SQU Journal for Science, 2019, 24(1), 57-70 DOI: 10.24200/squjs.vol24iss1pp57-70 Sultan Qaboos University 57 Two Groups ๐Ÿ๐Ÿ‘.๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•) and ๐Ÿ ๐Ÿ‘: ๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•) of Order 1344 Mehmet Koca 1 , Ramazan Koc 2 and Nazife O. Koca 3 * 1 Retired Professor; 2 Department of Physics, Faculty of Engineering, Gaziantep University, 27310 Gaziantep, Turkey; 3 Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, PC 123, Al-Khod, Muscat, Sultanate of Oman. *E-mail: nazife@squ.edu.om. ABSTRACT: We analyze the group structures of two groups of order 1344 which are respectively non-split and split extensions of the elementary Abelian group of order 8 by its automorphism group ๐‘ƒ๐‘†๐ฟ2 (7). Two groups have the same number of conjugacy classes and the set of dimensions of irreducible representations is equal. The group 23.๐‘ƒ๐‘†๐ฟ2(7) is a finite subgroup of the Lie Group ๐บ2 preserving the set of octonions ยฑ๐‘’๐‘– , (๐‘– = 1,2, โ€ฆ ,7) representing a 7- dimensional octahedron. Its three maximal subgroups 23: 7: 3, 23. ๐‘†4 and 4. ๐‘†4: 2 correspond to the finite subgroups of the Lie groups ๐บ2, ๐‘†๐‘‚(4) and ๐‘†๐‘ˆ(3) respectively. The group 2 3: ๐‘ƒ๐‘†๐ฟ2(7) representing the split extension possesses five maximal subgroups 23: 7: 3, 23: ๐‘†4, 4: ๐‘†4: 2 and two non-conjugate Kleinโ€™s group ๐‘ƒ๐‘†๐ฟ2(7). The character tables of the groups and their maximal subgroups, tensor products and decompositions of their irreducible representations under the relevant maximal subgroups are identified. Possible implications in physics are discussed. Keywords: Finite groups; Discrete octonions; Group extensions; Character table; Tensor products. ๐Ÿูˆ ๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•).๐Ÿ๐Ÿ‘ู…ุฌู…ูˆุนุชูŠู† ๐Ÿ‘: ๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•) 4411ุนุฏุฏ ุนู†ุงุตุฑู‡ุง ู…ุญู…ุฏ ูƒูˆุฌุง 4 ุŒ ุฑู…ุถุงู† ูƒูˆูƒ 2 ู†ุฒูŠูุฉ ุฃูˆุฒูŠุฏุณ ูƒูˆุฌุง ูˆ 4 ูˆู‡ู† ุนู„ู‰ ุงู„ุชุฑุชูŠุจ ุงุงู„ู…ุชุฏุงุฏ ุงู„ู…ู‚ุณูˆู… ูˆุบูŠุฑ ุงู„ู…ู‚ุณูˆู… ู„ู…ุฌู…ูˆุนุฉ ุงุฃู„ุจูŠู„ูŠุงู† ุงุงู„ุจุชุฏุงุฆูŠุฉ ุฐุงุช 4411ู‚ู…ู†ุง ุจุชุญู„ูŠู„ ุงู„ุดูƒู„ ู„ู…ุฌู…ูˆุนุชูŠู† ุนุฏุฏ ุนู†ุงุตุฑู‡ู† :ุตู„ุฎู…ุงู„ . .ุงู„ู…ุฌู…ูˆุนุชูŠู† ูŠู…ุชู„ูƒู† ู†ูุณ ุงู„ุนุฏุฏ ู…ู† ูƒูˆุฌู†ุณูŠ ูƒุงู„ุณุณ ูˆุฃูŠุถุง ุฃุจุนุงุฏู‡ู† ู…ุชุณุงูˆูŠุฉ ููŠ ุชู…ุซูŠู„ ุงู„ุฑูŠุฏูŠูˆุณุจู„๐‘ƒ๐‘†๐ฟ2(7)ุงู„ุนู†ุงุตุฑ ุงู„ุซู…ุงู†ูŠุฉ ููŠ ุฌุฑูˆุจ ุงุฃู„ูˆุชูˆู…ูˆุฑููŠุณู… ๐‘ƒ๐‘†๐ฟ2(7) 2.ุงู„ู…ุฌู…ูˆุนุฉ ๐‘’๐‘–ยฑูˆุชุญุงูุธ ุนู„ู‰ ู…ุฌู…ูˆุนุฉ ุงู„ูƒูˆุชู†ูŠูˆู†ุณ ๐บ2ู‡ูŠ ู…ุฌู…ูˆุนุฉ ุฌุฒุฆูŠุฉ ู…ู†ุชู‡ูŠุฉ ู…ู† ู„ูŠุง ุฌุฑูˆุจ 3 , (๐‘– = 1,2, โ€ฆ ูˆุชู…ุซู„ ุฃูˆูƒุชุงู‡ุฏุฑูˆู† (7, :23 ููŠ ุณุจุนุฉ ุฃุจุนุงุฏ. ู„ู‡ุง ุซุงู„ุซุฉ ู…ุฌู…ูˆุนุฉ ุฌุฒุฆูŠุฉ 7: .23 ูˆ 3 ๐‘†4 4ูˆ. ๐‘†4: ูˆ ๐บ2ูˆู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุงุช ุงู„ุฌุฒุฆูŠุฉ ุชู…ุซู„ ู…ุฌู…ูˆุนุงุช ุฌุฒุฆูŠุฉ ู…ู†ุชู‡ูŠุฉ ู…ู† ู„ูŠุง ุฌุฑูˆุจ 2 ๐‘†๐‘‚(4) ูˆ๐‘†๐‘ˆ(3) 23ุจุงู„ุชุฑุชูŠุจ. ุงู„ู…ุฌู…ูˆุนุฉ: ๐‘ƒ๐‘†๐ฟ2 2 ุชู…ุซู„ ุงุงู„ู…ุชุฏุงุฏ ุงู„ู…ู‚ุณูˆู… ุชู…ุชู„ูƒ ุฎู…ุณ ู…ุฌู…ูˆุนุงุช ุฌุฒุฆูŠุฉ ูˆู‡ูŠ (7) 3: 7: :23 ูˆ 3 ๐‘†4 4ูˆ: ๐‘†4: 2 ูˆู„ ุงู„ุฎุตุงุฆุต ู„ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุงุช ูˆู…ุฌู…ูˆุนุงุชู‡ู† ุงู„ุฌุฒุฆูŠุฉ ูˆู…ู†ุชุฌุงุช ุงู„ุชู†ุณุฑ ูˆุชู‚ุณูŠู…ุงุชู‡ู† . ุฌุฏุง๐‘ƒ๐‘†๐ฟ2(7)ูˆุงุซู†ุชูŠู† ู…ู† ุงู„ู…ุฌู…ูˆุนุงุช ุงู„ุบูŠุฑ ุงู„ู…ุฑุงูู‚ุฉ ู„ู„ูƒู„ูŠู† ุฌุฑูˆุจ ุฅู„ู‰ ุชู…ุซูŠุงู„ุชู‡ู† ุงู„ุฑูŠุฏูŠูˆุณุจู„ ุชุญุช ู…ุฌู…ูˆุนุงุชู‡ู† ุงู„ุฌุฒุฆูŠุฉ ูƒู„ู‡ุง ุชู… ุชุญุฏูŠุฏู‡ุง. ูƒู…ุง ุชู…ุช ู…ู†ุงู‚ุดุฉ ุจุนุถ ุงู„ุชุทุจูŠู‚ุงุช ููŠ ุงู„ููŠุฒูŠุงุก. .ุงู„ุฎุตุงุฆุตุŒ ู…ู†ุชุฌุงุช ุงู„ุชู†ุณุฑ ุงู„ู…ุฌู…ูˆุนุงุช ุงู„ู…ู†ุชู‡ูŠุฉุŒ ูƒูˆุงุชู†ูŠู†ุณ ุงู„ู…ู†ูุตู„ุฉุŒ ุฅู…ุชุฏุงุฏ ุงู„ู…ุฌูˆุนุฉุŒ ุฌุฏูˆู„: ู…ูุชุงุญูŠุฉุงู„ูƒู„ู…ุงุช ุงู„ 1. Introduction e have introduced some part of this work in an earlier publication [1]. Since then we have observed that the simple group like ๐‘ƒ๐‘†๐ฟ2(7) [2] and the subgroups thereof 7: 3 [3], ๐‘†4 and ๐ด4 [4, 5, 6, 7, 8, 9] have been proposed to explain the properties of the Tri-Bimaximal Neutrino Mixing [10]. When the charged leptons and quark masses are incorporated into the scheme we may think of much larger discrete symmetries broken down to the aforementioned finite subgroups of ๐‘†๐‘ˆ(3). Along with these lines we would like to introduce two groups of order 1344 which are non-split and split extensions of the elementary Abelian group 23 of order 8 by its automorphism group ๐‘ƒ๐‘†๐ฟ2(7). Before we proceed further a glossary may be introduced for the group theoretical concepts and notations used throughout the paper. We follow the notations of the Atlas of Finite Groups [11]. A cyclic group of order p is denoted by p. An elementary Abelian group of order ๐‘๐‘› (denoted also by ๐‘๐‘› ) is the direct product of n cyclic groups of each having order p. Thus, the elementary abelian group 23 is the direct product of three cyclic groups of order 2. W MEHMET KOCA ET AL 58 The group A.B denotes any group possessing a normal subgroup A, for which the corresponding quotient group is B. This is used for the non-split extension. The group A:B indicates the split extension, or the semi-direct product ๐ด โ‹Š ๐ต. Here a copy of the quotient group B is a subgroup of the group A:B. This shows that the intersection of A and B is just the unit element. The quotient group of interest here is the special projective group ๐‘ƒ๐‘†๐ฟ2(7) and this has been discussed in the physics literature extensively [2,12,13]. The paper is organized as follows. For the group 23.๐‘ƒ๐‘†๐ฟ2(7) which is the automorphism group of the octonionic set ยฑ๐‘’๐‘–, (๐‘– = 1,2, โ€ฆ ,7) we review in Section 2 the basic structure of the octonion algebra and introduce the group 7: 3 as the automorphism of the 7 imaginary units ๐‘’๐‘–, (๐‘– = 1,2, โ€ฆ ,7). In Section 3 we extend the automorphism to the full group of automorphism including the change of sign of the imaginary units of octonions and point out that the diagonal matrices form the elementary abelian subgroup of the automorphism group. The quotient group ๐‘ƒ๐‘†๐ฟ2(7) is explicitly constructed and the maximal subgroups of the group 23.๐‘ƒ๐‘†๐ฟ2 (7) are identified. In Section 4 we discuss the construction of the group by using a finite subgroup of ๐‘†๐‘‚(4) based on the preservation of the quaternion subalgebra of the octonion algebra. Section 5 deals with the construction of the 7-dimensional irreducible representation of the group 23: ๐‘ƒ๐‘†๐ฟ2(7) and its five maximal subgroups, two of which, are the non-conjugate Kleinโ€™s group ๐‘ƒ๐‘†๐ฟ2(7). In the concluding Section 6, we point out as to how these groups can be used in physics. In Appendix A we study the tensor products of the irreducible representations. Appendix B lists the decompositions of the irreducible representations under the maximal subgroups. 2. Octonions and the group ๐Ÿ•: ๐Ÿ‘ The octonions (Cayley numbers) are sets of real numbers ๐‘ž = (๐‘ž0, ๐‘ž1, ๐‘ž2, ๐‘ž3, ๐‘ž4, ๐‘ž5, ๐‘ž6, ๐‘ž7) = ๐‘ž0. 1 + ๐‘ž1๐‘’1 + ๐‘ž2๐‘’2 + ๐‘ž3๐‘’3 + ๐‘ž4๐‘’4 + ๐‘ž5๐‘’5 + ๐‘ž6๐‘’6 + ๐‘ž7๐‘’7 (1) where ๐‘’๐‘– , (๐‘– = 1,2, โ€ฆ . ,7) are 7 imaginary octonionic units. Octonions are added like vectors and multiplied as follows 1. ๐‘’๐‘– = ๐‘’๐‘– . 1 = ๐‘’๐‘– , ๐‘’๐‘– ๐‘’๐‘— = โˆ’๐›ฟ๐‘–๐‘— + โˆ‘ ๐œ™๐‘–๐‘—๐‘˜ 7 ๐‘˜=1 ๐‘’๐‘˜ (๐‘–, ๐‘—, ๐‘˜ = 1,2, โ€ฆ ,7) (2) where ๐œ™๐‘–๐‘—๐‘˜ are completely antisymmetric in ๐‘–, ๐‘—, ๐‘˜ with the values ยฑ1. We choose the basis as shown in Figure 1 such that [14] ๐œ™123 = ๐œ™246 = ๐œ™435 = ๐œ™367 = ๐œ™651 = ๐œ™572 = ๐œ™714 = 1, (3) which follows from the cyclic rotation of the triangle in Figure 1. Figure 1. Octonionic multiplication based on quaternionic multiplication. The 7-imaginary units form 35 triads, 7 of which are associative and follow the ordering such that ๐‘’๐‘– ๐‘’๐‘— ๐‘’๐‘˜ = โˆ’1 when ๐‘–, ๐‘—, ๐‘˜ take one of the values in (3). The 28 anti-associative triads can be obtained from the following four anti-associative triads ๐‘’1(๐‘’2๐‘’4) = ๐‘’5 = โˆ’(๐‘’1๐‘’2)๐‘’4 โˆ’๐‘’1(๐‘’2๐‘’6) = ๐‘’7 = (๐‘’1๐‘’2)๐‘’6 โˆ’๐‘’1(๐‘’2๐‘’5) = ๐‘’4 = (๐‘’1๐‘’2)๐‘’5 ๐‘’1(๐‘’2๐‘’7) = ๐‘’6 = โˆ’(๐‘’1๐‘’2)๐‘’7 (4) ๐‘’5 ๐‘’1 ๐‘’2 ๐‘’4 ๐‘’3 ๐‘’6 ๐‘’7 TWO GROUPS ๐Ÿ๐Ÿ‘.๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•) AND ๐Ÿ ๐Ÿ‘: ๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•) OF ORDER 1344 59 by using the cyclic permutation (1243657). The seven associative triads correspond to the lines of the finite projective geometry of seven lines and seven points of the Fano plane. Without changing the signs of the octonionic imaginary units in Figure 1, we can obtain two operations preserving the octonion algebra. Let ๐›ผ transform the octonionic units ๐‘’๐‘– in the cyclic order (๐‘’1๐‘’2๐‘’4๐‘’3๐‘’6๐‘’5๐‘’7) so that ๐›ผ 7 = 1. Let ๐›ฝ fix ๐‘’1 and permute the associative triad (๐‘’2๐‘’4๐‘’6) and the anti-associative triad (๐‘’3๐‘’7๐‘’5) in the indicated orders. It is clear that ๐›ฝ3 = 1 and preserves the octonion algebra. Indeed, the transformation (๐‘’3๐‘’7๐‘’5) is sufficient to determine the rest of the transformations of the quaternionic imaginary units. It is easy to prove that two generators generate a finite group of order 21 satisfying the generation relations: ๐›ผ 7 = ๐›ฝ3 = ๐›ฝโˆ’1 ๐›ผ๐›ฝ๐›ผ 3 = 1. (5) It is clear from (5) that ๐›ผ generates a normal subgroup of order 7 and hence the structure of the group 7: 3. The conjugacy classes are given by the set of group elements ๐ถ1 = (1), ๐ถ2 = ( ๐›ผ, ๐›ผ 2, ๐›ผ 4), ๐ถ3 = ( ๐›ผ 3, ๐›ผ 5, ๐›ผ 6), ๐ถ4 = (๐›ผ ๐‘Ž ๐›ฝ), ๐ถ5 = (๐›ผ ๐‘Ž๐›ฝ2), (๐‘Ž = 0, 1, โ€ฆ , 6). (6) The character table of the group is depicted in Table 1. ๐ถ๐‘– [๐‘—] denotes the i th conjugacy class and [j] represents the order of the elements in the conjugacy class. ๐œ’[๐‘Ž] is the character of the irreducible representation ๐‘Ž. Table 1. The characteristics table of the Frobenius group 7: 3. 7: 3 ๐ถ1 7๐ถ2 [3] 7๐ถ3 [3] 3๐ถ4 [7] 3๐ถ5 [7] ๐œ’[1] 1 1 1 1 1 ๐œ’[11] 1 ๐œ‡ ๐œ‡ 1 1 ๐œ’[12] 1 ๐œ‡ ๐œ‡ 1 1 ๐œ’[31] 3 0 0 ๐œ‚ ๐œ‚ ๐œ’[32] 3 0 0 ๐œ‚ ๐œ‚ Here, ๐œ’[12] = ๐œ’[ 11 ], ๐œ’[32] = ๐œ’[ 31], ๐œ‡ = 1 2 (โˆ’1 + ๐‘–โˆš3), ๐œ‚ = 1 2 (โˆ’1 + ๐‘–โˆš7). One can easily check that the 7-dimensional representation obtained by the generators ๐›ผ and ๐›ฝ is reducible and can be decomposed as 7 = 1 + 31 + 31. 3. The group ๐Ÿ๐Ÿ‘.๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•) as the automorphism group of the octonionic set ยฑ๐’†๐’Š Now we allow the octonionic units ๐‘’๐‘– to also take negative values, or, in other words, we also include the octonionic conjugates in the transformations. Any linear transformation on a non-associative triad determines the transformations of 7 imaginary units. Let us take the non-associative triad (๐‘’1๐‘’2๐‘’7) and impose the transformation ๐‘’1 โ†’ ๐‘’1, ๐‘’2 โ†’ ๐‘’2, ๐‘’7 โ†’ โˆ’๐‘’7. This transformation leads to the transformations ๐‘’3 โ†’ ๐‘’3, ๐‘’4 โ†’ โˆ’๐‘’4, ๐‘’5 โ†’ โˆ’๐‘’5 and ๐‘’6 โ†’ โˆ’๐‘’6. Let us call it ๐‘1 = (๐‘’1 โ†’ ๐‘’1, ๐‘’2 โ†’ ๐‘’2, ๐‘’3 โ†’ ๐‘’3, ๐‘’4 โ†’ โˆ’๐‘’4, ๐‘’5 โ†’ โˆ’๐‘’5, ๐‘’6 โ†’ โˆ’๐‘’6, ๐‘’7 โ†’ โˆ’๐‘’7) and denote it as a diagonal matrix with non-zero entities ๐‘1 = (1, 1, 1, โˆ’1, โˆ’1, โˆ’1, โˆ’1). (7) This diagonal transformation leaves the associative triad (123) intact and changes the signs of the other 4 octonionic units. When we take ๐›ผ, ๐›ฝ and ๐‘1 as generators we obtain a group of order 168, but not isomorphic to ๐‘ƒ๐‘†๐ฟ2(7). It has, by construction, a normal subgroup of order 8 generated by three diagonal transformations ๐‘1, ๐‘2 and ๐‘7 where ๐‘2 = (1, โˆ’1, โˆ’1, 1, โˆ’1, โˆ’1, 1) and ๐‘7 = (โˆ’1, 1, โˆ’1, 1, โˆ’1,1, โˆ’1). They generate the elementary Abelian group 2 3 where the other elements are defined as ๐‘3 = ๐‘1๐‘2 = ๐‘2๐‘1, ๐‘4 = ๐‘7๐‘1 = ๐‘1๐‘7, ๐‘5 = ๐‘7๐‘2 = ๐‘2๐‘7, ๐‘6 = ๐‘7๐‘3 = ๐‘3๐‘7. (8) MEHMET KOCA ET AL 60 More compactly, they can be written as ๐‘๐‘– ๐‘๐‘— = ๐‘๐‘— ๐‘๐‘– = ๐‘๐‘˜ , (๐‘–๐‘—๐‘˜ = 123, 147, 165, 246, 257, 345, 367). (9) The 7-diagonal matrices can be used to define the Fano plane. One can show that the set of group elements ๐‘๐‘– , (๐‘– = 1,2, โ€ฆ ,7) is invariant under the conjugations of the generators so that the group can be designated as 23: 7: 3 the order of which is 168 but since it has a normal subgroup it is not isomorphic to the simple group ๐‘ƒ๐‘†๐ฟ2 (7). The 7- dimensional representation of the group 23: 7: 3 obtained from the generators ๐›ผ, ๐›ฝ and ๐‘1is irreducible and denoted by 71 in the character table of the group 2 3: 7: 3 given in Table 2. Table 2. The characteristics table of the group 23: 7: 3. 23: 7: 3 ๐ถ1 7๐ถ2 [2] 28๐ถ3 [3] 28๐ถ4 [3] 28๐ถ5 [6] 28๐ถ6 [6] 24๐ถ7 [7] 24๐ถ8 [7] ๐œ’[1] 1 1 1 1 1 1 1 1 ๐œ’[11] 1 1 ๐œ‡ ๐œ‡ ๐œ‡ ๐œ‡ 1 1 ๐œ’[12] 1 1 ๐œ‡ ๐œ‡ ๐œ‡ ๐œ‡ 1 1 ๐œ’[31] 3 3 0 0 0 0 ๐œ‚ ๐œ‚ ๐œ’[32] 3 3 0 0 0 0 ๐œ‚ ๐œ‚ ๐œ’[71] 7 -1 1 1 -1 -1 0 0 ๐œ’[72] 7 -1 ๐œ‡ ๐œ‡ โˆ’๐œ‡ โˆ’๐œ‡ 0 0 ๐œ’[73] 7 -1 ๐œ‡ ๐œ‡ โˆ’๐œ‡ โˆ’๐œ‡ 0 0 Note that in Table 2 the characters satisfy the relations๐œ’[12] = ๐œ’[ 11 ], ๐œ’[32] = ๐œ’[ 31 ], ๐œ’[73] = ๐œ’[ 71 ] and the other irreducible representations are real. The group 23: 7: 3 is not the full automorphism group of the set of octonions ยฑ๐‘’๐‘– . In fact, a transformation of the form ๐›พ: ( ๐‘’1 โ†” โˆ’๐‘’4, ๐‘’2 โ†” โˆ’๐‘’5, ๐‘’3 โ†’ โˆ’๐‘’3, ๐‘’6 โ†’ ๐‘’6, ๐‘’7 โ†’ โˆ’๐‘’7) preserves the octonion algebra and does not belong to the group of elements of the group 2 3: 7: 3. Adjoining ๐›พ as a new generator then ๐›ผ, ๐›ฝ, ๐›พ and ๐‘1 together generate the group of order 1344. We will prove that it has the structure 23.๐‘ƒ๐‘†๐ฟ2(7) which can also be generated by two generators ๐›ผ and ๐›พ only. Here the group ๐‘ƒ๐‘†๐ฟ2(7) is the quotient group whose generators are defined by the conjugations over the elements of the elementary abelian group 23: ๐›ผ ฬƒ: ๐‘๐‘– โ†’ ๐›ผ โˆ’1๐‘๐‘– ๐›ผ, ๐›ฝ ฬƒ: ๐‘๐‘– โ†’ ๐›ฝ โˆ’1๐‘๐‘– ๐›ฝ, ๐›พ ฬƒ: ๐‘๐‘– โ†’ ๐›พ โˆ’1๐‘๐‘– ๐›พ. (10) They permute the diagonal matrices as ๐›ผ ฬƒ = (๐‘1๐‘2๐‘4๐‘3๐‘6๐‘5๐‘7), ๐›ฝ ฬƒ = (๐‘3๐‘2๐‘1)(๐‘4๐‘6๐‘5)(๐‘7) ๐›พ ฬƒ = (๐‘1๐‘5)(๐‘2)(๐‘3๐‘7)(๐‘4)(๐‘6). (11) The group generated by the generators in (11) is isomorphic to the Kleinโ€™s group ๐‘ƒ๐‘†๐ฟ2 (7) of order 168 and the 7- dimensional representation obtained from (11) is reducible 7 = 1 + 6. This is expected because 7 diagonal matrices ๐‘๐‘– form the Fano plane whose automorphism group is the Kleinโ€™s group. The character table of the group ๐‘ƒ๐‘†๐ฟ2(7) is shown in Table 3. (Note the difference between Table 2 and Table 3). Table 3. The characteristics table of the group ๐‘ƒ๐‘†๐ฟ2(7). ๐‘ƒ๐‘†๐ฟ2(7) ๐ถ1 21๐ถ2 [2] 56๐ถ3 [3] 42๐ถ4 [4] 42๐ถ5 [7] 42๐ถ6 [7] ๐œ’[1] 1 1 1 1 1 1 ๐œ’[31] 3 -1 0 1 ๐œ‚ ๐œ‚ ๐œ’[32] 3 -1 0 1 ๐œ‚ ๐œ‚ ๐œ’[6] 6 2 0 0 -1 -1 ๐œ’[7] 7 -1 1 -1 0 0 ๐œ’[8] 8 0 -1 0 1 1 Here again the characters satisfy ๐œ’[32] = ๐œ’[31]. A copy of the ๐‘ƒ๐‘†๐ฟ2(7) does not exist in the group 2 3.๐‘ƒ๐‘†๐ฟ2 (7), therefore it is not a subgroup and hence the latter group is the non-split extension of the group 23 by the group ๐‘ƒ๐‘†๐ฟ2(7). The character table of the groups 2 3.๐‘ƒ๐‘†๐ฟ2(7) and 2 3: ๐‘ƒ๐‘†๐ฟ2(7) is given in Table 4. TWO GROUPS ๐Ÿ๐Ÿ‘.๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•) AND ๐Ÿ ๐Ÿ‘: ๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•) OF ORDER 1344 61 Table 4. The characteristics table of the groups 23.๐‘ƒ๐‘†๐ฟ2(7) and 2 3: ๐‘ƒ๐‘†๐ฟ2(7). 23. ๐‘ƒ๐‘†๐ฟ2(7) ๐ถ1 ๐ถ2 [2] ๐ถ3 [2] ๐ถ4 [3] ๐ถ5 [4] ๐ถ6 [4] ๐ถ7 [6] ๐ถ8 [7] ๐ถ9 [7] ๐ถ10 [8] ๐ถ11 [8] 23: ๐‘ƒ๐‘†๐ฟ2(7) ๐ถ1 ๐ถ2 [2] ๐ถ3 [4] ๐ถ4 [3] ๐ถ5 [2] ๐ถ6 [2] ๐ถ7 [6] ๐ถ8 [7] ๐ถ9 [7] ๐ถ10 [4] ๐ถ11 [4] Elements 1 7 84 224 42 42 224 192 192 168 168 ๐œ’[1] 1 1 1 1 1 1 1 1 1 1 1 ๐œ’[31] 3 3 -1 0 -1 -1 0 ๐œ‚ ๐œ‚ 1 1 ๐œ’[32] 3 3 -1 0 -1 -1 0 ๐œ‚ ๐œ‚ 1 1 ๐œ’[6] 6 6 2 0 2 2 0 -1 -1 0 0 ๐œ’[71] 7 -1 -1 1 -1 3 -1 0 0 1 -1 ๐œ’[72] 7 7 -1 1 -1 -1 1 0 0 -1 -1 ๐œ’[73] 7 -1 -1 1 3 -1 -1 0 0 -1 1 ๐œ’[8] 8 8 0 -1 0 0 -1 1 1 0 0 ๐œ’[14] 14 -2 -2 -1 2 2 1 0 0 0 0 ๐œ’[211] 21 -3 1 0 -3 1 0 0 0 -1 1 ๐œ’[212] 21 -3 1 0 1 -3 0 0 0 1 -1 The character table shows that all the representations are real except the 3-dimensional representations which satisfy ๐œ’[32] = ๐œ’ [31 ]. The group 23.๐‘ƒ๐‘†๐ฟ2(7) has three maximal subgroups having the structures 2 3: 7: 3, 4. ๐‘†4: 2 and 2 3. ๐‘†4 of respective orders 168, 192 and 192. The group 2 3: 7: 3 preserves the octonion multiplication and the 7-dimensional representation denoted by 71 is irreducible. It is a subgroup of the Lie group ๐บ2 and the groups 4. ๐‘†4: 2 and 2 3. ๐‘†4 are finite subgroups of the groups ๐‘†๐‘ˆ(3) and ๐‘†๐‘‚(4) respectively, as we will study in the next section. The Lie groups ๐‘†๐‘ˆ(3) and ๐‘†๐‘‚(4) are the maximal subgroups of the Lie group ๐บ2. 3.1 Maximal subgroups ๐Ÿ’. ๐‘บ๐Ÿ’: ๐Ÿ ๐š๐ง๐ ๐Ÿ ๐Ÿ‘. ๐‘บ๐Ÿ’ of the group ๐Ÿ ๐Ÿ‘.๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•) The group 23.๐‘ƒ๐‘†๐ฟ2 (7) has two maximal subgroups of order 192. Now we discuss some properties of the first subgroup 4. ๐‘†4: 2. Let ๐‘’๐‘– = โˆ’๐‘’๐‘– denote the octonionic conjugate. Define the transformation ๐œƒ = (๐‘’1๐‘’5)(๐‘’2๐‘’3๐‘’4๐‘’7๐‘’2๐‘’3๐‘’4๐‘’7)(๐‘’6๐‘’6), with ๐œƒ 8=1. (12) The generators ๐›พ and ๐œƒ generate the group 4. ๐‘†4: 2 which represents a finite subgroup of ๐‘†๐‘ˆ(3) as the generators fix the octonion ยฑ๐‘’6. The character table of the group 4. ๐‘†4: 2 is shown in Table 5. Table 5. The characteristics table of the groups 4. ๐‘†4: 2 and 4: ๐‘†4: 2 4. ๐‘†4: 2 ๐ถ1 ๐ถ2 [2] ๐ถ3 [2] ๐ถ4 [2] ๐ถ5 [2] ๐ถ6 [2] ๐ถ7 [3] ๐ถ8 [4] ๐ถ9 [4] ๐ถ10 [4] ๐ถ11 [4] ๐ถ12 [6] ๐ถ13 [8] ๐ถ14 [8] 4: ๐‘†4: 2 ๐ถ1 ๐ถ2 [2] ๐ถ3 [2] ๐ถ4 [4] ๐ถ5 [4] ๐ถ6 [4] ๐ถ7 [3] ๐ถ8 [2] ๐ถ9 [2] ๐ถ10 [2] ๐ถ11 [2] ๐ถ12 [6] ๐ถ13 [4] ๐ถ14 [4] Elements 1 3 4 12 12 12 32 12 6 6 12 32 24 24 ๐œ’[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ๐œ’[11] 1 1 -1 1 -1 -1 1 1 1 1 -1 -1 1 -1 ๐œ’[12] 1 1 -1 -1 1 -1 1 -1 1 1 1 -1 -1 1 ๐œ’[13] 1 1 1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 ๐œ’[21] 2 2 -2 0 0 -2 -1 0 2 2 0 1 0 0 ๐œ’[22] 2 2 2 0 0 2 -1 0 2 2 0 -1 0 0 ๐œ’[31] 3 3 3 -1 -1 -1 0 -1 -1 -1 -1 0 1 1 ๐œ’[32] 3 3 3 1 1 -1 0 1 -1 -1 1 0 -1 -1 ๐œ’[33] 3 3 -3 1 -1 1 0 1 -1 -1 -1 0 -1 1 ๐œ’[34] 3 3 -3 -1 1 1 0 -1 -1 -1 1 0 1 -1 ๐œ’[61] 6 -2 0 0 -2 0 0 0 -2 2 2 0 0 0 ๐œ’[62] 6 -2 0 0 2 0 0 0 -2 2 -2 0 0 0 ๐œ’[63] 6 -2 0 -2 0 0 0 2 2 -2 0 0 0 0 ๐œ’[64] 6 -2 0 2 0 0 0 -2 2 -2 0 0 0 0 MEHMET KOCA ET AL 62 This is also one of the maximal subgroups of the Chevalleyโ€™s group ๐บ2(2) [15] preserving the octonionic root system of ๐ธ7. The 7-dimensional representation can be written as 7 = 1 + 6, or more properly, 71 = 11 + 63. By adjoining the generator ๐›ผ which permutes the 7 imaginary octonionic units one can generate the group 23.๐‘ƒ๐‘†๐ฟ2(7). It is easy to prove that ๐›พ ฬƒand ๏ฟฝฬƒ๏ฟฝ = (๐‘1๐‘4๐‘2๐‘5)(๐‘3)(๐‘6๐‘7) with ๐›พ ฬƒ 2 = ๏ฟฝฬƒ๏ฟฝ4 = 1 generate the subgroup ๐‘†4 as the quotient group. Let ๐‘Ž and ๐‘ be the generators of a group, then the standard generation relation of ๐‘†4 is ๐‘Ž 4 = ๐‘3 = (๐‘Ž๐‘)2 = 1 [16]. This relation can be satisfied if we define ๐‘Ž = ๐›พ ฬƒ๏ฟฝฬƒ๏ฟฝ๐›พ ฬƒ and ๐‘ = ๐›พ ฬƒ ๏ฟฝฬƒ๏ฟฝโˆ’1. The group 23. ๐‘†4 can be generated by the generators ๐ด = (๐‘’1๐‘’7 ๐‘’3๐‘’1๐‘’7๐‘’3)(๐‘’2๐‘’4๐‘’6๐‘’2๐‘’4๐‘’6)( ๐‘’5๐‘’5), ๐ต = (๐‘’1) (๐‘’2๐‘’6๐‘’2๐‘’6)( ๐‘’3๐‘’5๐‘’3๐‘’5)(๐‘’4)(๐‘’7), (13) ๐ด6 = ๐ต4 = 1. The elements ๐ด ฬƒand ๐ต ฬƒcan be obtained as follows ๐ด ฬƒ = (๐‘1๐‘6๐‘2)(๐‘3๐‘5๐‘4)(๐‘7), ๐ต ฬƒ = (๐‘1๐‘3)(๐‘2)(๐‘4๐‘6)(๐‘5)(๐‘7). (14) Now define ๐‘Ž = ๐ต ฬƒ๐ด ฬƒ = (๐‘1๐‘4)(๐‘2๐‘3๐‘5๐‘6)(๐‘7) and ๐‘ = ๏ฟฝฬƒ๏ฟฝ โˆ’1. It is straightforward to show that they satisfy the ๐‘†4 generation relation ๐‘Ž 4 = ๐‘3 = (๐‘Ž๐‘)2 = 1. Hence, the quotient group is ๐‘†4 as claimed. The matrix representations of ๐ด ฬƒand ๐ต ฬƒdo not preserve the octonion algebra, and therefore a copy of ๐‘†4 does not exist in the group 2 3. ๐‘†4. Hence it is the non-split extension of the group 23 by ๐‘†4. It is clear from the generators ๐ด and ๐ต that they preserve the sets of octonionic units (ยฑ๐‘’2 ยฑ ๐‘’4 ยฑ ๐‘’6) and (ยฑ๐‘’1 ยฑ ๐‘’3 ยฑ ๐‘’5 ยฑ ๐‘’7) separately, so that the 7 ร— 7 matrix representation can be written in the block diagonal form of 3 ร— 3 and 4 ร— 4 matrices. This proves that the 7-dimensional representation of the group 23.๐‘ƒ๐‘†๐ฟ2(7) can be decomposed as 71 = 31 + 41 under the group 2 3. ๐‘†4. A rigorous proof can also be given by noting that the group 23. ๐‘†4 is a finite subgroup of ๐‘†๐‘‚(4) which preserves the quaternion substructure of the octonion algebra. Let h represent a quaternion. Then an octonion can be written as โ„Ž + ๐‘’7โ„Ž where the quaternionic imaginary units are taken as ๐‘’1, ๐‘’2 and ๐‘’3. It can be proved that the quaternion preserving transformation on the octonion โ„Ž + ๐‘’7โ„Ž [17] can be written as โ„Ž + ๐‘’7โ„Ž โ†’ ๐‘โ„Ž๐‘ + ๐‘โ„Ž๐‘ž (15) where p and q are unit quaternions. The first term ๐‘โ„Ž๐‘ preserves the scalar part of the octonion. Therefore, without loss of generality, we can also write it as ๐‘ ๐ผ๐‘š(โ„Ž)๐‘. Since we are interested in the transformations of the set ยฑ๐‘’๐‘– , (๐‘– = 1,2, โ€ฆ ,7) we can write it as ๐ผ๐‘š (๐‘‰0) + ๐‘’7๐‘‰0 โ†’ ๐‘๐ผ๐‘š( ๐‘‰0)๐‘ + ๐‘’7๐‘๐‘‰0๐‘ž (16) where the set ๐‘‰0 = {ยฑ1, ยฑ๐‘’1, ยฑ๐‘’2, ยฑ๐‘’3} represents the elements of the quaternion group of order 8. So, the question now turns out to be for which unit quaternions p and q the set of quaternions ๐‘‰0 is preserved. The answer lies in the finite quaternion subgroups involving ๐‘‰0 as a subgroup. They are the binary tetrahedral group ๐’ฏ, binary octahedral group ๐’ช and the binary icosahedral group โ„[16]. It turns out that we need to invoke the binary octahedral group whose sets of elements can be written as the union of 6 quaternionic sets [18] ๐’ช = ๐‘‰0 + ๐‘‰+ + ๐‘‰โˆ’ + ๐‘‰1 + ๐‘‰2 + ๐‘‰3. (17) Here the sets of quaternions are defined as ๐‘‰0 = {ยฑ1, ยฑ๐‘’1, ยฑ๐‘’2, ยฑ๐‘’3} ๐‘‰+ = 1 2 (ยฑ1 ยฑ ๐‘’1 ยฑ๐‘’2 ยฑ ๐‘’3), even number of (+sign) ๐‘‰โˆ’ = 1 2 (ยฑ1 ยฑ ๐‘’1 ยฑ๐‘’2 ยฑ ๐‘’3), odd number of (+sign) ๐‘‰1 = { 1 โˆš2 (ยฑ1 ยฑ ๐‘’1 ), 1 โˆš2 ( ยฑ๐‘’2 ยฑ ๐‘’3)}, (18) ๐‘‰2 = { 1 โˆš2 (ยฑ1 ยฑ ๐‘’2 ), 1 โˆš2 ( ยฑ๐‘’3 ยฑ ๐‘’1)}, ๐‘‰3 = { 1 โˆš2 (ยฑ1 ยฑ ๐‘’3 ), 1 โˆš2 ( ยฑ๐‘’1 ยฑ ๐‘’2)}. They satisfy the multiplication table as shown in Table 6. TWO GROUPS ๐Ÿ๐Ÿ‘.๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•) AND ๐Ÿ ๐Ÿ‘: ๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•) OF ORDER 1344 63 Table 6. Multiplication table for the binary octahedral group. ๐‘‰0 ๐‘‰+ ๐‘‰โˆ’ ๐‘‰1 ๐‘‰2 ๐‘‰3 ๐‘‰0 ๐‘‰0 ๐‘‰+ ๐‘‰โˆ’ ๐‘‰1 ๐‘‰2 ๐‘‰3 ๐‘‰+ ๐‘‰+ ๐‘‰โˆ’ ๐‘‰0 ๐‘‰3 ๐‘‰1 ๐‘‰2 ๐‘‰โˆ’ ๐‘‰โˆ’ ๐‘‰0 ๐‘‰+ ๐‘‰2 ๐‘‰3 ๐‘‰1 ๐‘‰1 ๐‘‰1 ๐‘‰2 ๐‘‰3 ๐‘‰0 ๐‘‰+ ๐‘‰โˆ’ ๐‘‰2 ๐‘‰2 ๐‘‰3 ๐‘‰1 ๐‘‰โˆ’ ๐‘‰0 ๐‘‰+ ๐‘‰3 ๐‘‰3 ๐‘‰1 ๐‘‰2 ๐‘‰+ ๐‘‰โˆ’ ๐‘‰0 To determine the pair of quaternions p and q we use the notation ๐‘โ„Ž๐‘ž โ‰” [๐‘, ๐‘ž]โ„Ž. Later, we simply drop the quaternion h and write the ๐‘†๐‘‚(4) group elements as the pair [๐‘, ๐‘ž]. Since we have ๐‘‰0 = ๐‘๐‘‰0๐‘ž โ†’ ๐‘ž = ๐‘‰0๐‘๐‘‰0 = ๐‘‰0๐‘๐‘‰0 (19) and p can take values from the sets ๐‘‰0, ๐‘‰+, ๐‘‰โˆ’, ๐‘‰1, ๐‘‰2, ๐‘‰3, then the corresponding sets of quaternions ๐‘ž can be determined from the Table 6 as ๐‘‰0, ๐‘‰โˆ’, ๐‘‰+, ๐‘‰1, ๐‘‰2, ๐‘‰3. Therefore the ๐‘†๐‘‚(4) group elements preserving the set ๐‘‰0 can be written as the union of pairs of sets [๐‘‰0, ๐‘‰0] + [๐‘‰+, ๐‘‰โˆ’] + [๐‘‰โˆ’, ๐‘‰+] + [๐‘‰1, ๐‘‰1] + [๐‘‰2, ๐‘‰2] + [๐‘‰3, ๐‘‰3]. (20) This is a group of order 192 with 13 conjugacy classes which can be converted to a 4 dimensional irreducible representation if the basis is chosen as the unit quaternions 1, ๐‘’1, ๐‘’2, ๐‘’3 . When the term [๐‘, ๐‘] is incorporated into the group 23. ๐‘†4, it can be converted into a 7 ร— 7 matrix representation in the block diagonal form of 3 ร— 3 and 4 ร— 4 matrices. This proves that the 7-dimensional irreducible representation of the group 23.๐‘ƒ๐‘†๐ฟ2 (7) can be decomposed as 71 = 31 + 41 under the irreducible representations of the group 2 3. ๐‘†4 . The character table of the group 2 3. ๐‘†4 is given in Table 7. Its elementary Abelian subgroup 23 can be generated by the group elements, say [1, โˆ’1], [๐‘’1, โˆ’๐‘’1] and [๐‘’2, โˆ’๐‘’2,], and it can be proven that the group 2 3 is a normal subgroup. It is also easy to identify its maximal subgroups. For example, the set [๐‘‰0, ๐‘‰0] + [๐‘‰+, ๐‘‰โˆ’] + [๐‘‰โˆ’, ๐‘‰+] forms a group of order 96 and [๐‘‰0, ๐‘‰0] + [๐‘‰1, ๐‘‰1] forms a group of order 64. Table 7. The characteristics table of the groups 23. ๐‘†4 and 2 3: ๐‘†4 23. ๐‘†4 ๐ถ1 ๐ถ2 [2] ๐ถ3 [2] ๐ถ4 [2] ๐ถ5 [2] ๐ถ6 [3] ๐ถ7 [4] ๐ถ8 [4] ๐ถ9 [4] ๐ถ10 [4] ๐ถ11 [6] ๐ถ12 [8] ๐ถ13 [8] 23: ๐‘†4 ๐ถ1 ๐ถ2 [2] ๐ถ3 [2] ๐ถ4 [4] ๐ถ5 [4] ๐ถ6 [3] ๐ถ7 [2] ๐ถ8 [2] ๐ถ9 [2] ๐ถ10 [2] ๐ถ11 [6] ๐ถ12 [4] ๐ถ13 [4] Elements 1 1 6 12 24 32 6 6 12 12 32 24 24 ๐œ’[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 ๐œ’[11] 1 1 1 1 -1 1 1 1 -1 -1 1 -1 -1 ๐œ’[2] 2 2 2 2 0 -1 2 2 0 0 -1 0 0 ๐œ’[31] 3 3 -1 -1 -1 0 -1 3 1 1 0 -1 1 ๐œ’[32] 3 3 -1 -1 1 0 -1 3 -1 -1 0 1 -1 ๐œ’[33] 3 3 3 -1 1 0 -1 -1 1 1 0 -1 -1 ๐œ’[34] 3 3 -1 -1 -1 0 3 -1 1 1 0 1 -1 ๐œ’[35] 3 3 -1 -1 1 0 3 -1 -1 -1 0 -1 1 ๐œ’[36] 3 3 3 -1 -1 0 -1 -1 -1 -1 0 1 1 ๐œ’[41] 4 -4 0 0 0 1 0 0 -2 2 -1 0 0 ๐œ’[42] 4 -4 0 0 0 1 0 0 2 -2 -1 0 0 ๐œ’[6] 6 6 -2 2 0 0 -2 -2 0 0 0 0 0 ๐œ’[8] 8 -8 0 0 0 -1 0 0 0 0 1 0 0 Since the group 23. ๐‘†4 leaves the subsets (ยฑ๐‘’1, ยฑ๐‘’2, ยฑ๐‘’3) and ๐‘’7(ยฑ1, ยฑ๐‘’1, ยฑ๐‘’2, ยฑ๐‘’3) invariant it is easy to construct its 7 conjugate groups by permuting the quaternionic subsets (123), (246), (435), ( 367), (652), ( 572), (714) by the MEHMET KOCA ET AL 64 group generator ๐›ผ so that the group is extended by the inclusion of the generator ๐›ผ to the full automorphism group 23.๐‘ƒ๐‘†๐ฟ2(7) of the octonionic set ยฑ๐‘’๐‘– . 4. Construction of the 7-dimensional irreducible representation of the group ๐Ÿ๐Ÿ‘:๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•) Although the groups are not isomorphic to each other, the split extension 23:๐‘ƒ๐‘†๐ฟ2(7) has the same character table with the non-split extension 23. ๐‘ƒ๐‘†๐ฟ2(7). A close inspection shows that the class structures are the same although the powers of the group elements are not always the same. To give an example from the lower rank groups possessing the same character table, we may quote the dihedral group of order 8 and the quaternion group denoted by ๐‘‰0 in our notation. The group 23:๐‘ƒ๐‘†๐ฟ2(7) does not preserve the octonion algebra. Then let us assume that the group 23:๐‘ƒ๐‘†๐ฟ2(7) acts on a 7-dimensional real vector space with the vector components ๐‘ฅ๐‘– (๐‘– = 1,2, โ€ฆ ,7) . Let us assume the notation ๐‘ฅ๐‘– = โˆ’ ๐‘ฅ๐‘– . The construction of this group is easy by using its maximal subgroups. We have already discussed that the automorphism group ๐‘ƒ๐‘†๐ฟ2(7) of the elementary abelian group 2 3can be generated by ๐›ผ ฬƒ, ๐›ฝ ฬƒand ๐›พ ฬƒ in (11) and there exists a copy of the ๐‘ƒ๐‘†๐ฟ2(7) in the group 2 3:๐‘ƒ๐‘†๐ฟ2(7). For the representation of ๐›ผ ฬƒ, ๐›ฝ ฬƒand ๐›พ ฬƒ defined over ๐‘๐‘–, we can simply replace ๐‘๐‘– by ๐‘ฅ๐‘– and define the diagonal matrices ๐‘๐‘– as if they are acting on the vector components ๐‘ฅ๐‘– . We can then simply adjoin an element from the elementary Abelian group 23 to generate the whole group. Therefore, it would suffice to take ๐›ผ ฬƒ, ๐›ฝ ฬƒ, ๐›พ ฬƒ of ๐‘ƒ๐‘†๐ฟ2 (7) and ๐‘1 as the generators of the group 2 3:๐‘ƒ๐‘†๐ฟ2(7). Although this group does not preserve the octonion algebra there exists yet a maximal subgroup 23: 7: 3 generated by ๐›ผ ฬƒ, ๐›ฝ ฬƒand ๐‘1 preserving the octonion algebra, as we discussed in Section 3. It is quite natural to expect that the groups 23: ๐‘†4 and 4: ๐‘†4: 2 are maximal subgroups of order 192 in the group 23:๐‘ƒ๐‘†๐ฟ2(7). The group 2 3: ๐‘†4 can be generated by ๐ด ฬƒ, ๐ต ฬƒand ๐‘1 and its character table is depicted in Table 7. Similarly, the subgroup 4: ๐‘†4: 2 can be generated by the generators ๐›พ ฬƒ, ๏ฟฝฬƒ๏ฟฝ and ๐‘1. Its character table is displayed in Table 5. The group 23:๐‘ƒ๐‘†๐ฟ2(7) is a maximal subgroup of the simple group ๐ด8, the even permutations of the 8 letters [11] isomorphic to the maximal rotation subgroup of the Coxeter-Weyl group ๐‘Š(๐‘†๐‘ˆ(8)) โ‰… ๐‘†8. We have already listed the maximal subgroups of the group 23:๐‘ƒ๐‘†๐ฟ2(7) as the groups ๐‘ƒ๐‘†๐ฟ2(7), 2 3: 7: 3, 23: ๐‘†4 and 4: ๐‘†4: 2 . There exists yet another ๐‘ƒ๐‘†๐ฟ2(7) not conjugate to the one generated by ๐›ผ ฬƒ, ๐›ฝ ฬƒand ๐›พ ฬƒ , as Conway proved [19]. To see this, let us replace the generator ๐›พ ฬƒ by an another generator ๐›ฟ = (๐‘ฅ1๐‘ฅ5)(๐‘ฅ2)(๐‘ฅ3๐‘ฅ7)(๐‘ฅ4)(๐‘ฅ6), with ๐›ฟ โˆˆ 23:๐‘ƒ๐‘†๐ฟ2(7) and ๐›ฟ 2 = 1 instead of ๐›พ ฬƒ. One can show that ๐›ผ ฬƒ, ๐›ฝ,ฬƒ ๐›ฟ and ๐‘1 generate the same irreducible representation of the group 23:๐‘ƒ๐‘†๐ฟ2(7) in which the ๐›ผ ฬƒ, ๐›ฝ,ฬƒ ๐›ฟ represent the generators of another group ๐‘ƒ๐‘†๐ฟ2 (7). This is a miraculous structure, in that the ๐‘ƒ๐‘†๐ฟ2 (7) =< ๐›ผ ฬƒ, ๐›ฝ,ฬƒ ๐›ฟ > is not conjugate to the group ๐‘ƒ๐‘†๐ฟ2(7) =< ๐›ผ ฬƒ, ๐›ฝ,ฬƒ ๐›พ ฬƒ > . It is straightforward to show that ๏ฟฝฬƒ๏ฟฝ๐›ฟ = ๐›ฟ๐›พ ฬƒ = ๐‘7 . It is also true that 7-dimensional representation of the group ๐‘ƒ๐‘†๐ฟ2(7) = < ๐›ผ ฬƒ, ๐›ฝ,ฬƒ ๐›ฟ > is irreducible while the 7- dimensional representation of the group ๐‘ƒ๐‘†๐ฟ2 (7) =< ๐›ผ ฬƒ, ๐›ฝ,ฬƒ ๐›พ ฬƒ > is reducible with 7 = 1 + 6. Conway attributes this exceptional behavior to the holomorph of an elementary Abelian group to exhibit this miraculous feature. Therefore, the group 23:๐‘ƒ๐‘†๐ฟ2(7) has five maximal subgroups 2 3: 7: 3 , 23: ๐‘†4, 4: ๐‘†4: 2 and two nonconjugate ๐‘ƒ๐‘†๐ฟ2(7). 5. Conclusion The main motivation was that the groups 23. ๐‘ƒ๐‘†๐ฟ2(7) and 2 3: ๐‘ƒ๐‘†๐ฟ2(7) could be used as the broken symmetry of the mass matrices of quarks, charged leptons and neutrinos when they are considered as a single mass matrix. The particle physics literature is full of examples of models demonstrating that the groups ๐‘ƒ๐‘†๐ฟ2(7) and its maximal subgroups 7: 3 and ๐‘†4 can describe the symmetries of the neutrino mass matrix. Here we have studied the constructions of two groups 23. ๐‘ƒ๐‘†๐ฟ2(7) and 2 3: ๐‘ƒ๐‘†๐ฟ2(7) of order 1344 and given their character tables, including those of their maximal subgroups. The simple finite subgroup ๐‘ƒ๐‘†๐ฟ2(7) of ๐‘†๐‘ˆ(3) occurs either as a factor group or factor and maximal subgroup in these groups. We have also seen that the extension of the Frobenious group 7: 3 by the elementary Abelian group 23 leading to the group 23: 7: 3 of order 168 is a subgroup in both groups of order 1344. We have also listed the tensor products of the irreducible representations of the groups 23. ๐‘ƒ๐‘†๐ฟ2(7) and 2 3: ๐‘ƒ๐‘†๐ฟ2(7) including those of their maximal subgroups in Appendix A and given the decompositions of the irreducible representations with respect to the irreducible representations of the relevant maximal subgroups in Appendix B. Another possible use of these groups in particle physics may arise as follows. The operators, charge conjugation ๐ถ, parity ๐‘ƒ and time-reversal ๐‘‡ generate the elementary Abelian group 23 =< ๐ถ, ๐‘ƒ, ๐‘‡ > of order 8 when they act on the bilinear Dirac fields ๐œ“ฮ“๐œ“ constructed by 16 ฮ“ matrices. The Dirac bilinear forms constitute 7 eigenvectors of the 7 operators generated by the charge conjugation, parity and the time- reversal operators with the eigenvalues ยฑ1 besides the scalar bilinear Dirac field which represents the eigenvector of the unit operator. The representation of the generators can be taken as the matrices ๐‘๐‘– (๐‘– = 1,2, โ€ฆ ,7). The elementary Abelian group can be extended by its automorphism group ๐‘ƒ๐‘†๐ฟ2(7) to either of the groups 2 3. ๐‘ƒ๐‘†๐ฟ2(7) or 2 3: ๐‘ƒ๐‘†๐ฟ2(7). One can construct an effective Hamiltonian as the products of Dirac bilinear fields ๐œ“ฮ“๐œ“. Formal properties of parity violation, ๐ถ๐‘ƒ violation TWO GROUPS ๐Ÿ๐Ÿ‘.๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•) AND ๐Ÿ ๐Ÿ‘: ๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•) OF ORDER 1344 65 and even ๐ถ๐‘ƒ๐‘‡ violation can be explained as invariances under the subgroups of the quotient group ๐‘ƒ๐‘†๐ฟ2(7). If we simply impose the ๐›พ ฬƒ invariance we can prove that the parity violating weak interaction should take the form of either ๐‘‰ โˆ’ ๐ด or ๐‘‰ + ๐ด. If we impose only ๐›ฝ ฬƒinvariance we obtain CPT preserving but CP violating interaction. Invariance under the generator ๐›ผ ฬƒonly leads to the CPT violating terms along with a necessary violation of the Lorentz invariance. APPENDIX A. Tensor products First of all, we note that the groups 7: 3, 23: 7: 3, ๐‘ƒ๐‘†๐ฟ2(7), 2 3. ๐‘ƒ๐‘†๐ฟ2(7) and 2 3: ๐‘ƒ๐‘†๐ฟ2(7) all have 3-dimensional complex representations. Moreover, the group 23: 7: 3 has three 7-dimensional irreducible representations; one real, and two complex representations. The real representation preserves the octonion algebra. Tensor products of the irreducible representations of the group ๐‘ƒ๐‘†๐ฟ2(7) and its maximal subgroups are listed in the reference [2]; therefore we will not reproduce them. The other tensor products are given as follows. Tensor products of the irreducible representations of the group 23: 7: 3 11 ร— 11 = 12 12 ร— 12 = 11 11 ร— 12 = 1 12 ร— 31 = 31 11 ร— 31 = 31 12 ร— 32 = 32 11 ร— 32 = 32 12 ร— 71 = 72 11 ร— 71 = 73 12 ร— 72 = 73 11 ร— 72 = 71 12 ร— 73 = 71 11 ร— 73 = 72 31 ร— 31 = 32 + 32 + 31 32 ร— 32 = 31 + 31 + 32 31 ร— 32 = 1 + 11 + 12 + 31 + 32 32 ร— 71 = 71 + 72 + 73 31 ร— 71 = 71 + 72 + 73 32 ร— 72 = 71 + 72 + 73 31 ร— 72 = 71 + 72 + 73 32 ร— 73 = 71 + 72 + 73 31 ร— 73 = 71 + 72 + 73 71 ร— 71 = 1 + 31 + 32 + 2(71) + 2(72) + 2(73) 71 ร— 72 = 12 + 31 + 32 + 2(71) + 2(72) + 2(73) 71 ร— 73 = 11 + 31 + 32 + 2(71) + 2(72) + 2(73) 72 ร— 72 = 11 + 31 + 32 + 2(71) + 2(72) + 2(73) 72 ร— 73 = 1 + 31 + 32 + 2(71) + 2(72) + 2(73) 73 ร— 73 = 12 + 31 + 32 + 2(71) + 2(72) + 2(73) Tensor products of the irreducible representations of the groups 23. ๐‘ƒ๐‘†๐ฟ2(7) and 2 3: ๐‘ƒ๐‘†๐ฟ2(7) 31 ร— 31 = 32 + 6 32 ร— 32 = 31 + 6 31 ร— 32 = 1 + 8 32 ร— 6 = 31 + 72 + 8 31 ร— 6 = 32 + 72 + 8 32 ร— 71 = 212 31 ร— 71 = 212 32 ร— 72 = 6 + 72 + 8 31 ร— 72 = 6 + 72 + 8 32 ร— 73 = 211 31 ร— 72 = 211 32 ร— 8 = 32 + 6 + 72 + 8 31 ร— 8 = 31 + 6 + 72 + 8 32 ร— 14 = 211 + 212 31 ร— 14 = 211 + 212 32 ร— 211 = 73 + 14 + 211 + 212 31 ร— 211 = 73 + 14 + 211+212 32 ร— 212 = 71 + 14 + 211 + 212 31 ร— 212 = 71 + 14 + 211+212 6 ร— 6 = 1 + 2(6) + 72 + 2(8) 6 ร— 71 = 71 + 14 + 211 6 ร— 72 = 31 + 32 + 6 + 2(72) + 2(8) 6 ร— 73 = 73 + 14 + 212 6 ร— 8 = 31 + 32 + 2(6) + 2(72) + 2(8) 6 ร— 14 = 71 + 73 + 2(14) + 211+212 6 ร— 211 = 71 + 14 + 3(211 ) + 2(212) MEHMET KOCA ET AL 66 6 ร— 212 = 73 + 14 + 2(211) + 3(212) 71 ร— 71 = 1 + 6 + 71 + 14 + 211 71 ร— 72 = 73 + 211 + 212 71 ร— 73 = 72 + 211 + 212 71 ร— 8 = 14 + 211 + 212 71 ร— 14 = 6 + 71 + 8 + 14 + 2(211) + 212 71 ร— 211 = 6 + 71 + 72 + 73 + 8 + 2(14) + 2(211) + 2(212) 71 ร— 212 = 31 + 32 + 72 + 73 + 8 + 14 + 2(211) + 3(212) 72 ร— 72 = 1 + 31 + 32 + 2(6) + 2(72) + 2(8) 72 ร— 73 = 71 + 211 + 212 72 ร— 8 = 31 + 32 + 2(6) + 2(72) + 2(8) 72 ร— 14 = 14 + 2(211) + 2(212 ) 72 ร— 211 = 71 + 73 + 2(14) + 2(211) + 3(212) 72 ร— 212 = 71 + 73 + 2(14) + 3(211) + 2(212) 73 ร— 73 = 1 + 6 + 73 + 14 + 212 73 ร— 8 = 14 + 211 + 212 73 ร— 14 = 6 + 73 + 8 + 14 + 211 + 2(212) 73 ร— 211 = 31 + 32 + 71 + 72 + 8 + 14 + 3(211) + 2(212) 73 ร— 212 = 6 + 71 + 72 + 73 + 8 + 2(14) + 2(211) + 2(212) 8 ร— 8 = 1 + 31 + 32 + 2(6) + 2(72) + 3(8) 8 ร— 14 = 71 + 73 + 14 + 2(211) + 2(212) 8 ร— 211 = 71 + 73 + 2(14) + 3(211) + 3(212) 8 ร— 212 = 71 + 73 + 2(14) + 3(211) + 3(212) 14 ร— 14 = 1 + 2(6) + 71 + 72 + 73 + 8 + 2(14) + 3(211) + 3(212) 14 ร— 211 = 31 + 32 + 6 + 2(71) + 2(72) + 73 + 2(8) + 3(14) + 5(211) + 4(212) 14 ร— 212 = 31 + 32 + 6 + 71 + 2(72) + 2(73) + 2(8) + 3(14) + 4(211) + 5(212) 211 ร— 211 = 1 + 31 + 32 + 3(6) + 2(71) + 2(72) + 3(73) + 3(8) + 5(14) + 6(211) + 7(212) 211 ร— 212 = 31 + 32 + 2(6) + 2(71) + 3(72) + 2(73) + 3(8) + 4(14) + 7(211) + 7(212 ) 212 ร— 212 = 1 + 31 + 32 + 3 (6) + 3(71) + 2(72) + 2(73) + 3(8) + 5(14) + 7(211) + 6(212). Tensor products of the irreducible representations of the groups 4. ๐‘†4: 2 and 4: ๐‘†4: 2 11 ร— 11 = 1 12 ร— 12 = 1 13 ร— 13 = 1 11 ร— 12 = 13 12 ร— 13 = 11 13 ร— 21 = 21 11 ร— 13 = 12 12 ร— 21 = 22 13 ร— 22 = 22 11 ร— 21 = 22 12 ร— 22 = 21 13 ร— 31 = 32 11 ร— 22 = 21 12 ร— 31 = 33 13 ร— 32 = 31 11 ร— 31 = 34 12 ร— 32 = 34 13 ร— 33 = 34 11 ร— 32 = 33 12 ร— 33 = 31 13 ร— 34 = 33 11 ร— 33 = 32 12 ร— 34 = 32 13 ร— 61 = 62 11 ร— 34 = 31 12 ร— 61 = 61 13 ร— 62 = 61 11 ร— 61 = 62 12 ร— 62 = 62 13 ร— 63 = 64 11 ร— 62 = 61 12 ร— 63 = 64 13 ร— 64 = 63 11 ร— 63 = 63 12 ร— 64 = 63 11 ร— 64 = 64 21 ร— 21 = 1 + 13 + 22 22 ร— 22 = 1 + 13 + 22 21 ร— 22 = 11 + 12 + 21 22 ร— 31 = 31 + 32 21 ร— 31 = 33 + 34 22 ร— 32 = 31 + 32 21 ร— 32 = 33 + 34 22 ร— 33 = 33 + 34 21 ร— 33 = 31 + 32 22 ร— 34 = 33 + 34 21 ร— 34 = 31 + 32 22 ร— 61 = 61 + 62 TWO GROUPS ๐Ÿ๐Ÿ‘.๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•) AND ๐Ÿ ๐Ÿ‘: ๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•) OF ORDER 1344 67 21 ร— 61 = 61 + 62 22 ร— 62 = 61 + 62 21 ร— 62 = 61 + 62 22 ร— 63 = 63 + 64 21 ร— 63 = 63 + 64 22 ร— 64 = 63 + 64 21 ร— 64 = 63 + 64 31 ร— 31 = 1 + 22 + 31 + 32 32 ร— 32 = 1 + 22 + 31 + 32 31 ร— 32 = 13 + 22 + 31 + 32 32 ร— 33 = 11 + 21 + 33 + 34 31 ร— 33 = 12 + 21 + 33 + 34 32 ร— 34 = 12 + 21 + 33 + 34 31 ร— 34 = 11 + 21 + 33 + 34 32 ร— 61 = 61 + 63 + 64 31 ร— 61 = 62 + 63 + 64 32 ร— 62 = 62 + 63 + 64 31 ร— 62 = 61 + 63 + 64 32 ร— 63 = 61 + 62 + 63 31 ร— 63 = 61 + 62 + 64 32 ร— 64 = 61 + 62 + 64 31 ร— 64 = 61 + 62 + 63 33 ร— 33 = 1 + 22 + 31 + 32 34 ร— 34 = 1 + 22 + 31 + 32 33 ร— 34 = 13 + 22 + 31 + 32 34 ร— 61 = 61 + 63 + 64 33 ร— 61 = 62 + 63 + 64 34 ร— 62 = 62 + 63 + 64 33 ร— 62 = 61 + 63 + 64 34 ร— 63 = 61 + 62 + 64 33 ร— 63 = 61 + 62 + 63 34 ร— 64 = 61 + 62 + 63 33 ร— 64 = 61 + 62 + 64 61 ร— 61 = 1 + 12 + 21 + 22 + 32 + 34 + 61 + 62 + 63 + 64 61 ร— 62 = 11+13 + 21 + 22 + 31 + 33 + 61 + 62 + 63 + 64 61 ร— 63 = 31 + 32 + 33 + 34 + 61 + 62 + 63 + 64 61 ร— 64 = 31 + 32 + 33 + 34 + 61 + 62 + 63 + 64 62 ร— 62 = 1 + 12++21 + 22 + 32 + 34 + 61 + 62 + 63 + 64 62 ร— 63 = 31 + 32 + 33 + 34+61 + 62 + 63 + 64 62 ร— 64 = 31 + 32 + 33 + 34+61 + 62 + 63 + 64 63 ร— 63 = 1 + 11 + 21 + 22 + 32 + 33 + 61 + 62 + 63 + 64 63 ร— 64 = 12+13 + 21 + 22 + 31 + 34 + 61 + 62 + 63 + 64 64 ร— 64 = 1 + 11+21 + 22 + 32 + 33 + 61 + 62 + 63 + 64 Tensor products of the irreducible representations of the groups 23. ๐‘†4 and 2 3: ๐‘†4 11 ร— 11 = 1 2 ร— 2 = 1 + 11 + 2 11 ร— 2 = 2 2 ร— 31 = 31 + 33 11 ร— 31 = 33 2 ร— 32 = 32 + 34 11 ร— 32 = 34 2 ร— 33 = 31 + 33 11 ร— 33 = 31 2 ร— 34 = 32 + 34 11 ร— 34 = 32 2 ร— 35 = 35 + 36 11 ร— 35 = 36 2 ร— 36 = 35 + 36 11 ร— 36 = 35 2 ร— 41 = 8 11 ร— 41 = 42 2 ร— 42 = 8 11 ร— 42 = 41 2 ร— 6 = 6 + 6 11 ร— 6 = 6 2 ร— 8 = 41 + 42 + 8 11 ร— 8 = 8 31 ร— 31 = 1 + 2 + 31 + 33 32 ร— 32 = 1 + 2 + 32 + 34 31 ร— 32 = 36 + 6 32 ร— 33 = 35 + 6 31 ร— 33 = 11 + 2 + 31 + 33 32 ร— 34 = 11 + 2 + 32 + 34 31 ร— 34 = 35 + 6 32 ร— 35 = 33 + 6 31 ร— 35 = 34 + 6 32 ร— 36 = 31 + 6 31 ร— 36 = 32 + 6 32 ร— 41 = 42 + 8 31 ร— 41 = 41 + 8 32 ร— 42 = 41 + 8 31 ร— 42 = 42 + 8 32 ร— 6 = 31 + 33 + 35 + 36 + 6 MEHMET KOCA ET AL 68 31 ร— 6 = 32 + 34 + 35 + 36 + 6 32 ร— 8 = 41 + 42 + 2(8) 31 ร— 8 = 41 + 42 + 2(8) 33 ร— 33 = 1 + 2 + 31 + 33 34 ร— 34 = 1 + 2 + 32 + 34 33 ร— 34 = 36 + 6 34 ร— 35 = 31 + 6 33 ร— 35 = 32 + 6 34 ร— 36 = 33 + 6 33 ร— 36 = 34 + 6 34 ร— 41 = 41 + 8 33 ร— 41 = 42 + 8 34 ร— 42 = 42 + 8 33 ร— 42 = 41 + 8 34 ร— 6 = 31 + 33 + 35 + 36 + 6 33 ร— 6 = 32 + 34 + 35 + 36 + 6 34 ร— 8 = 41 + 42 + 2(8) 33 ร— 8 = 41 + 42 + 2(8) 35 ร— 35 = 1 + 2 + 35 + 36 36 ร— 36 = 1 + 2 + 35 + 36 35 ร— 36 = 11 + 2 + 35 + 36 36 ร— 41 = 42 + 8 35 ร— 41 = 41 + 8 36 ร— 42 = 41 + 8 35 ร— 42 = 42 + 8 36 ร— 6 = 31 + 32 + 33 + 34 + 6 35 ร— 6 = 31 + 32 + 33 + 34 + 6 36 ร— 8 = 41 + 42 + 2(8) 35 ร— 8 = 41 + 42 + 2(8) 41 ร— 41 = 1 + 31 + 34 + 35 + 6 41 ร— 42 = 11 + 32 + 33 + 36 + 6 41 ร— 6 = 41 + 42 + 2(8) 41 ร— 8 = 2 + 31 + 32 + 33 + 34 + 35 + 36 + 2(6) 42 ร— 42 = 1 + 31 + 34 + 35 + 6 42 ร— 6 = 41 + 42 + 2(8) 42 ร— 8 = 2 + 31 + 32 + 33 + 34 + 35 + 36 + 2(6) 6 ร— 6 = 1 + 11 + 2(2) + 31 + 32 + 33 + 34 + 35 + 36 + 2(6) 6 ร— 8 = 2(41) + 2(42) + 4(8) 8ร— 8 = 1 + 11 + 2 + 2(31) + 2(32) + 2(33) + 2(34) + 2(35) + 2(36) + 4(6) APPENDIX B. Decomposition of the irreducible representations in terms of the irreducible representations of the maximal subgroups Decompositions of the irreducible representations of the groups 23. ๐‘ƒ๐‘†๐ฟ2 (7) and 2 3: ๐‘ƒ๐‘†๐ฟ2(7) under the maximal subgroup 23: 7: 3 Irreducible representations of 23. ๐‘ƒ๐‘†๐ฟ2(7) and 23: ๐‘ƒ๐‘†๐ฟ2(7) Irreducible representations of 23: 7: 3 1 1 31 31 32 32 6 31 + 32 71 71 72 1+31 + 32 73 71 8 11 + 12 + 31 + 32 14 72 + 73 211 71 + 72 + 73 212 71 + 72 + 73 TWO GROUPS ๐Ÿ๐Ÿ‘.๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•) AND ๐Ÿ ๐Ÿ‘: ๐‘ท๐‘บ๐‘ณ๐Ÿ(๐Ÿ•) OF ORDER 1344 69 Decompositions of the irreducible representations of the group 23: ๐‘ƒ๐‘†๐ฟ2(7) under the maximal subgroup ๐‘ƒ๐‘†๐ฟ2(7) Irreducible representations of 23: ๐‘ƒ๐‘†๐ฟ2(7) Irreducible representations of ๐‘ƒ๐‘†๐ฟ2(7) 1 1 31 31 32 = 31 32 = 31 6 6 71 7 72 7 73 1 + 6 8 8 14 6 + 8 211 31 + 32 + 7 + 8 212 6 + 7 + 8 Decompositions of the irreducible representations of the group 23: 7: 3 under the maximal subgroup 7: 3 Irreducible representations of 23: 7: 3 Irreducible representations of 7: 3 1 1 11 11 12 = 11 12 = 11 31 31 32 = 31 32 = 31 71 1 + 31 + 32 72 12 + 31 + 32 73 11 + 31 + 32 Decompositions of the irreducible representations of the group ๐‘ƒ๐‘†๐ฟ2(7) under the maximal subgroup 7: 3 Irreducible representations of ๐‘ƒ๐‘†๐ฟ2 (7) Irreducible representations of 7: 3 1 1 31 31 32 = 31 32 = 31 6 31 + 32 7 1 + 31 + 32 8 11 + 12 + 31 + 32 References 1. Koca, M. and Koc, R. Octonions and the Group of Order 1344. Turkish Journal of Physics, 1995, 19, 304-319. 2. Luhn, C., Nasri, S. and Ramond, P. Simple finite non-Abelian flavor groups. Journal of MathematicalPhysics, 2007, 48(12), 123519. 3. Luhn, C., Nasri, S. and Ramond, P. Tri-Bimaximal Neutrino Mixing and the Family Symmetry Z_7 xZ_3. Physics Letters B, 2007, 652(1), 27-33. 4. Pakvasa S., and Sugawara, H. Discrete symmetry and Cabibbo angle. Physics Letters B, 1978, 73, 61-64;Grimus, W. and Lavoura, L. S3 x Z2 model for neutrino mass matrices. Journal of High Energy Physics(JHEP), 2005, 08:013; Grimus, W. and Lavoura, L. A model realizing the Harrison-Perkins-Scott lepton mixing matrix. Journal of High Energy Physics, 2006, 01:018; Mohapatra, R.N., Nasri, S. and Yu, H.B. S3 symmetry and tri-bimaximal mixing. Physics Letters B, 2006, 639(3-4), 318-321. 5. Babu, K.S., Ma, E. and Valle, J.W.F. Underlying A4 symmetry for the neutrino mass matrix and the quark mixing matrix. Physics Letters B, 2003, 552, 207-213. 6. Hagedorn, C., Lindner, M. and Mohapatra, R.N. S4 flavor symmetry of quarks and leptons in SU(5) Grand Unified Theory. Journal of High Energy Physics, 2006, 06:042. MEHMET KOCA ET AL 70 7. Varzielas, I. de Medeiros and Ross, G.G. SU(3) family symmetry and neutrino bi-tri-maximal mixing. Nuclear Physics B, 2006, 733(1), 31-47. 8. Kaplan, D.B. and Schmaltz, M. Flavor unification and discrete non-Abelian symmetries. Physics Review D, 1994, 49 (7), 3741-3750. 9. Ma, E. Near Tribimaximal neutrino mixing with delta (27) symmetry. Physics Letters B, 2008, 660, 505-507. 10. Harrison, P.F., Perkins, D.H. and Scott, W.G. Tri-bimaximal mixing and the neutrino oscillation data. Physics Letters B, 2002, 530, 167-173. 11. Conway, J.H, Curtis, R.T., Norton, S.P , Parker, R.A. and Wilson, R.A., Atlas of Finite Groups. Oxford University Presss, 1985. 12. Bauer, M. and Itzykson, C. Modular transformations of SU(N) affine characters and their commutant. Communications in Mathematical Physics, 1990, 127(3), 617-636. 13. King, R.C., Toumazet, F. and Wybourne, B.G. A finite subgroup of the exceptional Lie group G2. Journal of Physics A: Mathematical and General, 1999, 32(48), 8527-8537. 14. Gunaydin, M. and Gursey, F. Quark structure and octonions. Journal of Mathematical Physics, 1973, 14 (11), 1651-1667. 15. Karsch, F. and Koca, M. G2 as the Automorphism Group of Octonionic Root System of E7. Journal of Physics A: Mathematical and General, 1990, 23(21), 4739-4750; Koca, M., Koc, R. and Koca, N.O. The chevalley group G2 of order 12096 and the octonionic root system of E7. Linear Algebra and its Applications, 2007, 422, 808-823. 16. Coxeter, H.S.M. and Moser, W.O.J. Generators and Relations for Discrete Groups. Springer Verlag, 1965; H.S.M. Coxeter, Regular Complex Polytopes. Cambridge University Press, 1973. 17. Conway, J.H. and Smith, D.A. On Quaternionโ€™s and Octonions: Their Geometry, Arithmetics and Symmetry. A.K. Peters, Ltd, Natick, MA, 2003. 18. Koca, M., Koc, R. and Al-Barwani, M. Quaternionic Roots of SO(8), SO(9), F4 and the Related Weyl Groups. Journal of Mathematical Physics, 2003, 44, 3123-3140; Koca, M., Koc, R. and Al-Barwani, M. Quaternionic root systems and subgroups of the Aut (F4). Journal of Mathematical Physics, 2006, 47, 043507- 043521. 19. Conway, J.H. Three Lectures on Exceptional Groups, Chap 10 in Conway, J.H. and Sloane, N.J.A. Sphere Packings, Lattices and Groups, Springer Verlag, 1998. Received 1 May 2018 Accepted 15 October 2018