฅ + ๐‘๐‘˜ (๐‘“) sin ๐‘˜๐‘ฅ โˆž ๐‘˜=0 (1) be the Fourier series of ๐‘“, where ๐‘Ž๐‘˜ (๐‘“) and ๐‘๐‘˜ (๐‘“) are Fourier coefficients of the function ๐‘“. Further, let ๐‘†๐‘›(๐‘ฅ, ๐‘“) = ๐‘Ž0 2 + โˆ‘ ๐‘Ž๐‘˜ (๐‘“) cos ๐‘˜๐‘ฅ + ๐‘๐‘˜ (๐‘“) sin ๐‘˜๐‘ฅ ๐‘› ๐‘˜=0 be the ๐‘› ๐‘กโ„Ž partial sums of series (1). We define the ๐‘› โˆ’ ๐‘กโ„Ž de la Vallรฉe-Poussin sums of series (1) as ๐‘‰๐‘›,๐‘š(๐‘ฅ, ๐‘“) = 1 ๐‘š + 1 โˆ‘ ๐‘†๐‘˜ (๐‘ฅ, ๐‘“) ๐‘› ๐‘˜=๐‘›โˆ’๐‘š , 0 โ‰ค ๐‘š โ‰ค ๐‘›, ๐‘š, ๐‘› = 1,2,3, โ€ฆ . Definition 2.2 [19] We define the ๐‘Ÿ modulus of smoothness of a function ๐‘“ โˆˆ ๐ฟ๐‘,๐›ผ (๐›พ0) for ๐‘Ÿ = 1,2,3, . ..by the relation ๐œ”๐‘,๐›ผ ๐‘Ÿ (๐‘“, ๐‘ก) โ‰” sup |โ„Ž|โ‰ค๐‘ก โ€–โˆ†โ„Ž ๐‘Ÿ (๐‘“, . )โ€–๐ฟ๐‘,๐›ผ(ฮณ0), ๐‘ก > 0, where โˆ†โ„Ž ๐‘Ÿ (๐‘“, ๐‘ฅ) = โˆ‘ ( ๐‘Ÿ ๐‘˜ ) (โˆ’1)๐‘Ÿโˆ’๐‘˜ ๐‘“(๐‘ฅ + ๐‘˜โ„Ž)๐‘Ÿ๐‘˜=0 . The best approximation to ๐ฟ๐‘,๐›ผ (ฮณ0) in the class ๐’ฏ๐‘› of trigonometric polynomials of degree not greater than ๐‘› is defined by ๐ธ๐‘›(๐‘“)๐ฟ๐‘,๐›ผ(ฮณ0) โ‰” inf{โ€–๐‘“ โˆ’ ๐‘‡๐‘›โ€–๐ฟ๐‘,๐›ผ(ฮณ0): ๐‘‡๐‘› โˆˆ ๐’ฏ๐‘› }. Let ๐‘‡โˆ— โˆˆ ๐’ฏ๐‘› be a trigonometric polynomial such that ๐ธ๐‘› (๐‘“)๐ฟ๐‘,๐›ผ(ฮณ0) โ‰” โ€–๐‘“ โˆ’ ๐‘‡ โˆ—โ€–๐ฟ๐‘,๐›ผ(ฮณ0). If ๐‘š, ๐‘› โˆˆ โ„• such that ๐‘š โ‰ฅ ๐‘›, then we get ๐ธ๐‘š(๐‘“)๐ฟ๐‘,๐›ผ(ฮณ0) โ‰ค ๐ธ๐‘›(๐‘“)๐ฟ๐‘,๐›ผ(ฮณ0). (2) Using the boundedness of operator ๐‘“ โ†’ ๐‘†๐‘› (. , ๐‘“) in the Morrey spaces ๐ฟ ๐‘,๐›ผ (๐›พ0) we get APPROXIMATION PROPERTIES OF DE LA VALLร‰E-POUSSIN SUMS IN MORREY SPACES 91 โ€–๐‘“ โˆ’ ๐‘†๐‘›(. , ๐‘“)โ€–๐ฟ๐‘,๐›ผ(๐›พ0) โ‰ค โ€–๐‘“ โˆ’ ๐‘‡ โˆ—โ€–๐ฟ๐‘,๐›ผ(๐›พ0) + โ€–๐‘‡ โˆ— โˆ’ ๐‘†๐‘›(. , ๐‘“)โ€–๐ฟ๐‘,๐›ผ(๐›พ0) = ๐ธ๐‘›(๐‘“)๐ฟ๐‘,๐›ผ(ฮณ0) + โ€–๐‘†๐‘›(. , ๐‘“ โˆ’ ๐‘‡ โˆ—)โ€–๐ฟ๐‘,๐›ผ(๐›พ0) โ‰ค ๐ธ๐‘› (๐‘“)๐ฟ๐‘,๐›ผ(ฮณ0) + ๐ถโ€–๐‘“ โˆ’ ๐‘‡ โˆ—โ€–๐ฟ๐‘,๐›ผ(๐›พ0) = (๐ถ + 1)๐ธ๐‘›(๐‘“)๐ฟ๐‘,๐›ผ(ฮณ0) = ๐‘๐ธ๐‘› (๐‘“)๐ฟ๐‘,๐›ผ(ฮณ0), where C is a positive constant and ๐‘ = ๐ถ + 1, i.e. there exists a constant ๐‘ such the following relation holds โ€–๐‘“ โˆ’ ๐‘†๐‘›(. , ๐‘“)โ€–๐ฟ๐‘,๐›ผ(๐›พ0) โ‰ค ๐‘๐ธ๐‘›(๐‘“)๐ฟ๐‘,๐›ผ(ฮณ0). (3) Definition 2.3 [9] We define the Morrey-Smirnov classes ๐ธ๐‘,๐›ผ (๐บ), 0 โ‰ค ๐›ผ โ‰ค 2 and 1 โ‰ค ๐‘ < โˆž, of analytic functions in ๐บ as ๐ธ๐‘,๐›ผ (๐บ) โ‰” {๐‘“ โˆˆ ๐ธ1(๐บ) โˆถ ๐‘“ โˆˆ ๐ฟ๐‘,๐›ผ (ฮ“)}. If we define โ€–๐‘“โ€–๐ธ๐‘,๐›ผ(G) โ‰” โ€–๐‘“โ€–๐ฟ๐‘,๐›ผ(ฮ“), then ๐ธ ๐‘,๐›ผ (๐บ) becomes a Banach space. Definition 2.4 [20] A smooth curve ฮ“: ฯƒ(s) is called Dini-smooth if it satisfies the condition โˆซ ฮฉ(๐œŽโ€ฒ(๐‘ ), ๐‘ ) ๐‘  ๐‘‘๐‘  ๐›ฟ 0 < โˆž, ๐›ฟ > 0, where ฮฉ(๐œŽ โ€ฒ(๐‘ ), ๐‘ ) modulus of continuity of function ๐œŽ โ€ฒ(๐‘ ). By ๐’Ÿ we denote the set of all Dini-smooth curves. If ฮ“ โˆˆ ๐’Ÿ, then [21] 0 < ๐‘1 โ‰ค |๐œ“ โ€ฒ (๐‘ค)| โ‰ค ๐‘2 < โˆž, 0 < ๐‘3 โ‰ค |๐œ‘โ€ฒ(๐‘ง)| โ‰ค ๐‘4 < โˆž (4) for some constants, ๐‘1, ๐‘2, ๐‘3 and , ๐‘4. Hence, if ฮ“ โˆˆ ๐’Ÿ and using (4), then by [9] ๐‘“ โˆˆ ๐ฟ๐‘,๐›ผ (ฮ“) โŸบ ๐‘“0 โ‰” ๐‘“ โˆ˜ ๐œ“ โˆˆ ๐ฟ ๐‘,๐›ผ (๐›พ0) (5) and the function ๐‘“0 +: ๐ท โ†’ โ„‚ defined by ๐‘“0 +(๐‘ค) = 1 2๐œ‹๐‘– โˆซ ๐‘“0(๐œ) ๐œโˆ’๐‘ค ๐‘‘๐œ ๐›พ0 , ๐‘ค โˆˆ ๐ท (6) is analytic in ๐ท and ๐‘“0 + โˆˆ ๐ธ๐‘,๐›ผ (๐ท) [9] . If ฮ“ โˆˆ ๐’Ÿ and ๐‘Ÿ = 1,2,3, โ€ฆ, we define the ๐‘Ÿ โˆ’ modulus of smoothness of ๐‘“ โˆˆ ๐ฟ๐‘,๐›ผ (ฮ“) by the relation (see, [9]) ฮฉฮ“,๐‘,๐›ผ ๐‘Ÿ (๐‘“, ๐‘ก) โ‰” ฯ‰๐‘,๐›ผ ๐‘Ÿ (๐‘“0 +, t), ๐‘ก > 0 . (7) The Faber polynomials ฮฆ๐‘˜ (๐‘ก) of degree ๐‘˜ are defined by the relation [22] ๐œ“โ€ฒ(๐‘ค) ๐œ“(๐‘ค)โˆ’๐‘ก = โˆ‘ ฮฆ๐‘˜(๐‘ก) ๐‘ค๐‘˜+1 โˆž ๐‘˜=0 , ๐‘ก โˆˆ G, ๐‘ค โˆˆ ๐ท โˆ’. (8) AHMED KINJ ET AL 92 If ๐‘“ โˆˆ ๐ธ๐‘,๐›ผ (๐บ), then by the definition 2.3, ๐‘“ โˆˆ ๐ธ1(๐บ) and hence ๐‘“(๐‘ง) = 1 2๐œ‹๐‘– โˆซ ๐‘“(๐‘ ) ๐‘  โˆ’ ๐‘ง ๐‘‘๐‘  ฮ“ = 1 2๐œ‹๐‘– โˆซ ๐œ“โ€ฒ(๐‘ค) ๐œ“(๐‘ค) โˆ’ ๐‘ง ๐‘“0(๐‘ค)๐‘‘๐‘ค ๐›พ0 , z โˆˆ G. From the last formula and the relation (8), for every ๐‘ง โˆˆ ๐บ we have ๐‘“(๐‘ง)~ โˆ‘ ๐‘Ž๐‘˜ (๐‘“)ฮฆ๐‘˜(๐‘ง) โˆž ๐‘˜=0 , ๐‘ง โˆˆ ๐บ, (9) where ๐‘Ž๐‘˜ (๐‘“) โ‰” 1 2๐œ‹๐‘– โˆซ ๐‘“0(๐‘ค) ๐‘ค ๐‘˜+1 ๐‘‘๐‘ค ฮณ0 , ๐‘˜ = 0,1,2, โ€ฆ . The ๐‘› โˆ’ ๐‘กโ„Ž de la Vallรฉe-Poussin sums of the series (9) are defined as ๐‘‰๐‘›,๐‘š(๐‘ฅ, ๐‘“) = 1 ๐‘š + 1 โˆ‘ ๐‘†๐‘˜ (๐‘ฅ, ๐‘“) ๐‘› ๐‘˜=๐‘›โˆ’๐‘š , 0 โ‰ค ๐‘š โ‰ค ๐‘›, ๐‘š, ๐‘› = 1,2,3, โ€ฆ , where ๐‘†๐‘›(๐‘ง, ๐‘“) = โˆ‘ ๐‘Ž๐‘˜ (๐‘“)ฮฆ๐‘˜ (๐‘ง) ๐‘› ๐‘˜=0 . We define the operator ๐‘‡ as follows: ๐‘‡: ๐ธ๐‘,๐›ผ (๐ท) โ†’ ๐ธ๐‘,๐›ผ (๐บ) ๐‘‡(๐‘“)(๐‘ง) โ‰” 1 2๐œ‹๐‘– โˆซ ๐‘“(๐‘ค)๐œ“โ€ฒ(๐‘ค) ๐œ“(๐‘ค)โˆ’๐‘ง ๐‘‘๐‘ค ๐›พ0 , ๐‘ง โˆˆ ๐บ. (10) In order to prove our main results, we need the following theorems. Theorem 2.1 [10] If ฮ“ โˆˆ ๐’Ÿ, then the operator ๐‘‡ defined by (10) is linear, bounded, one to one and onto. Moreover ๐‘‡(๐‘“0 +) = ๐‘“ for ๐‘“ โˆˆ ๐ธ๐‘,๐›ผ (๐บ). Theorem 2.2 [9] Let ๐‘” โˆˆ ๐ธ๐‘,๐›ผ (D) with 0 < ๐›ผ โ‰ค 2 and 1 < ๐‘ < โˆž. Then for a given ๐‘Ÿ = 1,2,3, โ€ฆ the inequality ๐ธ๐‘›(๐‘”)๐ฟ๐‘,๐›ผ(ฮณ0) โ‰ค ๐‘5 ๐œ”๐‘,๐›ผ ๐‘Ÿ (๐‘”, 1 ๐‘› + 1 ) , ๐‘› = 1,2,3, .. holds with a constant ๐‘5 > 0 independent of ๐‘›. 3. Main Results In this section, we present the main results. Theorem 3.1 Let ๐ฟ๐‘,๐›ผ (๐›พ0) be a Morrey space with 0 < ๐›ผ โ‰ค 2 and 1 < ๐‘ < โˆž, then there exists a positive constant ๐‘6 such that for any ๐‘“ โˆˆ ๐ฟ๐‘,๐›ผ (๐›พ0), 0 โ‰ค ๐‘š โ‰ค ๐‘›, ๐‘š, ๐‘› = 1,2, โ€ฆ the inequality โ€–๐‘“ โˆ’ ๐‘‰๐‘›,๐‘š(. , ๐‘“)โ€–๐ฟ๐‘,๐›ผ(๐›พ0) โ‰ค ๐‘6 ๐‘š+1 โˆ‘ ๐ธ๐‘˜ (๐‘“)๐ฟ๐‘,๐›ผ(๐›พ0) ๐‘› ๐‘˜=๐‘›โˆ’๐‘š (11) is true. Proof. Let us chose the integer ๐‘— such that 2๐‘— โ‰ค ๐‘š + 1 โ‰ค 2๐‘—+1. Then ๐‘“(๐‘ฅ) โˆ’ ๐‘‰๐‘›,๐‘š(๐‘ฅ, ๐‘“) = 1 ๐‘š + 1 [๐‘“(๐‘ฅ) โˆ’ ๐‘†๐‘›โˆ’๐‘š(๐‘ฅ, ๐‘“)] + 1 ๐‘š + 1 {โˆ‘ โˆ‘ [๐‘“(๐‘ฅ) โˆ’ ๐‘†๐‘– (๐‘ฅ, ๐‘“)] ๐‘›โˆ’๐‘š+2๐‘˜โˆ’1 ๐‘–=๐‘›โˆ’๐‘š+2๐‘˜โˆ’1 ๐‘— ๐‘˜=1 } + 1 ๐‘š + 1 { โˆ‘ [๐‘“(๐‘ฅ) โˆ’ ๐‘†๐‘˜ (๐‘ฅ, ๐‘“)] ๐‘› ๐‘˜=๐‘›โˆ’๐‘š+2๐‘— }. And from this, we get APPROXIMATION PROPERTIES OF DE LA VALLร‰E-POUSSIN SUMS IN MORREY SPACES 93 โ€–๐‘“ โˆ’ ๐‘‰๐‘›,๐‘š(. , ๐‘“)โ€–๐ฟ๐‘,๐›ผ(๐›พ0) โ‰ค 1 ๐‘š + 1 โ€–๐‘“ โˆ’ ๐‘†๐‘›โˆ’๐‘š(. , ๐‘“)โ€–๐ฟ๐‘,๐›ผ(๐›พ0) + 1 ๐‘š + 1 {โˆ‘ โˆ‘ โ€–๐‘“ โˆ’ ๐‘†๐‘– (. , ๐‘“)โ€–๐ฟ๐‘,๐›ผ(๐›พ0) ๐‘›โˆ’๐‘š+2๐‘˜โˆ’1 ๐‘–=๐‘›โˆ’๐‘š+2๐‘˜โˆ’1 ๐‘— ๐‘˜=1 } + 1 ๐‘š + 1 { โˆ‘ โ€–๐‘“ โˆ’ ๐‘†๐‘˜ (. , ๐‘“)โ€–๐ฟ๐‘,๐›ผ(๐›พ0) ๐‘› ๐‘˜=๐‘›โˆ’๐‘š+2๐‘— }. From the relation (3), we get โ€–๐‘“ โˆ’ ๐‘‰๐‘›,๐‘š(. , ๐‘“)โ€–๐ฟ๐‘,๐›ผ(๐›พ0) โ‰ค c7 ๐‘š+1 ๐ธ๐‘›โˆ’๐‘š(๐‘“)๐ฟ๐‘,๐›ผ(๐›พ0) + c8 ๐‘š+1 {โˆ‘ โˆ‘ ๐ธ๐‘– (๐‘“)๐ฟ๐‘,๐›ผ(๐›พ0) ๐‘›โˆ’๐‘š+2๐‘˜โˆ’1 ๐‘–=๐‘›โˆ’๐‘š+2๐‘˜โˆ’1 ๐‘— ๐‘˜=1 } + c9 ๐‘š+1 {โˆ‘ ๐ธ๐‘˜ (๐‘“)๐ฟ๐‘,๐›ผ(๐›พ0) ๐‘› ๐‘˜=๐‘›โˆ’๐‘š+2๐‘— }. (12) From (12) and using (2), we get โ€–๐‘“ โˆ’ ๐‘‰๐‘›,๐‘š(. , ๐‘“)โ€–๐ฟ๐‘,๐›ผ(๐›พ0) โ‰ค ๐‘10 ๐‘š+1 {๐ธ๐‘›โˆ’๐‘š(๐‘“)๐‘‹,๐œ” + โˆ‘ 2 ๐‘˜โˆ’1๐ธ๐‘›โˆ’๐‘š+2๐‘˜โˆ’1 (๐‘“)๐ฟ๐‘,๐›ผ(๐›พ0) ๐‘— ๐‘˜=1 } + ๐‘11 1 ๐‘š+1 (๐‘š โˆ’ 2๐‘— + 1)๐ธ๐‘›โˆ’๐‘š+2๐‘— (๐‘“)๐ฟ๐‘,๐›ผ(๐›พ0). (13) On the other hand, we have โˆ‘ 2๐‘˜โˆ’1๐ธ๐‘›โˆ’๐‘š+2๐‘˜โˆ’1 (๐‘“)๐ฟ๐‘,๐›ผ(๐›พ0) ๐‘— ๐‘˜=1 โ‰ค ๐ธ๐‘›โˆ’๐‘š+1(๐‘“)๐ฟ๐‘,๐›ผ(๐›พ0) + 2 โˆ‘ โˆ‘ ๐ธ๐‘– (๐‘“)๐ฟ๐‘,๐›ผ(๐›พ0) ๐‘›โˆ’๐‘š+2๐‘˜โˆ’1โˆ’1 ๐‘–=๐‘›โˆ’๐‘š+2๐‘˜โˆ’2 ๐‘— ๐‘˜=2 โ‰ค ๐‘12 โˆ‘ ๐ธ๐‘˜ (๐‘“)๐ฟ๐‘,๐›ผ(๐›พ0) ๐‘›โˆ’๐‘š+2๐‘—โˆ’1 ๐‘˜=๐‘›โˆ’๐‘š . (14) Since 2๐‘— โ‰ค ๐‘š + 1 < 2๐‘—+1, we get 2๐‘— > ๐‘š โˆ’ 2๐‘— + 1. Hence (๐‘š โˆ’ 2๐‘— + 1)๐ธ๐‘›โˆ’๐‘š+2๐‘— (๐‘“)๐ฟ๐‘,๐›ผ(๐›พ0) โ‰ค โˆ‘ ๐ธ๐‘˜ (๐‘“)๐ฟ๐‘,๐›ผ(๐›พ0). ๐‘›โˆ’๐‘š+2๐‘—โˆ’1 ๐‘˜=๐‘›โˆ’๐‘š (15) From (13), (14) and (15) we obtain โ€–๐‘“ โˆ’ ๐‘‰๐‘›,๐‘š(. , ๐‘“)โ€–๐ฟ๐‘,๐›ผ(๐›พ0) โ‰ค ๐‘13 ๐‘š + 1 {๐ธ๐‘›โˆ’๐‘š(๐‘“)๐ฟ๐‘,๐›ผ(๐›พ0) + โˆ‘ ๐ธ๐‘˜ (๐‘“)๐ฟ๐‘,๐›ผ(๐›พ0) ๐‘›โˆ’๐‘š+2๐‘—โˆ’1 ๐‘˜=๐‘›โˆ’๐‘š + โˆ‘ ๐ธ๐‘˜ (๐‘“)๐ฟ๐‘,๐›ผ(๐›พ0) ๐‘›โˆ’๐‘š+2๐‘—โˆ’1 ๐‘˜=๐‘›โˆ’๐‘š } โ‰ค ๐‘6 ๐‘š + 1 โˆ‘ ๐ธ๐‘˜ (๐‘“)๐ฟ๐‘,๐›ผ(๐›พ0) ๐‘› ๐‘˜=๐‘›โˆ’๐‘š and the inequality (11) is true. Corollary 3.1 Let ๐ฟ๐‘,๐›ผ (๐›พ0) be a Morrey space with 0 < ๐›ผ โ‰ค 2 and 1 < ๐‘ < โˆž, then there exists a positive constant ๐‘14 such that for any ๐‘“ โˆˆ ๐ฟ๐‘,๐›ผ (๐›พ0), 0 โ‰ค ๐‘š โ‰ค ๐‘›, ๐‘š, ๐‘› = 1,2, โ€ฆ the inequality โ€–๐‘“ โˆ’ ๐‘‰๐‘›,๐‘š(. , ๐‘“)โ€–๐ฟ๐‘,๐›ผ(๐›พ0) โ‰ค ๐‘14 ๐‘š+1 โˆ‘ ๐œ”๐‘,๐›ผ ๐‘Ÿ (๐‘“, 1 ๐‘˜+1 )๐‘›๐‘˜=๐‘›โˆ’๐‘š (16) is true. Proof. From Theorem 3.1 we have โ€–๐‘“ โˆ’ ๐‘‰๐‘›,๐‘š(. , ๐‘“)โ€–๐ฟ๐‘,๐›ผ(๐›พ0) โ‰ค ๐‘6 ๐‘š + 1 โˆ‘ ๐ธ๐‘˜ (๐‘“)๐ฟ๐‘,๐›ผ(๐›พ0) ๐‘› ๐‘˜=๐‘›โˆ’๐‘š and from Theorem 2.2 we get ๐ธ๐‘› (๐‘“)๐ฟ๐‘,๐›ผ(ฮณ0) โ‰ค ๐‘5 ๐œ”๐‘,๐›ผ ๐‘Ÿ (๐‘“, 1 ๐‘› + 1 ) , ๐‘› = 1,2,3, โ€ฆ . AHMED KINJ ET AL 94 We reach โ€–๐‘“ โˆ’ ๐‘‰๐‘›,๐‘š(. , ๐‘“)โ€–๐ฟ๐‘,๐›ผ(๐›พ0) โ‰ค ๐‘14 ๐‘š + 1 โˆ‘ ๐œ”๐‘,๐›ผ ๐‘Ÿ (๐‘“, 1 ๐‘˜ + 1 ) ๐‘› ๐‘˜=๐‘›โˆ’๐‘š , ๐‘› = 1,2, โ€ฆ . Theorem 3.2 Let ๐บ be a simply connected domain in the complex plane, bounded by a curve ฮ“ โˆˆ ๐’Ÿ. If ๐‘“ โˆˆ ๐ธ๐‘,๐›ผ (๐บ) with 0 < ๐›ผ โ‰ค 2 and 1 < ๐‘ < โˆž, then for every 0 โ‰ค ๐‘š โ‰ค ๐‘›, ๐‘›, ๐‘š โˆˆ โ„• the estimate โ€–๐‘“ โˆ’ ๐‘‰๐‘›(. , ๐‘“)โ€–๐ฟ๐‘,๐›ผ(ฮ“) โ‰ค ๐‘15 โˆ‘ ฮฉฮ“,๐‘,๐›ผ ๐‘Ÿ (๐‘“, 1 ๐‘˜ + 1 ) ๐‘› ๐‘˜=๐‘›โˆ’๐‘š holds, where ๐‘15 is a positive constant. Proof. Since ๐‘“ โˆˆ ๐ธ๐‘,๐›ผ (๐บ) and ฮ“ is a Dini โ€“ smooth curve, then the boundary function of ๐‘“ belongs to ๐ฟ๐‘,๐›ผ (ฮ“) and from the relation (5) we get ๐‘“0 โˆˆ ๐ฟ ๐‘,๐›ผ (๐›พ0), and the function ๐‘“0 + which defined by (6) belongs to ๐ธ๐‘,๐›ผ (๐ท). Since ๐ธ๐‘,๐›ผ (๐ท) โŠ‚ ๐ธ1(๐ท), we obtain ๐‘“0 + โˆˆ ๐ธ1(๐ท) which has the following Taylor expansion ๐‘“0 +(๐‘ค) = โˆ‘ ๐‘Ž๐‘˜ (๐‘“0 +)๐‘ค ๐‘˜โˆž๐‘˜=0 , ๐‘ค โˆˆ ๐ท. (17) Let {๐‘๐‘˜ } be the Fourier coefficients of the boundary function of ๐‘“0 +, then by [23] we get ๐‘๐‘˜ = ๐‘Ž๐‘˜ (๐‘“0 +) for ๐‘˜ โ‰ฅ 0 and ๐‘๐‘˜ = 0 for ๐‘˜ < 0, and then by substitution in (17) we obtain ๐‘“0 +(๐‘ค) = โˆ‘ ๐‘๐‘˜ ๐‘ค ๐‘˜ โˆž ๐‘˜=0 , ๐‘ค โˆˆ ๐ท. Note that for the function ๐‘“ โˆˆ ๐ธ๐‘,๐›ผ (๐บ) the following Faber series holds ๐‘“(๐‘ง)~ โˆ‘ ๐‘Ž๐‘˜ (๐‘“)ฮฆ๐‘˜ (๐‘ง) โˆž ๐‘˜=0 , ๐‘ง โˆˆ ๐บ, where ๐‘Ž๐‘˜ (๐‘“), ๐‘˜ = 0,1,2, โ€ฆ are the Taylor coefficients of the function ๐‘“0 +, and by Theorem 2.1 we obtain ๐‘‡ (โˆ‘ ๐‘Ž๐‘˜ (๐‘“0 +)๐‘ค๐‘˜ ๐‘› ๐‘˜=0 ) = โˆ‘ ๐‘Ž๐‘˜ (๐‘“)ฮฆ๐‘˜ (๐‘ง) n ๐‘˜=0 and ๐‘‡ (๐‘‰๐‘›,๐‘š(w, ๐‘“0 +)) = ๐‘‰๐‘›,๐‘š(๐‘ง, ๐‘“), 0 โ‰ค ๐‘š โ‰ค ๐‘›, ๐‘›, ๐‘š = 0,1,2, โ€ฆ . Hence, using the boundedness of operator ๐‘‡ defined by (10) and the relation (11), we reach โ€–๐‘“ โˆ’ ๐‘‰๐‘›,๐‘š(. , ๐‘“)โ€–๐ฟ๐‘,๐›ผ(ฮ“) = โ€–๐‘‡(๐‘“0 +) โˆ’ ๐‘‡ (๐‘‰๐‘›,๐‘š(. , ๐‘“0 +))โ€– ๐ฟ๐‘,๐›ผ(ฮ“) โ‰ค ๐‘16โ€–๐‘“0 + โˆ’ ๐‘‰๐‘›,๐‘š(. , ๐‘“0 +)โ€– ๐ฟ๐‘,๐›ผ(๐›พ0) โ‰ค ๐‘17 ๐‘š + 1 โˆ‘ ๐ธ๐‘˜ (๐‘“0 +)๐ฟ๐‘,๐›ผ(๐›พ0). ๐‘› ๐‘˜=๐‘›โˆ’๐‘š Using the Theorem 2.2 we get โ€–๐‘“ โˆ’ ๐‘‰๐‘›,๐‘š(. , ๐‘“)โ€–๐ฟ๐‘,๐›ผ(ฮ“) โ‰ค ๐‘15 ๐‘š + 1 โˆ‘ ๐œ”๐‘,๐›ผ ๐‘Ÿ (๐‘“0 +, 1 ๐‘˜ + 1 ) . ๐‘› ๐‘˜=๐‘›โˆ’๐‘š And by the relation (7) we reach โ€–๐‘“ โˆ’ ๐‘‰๐‘›,๐‘š(. , ๐‘“)โ€–๐ฟ๐‘,๐›ผ(ฮ“) โ‰ค ๐‘15 ๐‘š + 1 โˆ‘ ฮฉฮ“,๐‘,๐›ผ ๐‘Ÿ (๐‘“, 1 ๐‘˜ + 1 ) . ๐‘› ๐‘˜=๐‘›โˆ’๐‘š Consequently, we have proved the Theorem 3.2. APPROXIMATION PROPERTIES OF DE LA VALLร‰E-POUSSIN SUMS IN MORREY SPACES 95 4. Conclusion A method was developed to estimate the deviation of functions from their de la Vallรฉe-Poussin sums in Morrey spaces in terms of the best approximation. References 1. Guven, A. Trignometric approximation of function in weighted Lp spaces. Sarajevo Journal of Math, 2009, 5(17), 99-108. 2. Andersson, J. On the degree of polynomial approximation in E p (D). Journal of Approximation Theory, 1977, 19(1), 61-68. 3. ร‡avu, A. and Israfilov, D. Approximation by Faber-Laurent rational functions in the mean of functions of class Lp(ฮ“) with 1< p<+โˆž. Approximation Theory and its Applications, 1995, 11(1), 105-118. 4. Israfilov, D. Approximation by p-Faber-Laurent rational functions. Czechoslovak Mathematical Journal, 2004, 54(129), 751-765. 5. Jafarov, S. Approximation by polynomials and rational functions in Orlicz spaces. Journal of computational analysis and applications, 2011, 13(5), 953-962. 6. Jafarov, S. On approximation in weighted Smirnov Orlicz classes. Complex Variables and Elliptic Equations, 2012, 57(5), 567-577. 7. Israfilov, D. and Akgun, R. Approximation in weighted Smirnov- Orlicz classes. Journal of Math. Kyoto University., 2006, 46(4), 755-770. 8. Morrey, C. On the solutions of quasi-linear elliptic partial differential equations. Transactions of the American Mathematical Society, 1938, 43(1), 126-166. 9. Israfilov, D. and Tozman, N. Approximation by polynomials in Morrey-Smirnov classes. East Journal on, Approximation, 2008, 14(3), 225-269. 10. Israfilov, D. and Tozman, N. Approximation in Morrey-Smirnov classes. Azerbaijan Journal of Math., 2011, 1(1), 99-113. 11. Bilalov, B. and Quliyeva, A. On basicity of exponential systems in Morrey-type spaces. International Journal of Mathematics, 2014, 25(06), 1450054 (10 pages). 12. Sadigova, S. On approximation by Shift Operators in Morrey Type Spaces. Caspian Journal of Applied Mathematics, Ecology and Economics, 2015, 3(2). 13. Bilalov, B., Gasymov, T., and Guliyeva, A. On the solvability of the Riemann boundary value problem in Morrey- Hardy classes. Turkish Journal of Mathematics, 2016, 40(5), 1085-1101. 14. Guliyeva, F., Abdullayeva, R., and Cetin, S. On Morrey type Spaces and Some Properties. Caspian Journal of Applied Mathematics, Ecology and Economics, 2016, 4(1), 3-16. 15. Kokilasvili, V. On approximation of analytic functions from Ep classes. Trudy Tbiliss. Razmadze Mathematical Institute, 1968, 34, 82-102. 16. Guven, A. and Israfilov, D. Approximation by mean of Fourier trignometric series in weighted Orlicz spaces. Advanced Studies in Contemporary Mathematics, 2009, 19(2), 283-295. 17. Jafarov, S. Approximation of functions by de la Vallee-Poussin sums in weighted Orlicz spaces. Arabian Journal of Mathematics, 2016, 5(3), 125-137. 18. Fucรญk, S., John, O., Kufner, A., and Pick, L. Function spaces: De Gruyter Series in Nonlinear Analysis and Applications 14 (2nd Edition), De Gruyter, Berlin/Boston, 2013. 19. Devore, R.A. and Lorentz, G.G. Constructive approximation: A Series of Comprehensive Studies in Mathematics, Springer, New York, 1993. 20. Pommerenke, C. Boundary Behavior of Conformal Maps: A Series of Comprehensive Studies in Mathematics, Springer, Berlin, 1992. 21. Warschawski, S.E. Uber das ranverhalten der Ableitung der Abildunggsfunktion bei Konfermer Abbildung, Math. Z. 1932, 35(German). 22. Markushevich, A. Theory of Analytic Functions, Izdatelstvo Nauka, Moscow, 1968. 23. Duren, P.L. Theory of H p spaces: A Series of Monographs and Textbooks, Academic Press, New York, 1970. Received 18 October 2016 Accepted 1 st August 2017