SQU Journal for Science, 2019, 24(2), 95-108 DOI:10.24200/squjs.vol24iss2pp95-108 Sultan Qaboos University 95 Flora, Life-forms and Biological Spectrum of Muscat Governorate Neelam Sherwani Department of Biology, Sultan Qaboos University, P.O. Box 36, PC 123, Al-Khoud, Muscat Sultanate of Oman. Email: sherwani@squ.edu.om. ABSTRACT: The present study evaluated the floristic diversity and biological spectrum of Muscat Governorate, Sultanate of Oman. Heterogeneity of geology, topography and climatic conditions create a diverse array of habitats across the 3,500 km 2 study area, supporting a range of vegetation types. Floristic studies were conducted across 42 sites spread across various habitats such as sand dunes, alluvial plains, gravel plains, wadis, saline dunes, coastal areas, farms and plantations. A total of 264 species belonging to 183 genera and 54 families of angiosperm were documented during sampling the vegetation from different wilayats of the Governorate. Maximum number of species belonged to family Fabaceae (14%), followed by Poaceae (12%), Asteraceae (9%), Apocyanaceae and Convolvulaceae (3.66% each), Boraginaceae, Euphorbiaceae, Zygophylaceae (3% each). The biological spectrum was represented almost equally by therophytes and chamaephytes (30% each), followed by phanerophytes (19%), hemicryptophytes (13%), geophytes (4%), liana (3%), and helophytes (1%). The dominance of therophytes and chamaephytes reveals a thero-chamaephytic phytoclimate for the area. Different habitats are characterized by specific plant assemblages, but some species such as Acacia tortilis, Prosopis cineraria, Tetraena quaterense, Dipterygium gluacum, Aerva javanica, due to their broad ecological tolerance and adaptations, inhabit more than one habitats, while some species are just confined to certain parts of a single habitat. Keywords: Biological spectrum, Flora, Habitats, Phytoclimate. الحياة النباتية والطيف البيولوجي لمحافظة مسقط نيالم شروني هذه الدراسة لتقييم تنوع الحياة النباتية والطيف البيولوجي لمحافظة مسقط ، سلطنة عمان، إن عدم التجانس الجيولوجي وإختالف سمات سطح :لخصمال 0033الدراسة التي امتدت إلى األرض وإختالف المناخ خلق مجموعة متنوعة من المناطق الطبيعية لمجموعة متنوعة من أنواع النباتات المختلفة في منطقة نوع من 462موقع بيئي مختلف كالكثبان الرملية ، الكثبان المالحة، المناطق الساحلية والمزارع. وتم رصد 24كلم مربع. لقد تمت دراسة النباتات في ط. لخصت الدراسة إلى أن أكثر أنواع النباتات تنتمي عائلة من النباتات كاسيات البذور في مختلف واليات محافظة مسق 02جنس و 380النباتات تنتمي إلى %(، العائلة 0.66%(، العائلة المحمودية )0.66%(، العائلة الدفلية )9%(، العائلة اإلستراسيا )34%( تتبعها العائلة النجيلية )32إلى العائلة البقولية ) %( 03و ) Therophytes%( 03ن الطيف البيولوجي تمثل تقريبا بالتساوي ما بين )% لكل عائلة(. إ0الحمحمية، العائلة الغربيونية والعائلة القديسية ) Chamaephytes ( 39ويلي ذلك )%Phanerophytes ( 30و )%Hemicryptophytes ( 2و )%Geophytes ( 0و )%Liana ( 3و )% Helophytes إن هيمنه .therophytes وChamaephytes المنطقة. إن الموائد )الموطن الطبيعي( المختلفة تتميز هذه المجموعة على تعكس هيمنة Dipterygium gluacumو Tetraena quaterenseو Proposis cinerariaو Acacia tortilisبتجميع نباتات محددة إال أن بعض األنواع كـ في حين إن هذه الخاصية ال تتوفر لبعض األنواع التي تتقيد ببيئة تستوطن مناطق مختلفة نسبة لقدرتها على التحمل و التكيف البيئي Aerva Javanicaو .محددة ، الموطن الطبيعي و المناخ النباتي.تنوع النباتات ،الطيف البيولوجي: الكلمات المفتاحية 1. Introduction ocated in the northeast corner of Oman, along the coast running north of the Hajar mountain range, Muscat is the capital city of Oman. Muscat features hot and arid climatic conditions with an average annual rainfall of about 100 millimetres per year [1]. Spanning across an area of 3,500 km 2 , Muscat Governorate is comprised of six provinces called wilayats, namely Muttrah, Bawshar, Seeb, Al Amerat, Muscat and Quriyat. Different type of rocks and sediments makes the surface geology of Muscat governorate, which are mixture of samail ophiolite, carbonates, limestones and tertiary sandstones. L mailto:sherwani@squ.edu.om SHERWANI, N. 96 The surface sediment materials in general, are dense mixture of clay, gravel, silt, sand, and rock fragments [2,3]. Heterogeneity of geology, topography and climatic conditions create a diverse array of habitats ranging from mud flats, saline dunes, sabkhas, Khawrs, sand dunes, alluvial plains, gravel plains, wadis and Khabrah supporting a range of vegetation types. Generally, the floristic composition of a region and the biological spectrum, which is the percent representation of the number of species belonging to each life form [4], is influenced by the climate and nature of the substrate material [5] and their distribution is closely associated with the topography of the region [6]. The life forms are manifestations of the total adaptation of their perennating organs [7], and has evolved as a direct response to the prevailing environment [8-10], and are representations of flora adaptations to specific ecological conditions [11] and act as an indicator of nature of existing environmental conditions [12,13]. According to life form’s system [7], the harsher the climatic conditions, the more protected are the renewing buds. Arid zones represent harsh environmental conditions [14] and in these extreme habitats, the biological spectrum shifts towards the more protected life-form classes such as therophytes, as they are the only one capable of better survival due to their short vegetative seasons and they survive under unfavourable seasons in the form of seeds. The biological spectra of a typical desert flora is represented mainly by therophytes and chamaephytes [6]. In view of the climate change, with a predicted increase of 1 to 2 °C in the maximum temperature for the entire country of Oman through 2040 [15] and predicted 40% less rainfall for northern coastal area by 2040 [15], Oman is likely to experience a decrease in water resources due to climate change. Oman ranked 28 th in terms of in Global Climate Risk Index 2018, the floristic diversity and biological spectrum is expected to be affected. Recent tropical cyclones has also caused substantial damage to the coastal areas like Muscat. With rapid phase of urbanization, infrastructure development and industrialization going on, and Muscat, being the capital city of Oman, the floristic diversity is under threat. Urbanization affects floristic diversity directly through habitat loss and fragmentation and indirectly due to human behavior [16-19]. Being an arid zone ecologically, such zones are fragile, usually highly specialized, with high degree of endemism. Oman has a high percentage of endemics, with 78 plant species being strictly endemic to Oman, 48 species near endemic and 63 species regional endemic to the Arabian Peninsula [20]. Many of these species are rare, threatened, and endangered. A slight change in climatic conditions will cause havoc on these species. The floristic diversity overall in Oman and specially in capital city Muscat is under threat due to its limited water resources, climatic change, population growth and urbanization, thus there is a need to document the total flora, various life forms and species distribution across various habitats. No previous study has highlighted the biological spectrum and plant life forms in this area. Therefore, the present study was conducted to analyse the vegetation of the Muscat Governorate in terms of floristic composition, life-form, and habitat and to prepare a biological spectrum to infer the existing phytoclimate of the area. 2. Materials and Methods Study area Muscat Governorate is located in the northeast corner of Oman, latitude 23.5859 °N, and longitude, 58.4059 °E bordered by Gulf of Oman on its north (Figure 1). The western Al Hajar Mountains range dominate the landscape of Muscat. Its area is about 3,500 km 2 . Muscat governorate has a hot arid climate, with long and very hot summers and warm winters. Temperature reaches as high as 49 °C in summer. The hottest month is June with an average temperature of 35 °C, January is the coldest month with an average temperature of 21 °C. The Muscat governorate is comprised of six provinces called wilayats, namely Muttrah, Bawshar, Al- Seeb, Al Amerat, Muscat and Quriyat. Samail Ophiolite is mainly exposed around Muscat and Mutrah Wilayat [21], surface geology of Al Amirat is composed of aeolian sand, alluvial fans, dolomite and limestone. Sand, clay and silt are found in Bawsher, with coastal dunes, alluvial sand, silt and Khabrah found in Seeb [2]. A checklist of angiosperm species growing in Muscat Governorate was generated based on the results of four years (2014-2018) intensive study. Field surveys were an important part of the study, regular field surveys were conducted across 42 sites (Figure 1), scattered along different habitats . Specimen of all the species of trees, shrubs, herbs and climbers found in these sites were collected and identified. In the field, the plant species were documented, collected and field notes were taken so as to have information on the plant’s habit, leaves, stem and floral parts and habitat. Accession numbers were assigned to each specimen along with locality data. The specimens were identified using related taxonomic books, [22-26] and compared with herbarium specimens from Herbarium, College of Science, SQU. Life forms of species were evaluated, relying on the location of the regenerative buds and the shed parts during the unfavorable season [7]. FLORA, LIFE-FORMS AND BIOLOGICAL SPECTRUM 97 Figure 1. Map of site of collections from Muscat Governorate. 3. Results A total of 283 species were recorded from different habitats in the Governorate of Muscat, representing 196 genera and 49 families (Table 1). The families with the highest number of species recorded was leguminosae with 42 species (14%). Figure 2. Number of species per family recorded from Muscat Governorate. SHERWANI, N. 98 Other families represented were Poaceae with 36 species (12%), Asteraceae with 27 species (9%), Apocyanaceae and Convolvulaceae with 11 species each (3.66%), Boraginaceae, Euphorbiaceae, Zygophylaceae with 9 species each (3%), Caryophyllaceae and Polygonaceae with 8 species each (2.6%), Solanaceae with 7 species (2.3%), Cleomaceae with 6 species (2%), followed by Capparaceae and Phyllanthaceae with 5 species each (1.6%), Brassicaceae, Cyperaceae, lamiaceae, Malvaceae and Resedaceae with 4 species each (1.3%) (Figure 2). Convolvulus with 6 species was the largest genus in terms of number of species in the study area, followed by Launea and Cleome with 5 species each. Figure 3 shows the biological spectrum or the life form spectrum of the given 264 species in the study area. The vegetation of Muscat Governorate showed almost equal percentage of therophytes (30%) and chamaephytes (30%), followed by that of phanerophytes (19%), hemicryptophytes (13%), geophytes (4%), liana (3%), and helophytes (1%). The therophytes and chamaephytes together constitute 60% of the life-forms. Figure 3. Biological spectrum of life-forms of plant species recorded from Muscat Governorate. Figure 4. Percentage of the studied species by life-span. [CATEGORY NAME] [PERCENTAGE] Therophytes 30% Phanaerophytes 19% Hemicryptophytes 13% Liana 3% Geophytes 4% Helophytes 1% Annuals 37% Perrenials 63% L i f e s p a n P e r c e n t a g e Annuals Perrenials FLORA, LIFE-FORMS AND BIOLOGICAL SPECTRUM 99 Life span wise, 105 species were annuals (37%) and 159 were perennials (63%), Figure 4. Study of the dominant families in terms of species richness revealed that Fabaceae has high percentage (77%) of perennials and Astereaceae family has high percentage (67%) of annuals. Distribution studies of the species along varied habitats (Table 1) showed that different habitats are characterized by specific plant assemblages, but some species can be found in more than one habitat. Gravel and rocky terrain habitat: The highest species density was concentrated in the gravel and rocky terrain habitat (136 species), here the life-form composition is dominated by small trees, woody chamaeophytes and therophytes. Perennial phanaerophytes such as Acacia tortilis, Prosopis cineraria, Prosopis juliflora (introduced and naturalized), Zizyphus spina-christi, and chamaeophytes such as Heliotropium bacciferum, Euphorbia larica are the permanent features of the plant cover in this habitat and therophytes such as Launea intybatea and Cenchrus setigerus are common. Alluvial plains and disturbed areas: Here the vegetation is characterized by chamaeophytes such as Convolvulus virgatus, Fagonia indica, Amaranthus viridus, Tephrosia appollinea, Chrozophora oblongifolia, Pulicaria glutinosa and therophytes such as Tribulus terrestris, Tribulus arabica, Cenchus ciliaris, Pennisetum setaceum, Tetreana simplex. A total of 78 species was found in this zone. Sand dunes: In dunes, with 55 species, the life-form composition is typical of the desert flora, characterized by low carbonate content substrate. Sand dunes are mainly colonized by chamaeophytes such as Dipterygium glaucum, Calligonum commosum and Cyperus conglomeratus. Wadi: In Wadis, the life-form composition is dominated by dense stands of helo-geophytes such as Phragmatis australis and Typha domingensis in Wadi beds, margins of wadi are colonized mainly by species such as Acacia tortolis, Prosopis cineraria, Prosopis juliflora. Annuals such as Centurea pseudosinaica and Plantago ovata are common on dried wadi beds. Coastal area with the least number of species (27) are dominated by perennial, low growing halophytic chamaephytes such as Suaeda aegyptiaca, Sphaerocoma aucheri, Tetraena quaterense and Cornoluca monocantha. The vegetation stands usually are species poor, as cover of one particular species is frequently seen over a larger area. Avicenia marina is a typical mangrove species found in the intertidal zone. 4. Discussion The floristic data clearly indicate that despite having a dry arid climate, Muscat Governorate is home to a rich diversity of plants and these plant species are very much associated with aridity and drought. Fabaceae, Poaceae and Asteraceae were the dominant families in terms of number of species. These families show high compatibility with arid and semiarid environmental conditions. Similar results were observed in Hema Faid Region of Ha’il Province, Saudi Arabia [27], in Tabuk province, north Saudi Arabia [28], in Hafer Albatin region, northeastern Saudi Arabia [29]. Generally, the vegetation type and the biological spectrum of a given area reflects an apparent relationship to its surrounding environment [30-32]. The biological spectrum in the present study ranged from therophytes, chamaephytes, phanerophytes, hemicryptophytes, geophytes, liana and helophytes. Therophytes and chamaephytes were the dominate forms, the dominance of the therophytes and chamaephytes may be attributed to the hot dry climate, geological factors and the topography [33-35]. Therophytes are associated with a dry climate [36,37], and are characteristics vegetation type of desert flora, as influenced by microclimate and soil conditions [38]. The thero- chamaephytic spectrum has been assiociated with other desert climates observed in the neighbouring countries such as Taif, Saudi Arabia [39], Hail region of Saudi Arabia [40], Wadi Al-Jufair, Saudi Arabia [35], Toor Al-Baha District, Lahej Governorate, Yemen, [41]. Generally, a sparse vegetation cover with scattered small trees, dwarf shrubs and mainly annuals represent a typical desert flora, as the sandy soil of these regions is characterized by low soil organic carbon and low structural stability, a high nutrient leaching and degradation due to erosion [42]. Diverse habitats are zones of microenvironments at local scales, each habitat supporting a characteristic type of vegetation. As the species distribution is generally limited by its ecological amplitude, [43] climate and habitat filtering, generating species pools, [44], where species adjust their metabolism [45] and produce functional traits as result of adaptation to the microclimates found under variable habitats [46]. Analysis of the present study reveals that highest species concentration was found in gravel rocky terrain, here the life-form composition is dominated by small trees, woody chamaeophytes and therophytes. Scattered xerophytic vegetation of dwarf chamaeophytes, perennial herbs, and small trees are features of water limited sand dunes habitat with soils low in organic carbon, phosphorus and low water retaining capacity. Similar results were observed by [47] in Al Kharj region, Saudi Arabia. The psammophytic vegetation of the sand dunes exhibit specific ecological adaptation, sending out long roots to catch hold of the slightest moisture available. Wadi beds are usually rich floristically [48], where the access to water creates a favourable microclimate and microhabitat, for many species to flourish. The availability of annuals or perennials in a wadi mainly depends on the amount of rainfall received during the year [49]. Perennials helophytic tall grasses are the common representative species in wadis. Similar results were observed in Wadi Hegiya [50]. Halophytic perennial chamaephytes with reduced succulent leaves predominate the coastal vegetation, with mostly chenopodiales and members of Zygophyllaceae being the dominant feature at many coastal locations, similar SHERWANI, N. 100 results were observed in coastal Area of Al-Uqair, Saudi Arabia [51]. Reduced leaf area is an indicator of severe environmental stress [52]. Reduced leaf area and fleshy leaves, under salinity stress is a common phenomenon associated with most of the coastal halophytes [53]. Under selective pressures at a given habitat, the ecological strategies are limited which results into communities having species with similar functional traits and life form composition [54]. Lying in the arid zone, Oman already suffers from aridity, water paucity and salinity , and being vulnerable to climatic change, with a predicted 1-2 ˚C rise in average temperature over the next 30 years [55], erratic patterns of precipitation and raised sea levels, all these factors are expected to exert considerable physiological constraints and affect biodiversity [56]. In view of the above threats, with high degree of endemism, many threatened species, lack of enough in situ protected areas for plant conservation, lack of enough restoration programs, urban sprawl affecting biodiversity, documentation of the species is necessary and important. Conclusion The heterogeneity of environmental conditions, surface geology and topography across diverse habitats lead to variation in the distributional pattern of plant species in the studied area. Species were morphologically and physiologically adapted to the varied environmental conditions across different habitats, through selection on their functional traits by environmental filters, generating species pools. Each habitat acts as a microenvironment where specific abiotic stress leads to similar responsive characteristics among the co-existing species, thus similar life-form composition. Based on the work, the phytoclimate of the area, based on Raunkiaer’ s system of classification, has been described as thero-chamaephytic phytoclimate. Table 1. Flora, Life forms, Life span and Habitat of plants recorded from Muscat Governorate. (Names follow APG 1V classification). Key, Ph : Phanerophyte; Ch: Chamaephyte; He: Hemicryptophyte; Ge: Geophyte; He: Helophytes Th: Therophyte; Li :Liana; Ann: Annual; Per: Perennial; Coa : Coastal; Al-P : Alluvial plains, roadsides, Dun: Dunes; Wad : Wadi’s; Gr-roc : Gravel, rocky terrain, Mountains; Far : Farms and Plantations. Family Species Life-form Life span Habitat Coa Al- p Du n Wa d G r- R oc Far 1. Acanthaceae Avicenia marina Hl Per x 2. Blepharis ciliaris Ch Per x 3. Ecbolium viride Ph Per x x 4. Aizoaceae Aizoon canariense He Ann x x 5. Gisekia pharnaceoides He Ann x 6. Trianthema portulacatrum He Ann x 7. Amaranthaceae Achyranthus aspera Ch An/P x 8. Aerva javonica Ch Per x x x 9. Amaranthus graecizans Th Ann x x 10. Amaranthus hybridus Th Ann x x 11. Amaranthus viridus Th Ann x x 12. Anabasis setifera Ch Per x x x 13. Arthrocnemum macrostachyum Ch Per x 14. Atriplex farinose Ch Per x 15. Atriplex leucoclada Ch Per x 16. Chenopodium album Th Ann x x 17. Chenopodiastrum murale Th Ann x x 18. Cornoluca aucheri Th Ann x 19. Cornoluca monocantha Ch Per x x 20. Digera muricata Th Ann x 21. Halothamnus bottae Ch Per x x 22. Hamada salicornica Ch Per x x x FLORA, LIFE-FORMS AND BIOLOGICAL SPECTRUM 101 23. Pupalia lappacea Ch Per x x 24. Salsola drummondii Ch Per x 25. Caroxylon imbricatum Th Ann x x x 26. Seidlitzia rosmarinus Ch Per x x 27. Suaeda aegyptiaca Ch Per x x x 28. Suaeda vermiculata Ch Per x 29. Apiaceae Ammi majus Th Ann x 30. Apocyanaceae Adenium obesum Ph Per X 31. Calotropis procera Ph Per x x 32. Caralluma edulis Ch Per x 33. Glossonema varians He Ann x 34. Leptadenia pyrotechnica Ph Per x x x 35. Nerium oleander Ph Per x x 36. Pentatropis nivalis Li Per x x x 37. Pergularia tomentosa Li Per x 38. Periploca aphylla Ch Per x 39. Rhazya stricta Ch Per x x 40. Arecaceae Nanorrhops ritchieana Ph Per x 41. Phoenix dactylifera Ph Per x x 42. Asparagaceae Asparagus racemosus Li Per 43. Aristolochiacea e Aristolochia bracteolata Li Per x x 44. Asphodelaceae Aloe inermis Ch Per x 45. Asphodelus tenuifolius Ge Ann x x 46. Asteraceae Ageratum conyzoides Th Ann x 47. Bidens pilosa Th/C h Ann x x 48. Calendula arvensis Th Ann x 49. Carthamus tinctorius Th Ann x 50. Centaurea puedosinaica Th/C h Ann x x 51. Conyza bonariensis Th Ann x x 52. Dyssodia tenuiflora Th Ann x x 53. Echinops spinosissimus Ch Per x x 54. Eclipta alba Th Ann x 55. Eclipta prostrata Th Ann x x 56. Flaveria trinervia Th Ann x x 57. Iphiona aucheri Ch Per x x 58. Iphiona horrida Ch Per x x 59. Iphiona scabra Ch Per x x 60. Launea capitata Th Ann x x 61. Launea intybacea Th Ann x 62. Launea massauensis Th Ann x 63. Launea nudicaulis Ch Per x 64. Launea procumbens Ch Per x x 65. Pluchea dioscoridis Ch Per x x 66. Pulicaria glutinosa Ch Per x x x 67. Pulicaria jaubertii Ch Per x x 68. Pulicaria schimperi Th Ann x 69. Reichardia tingitana Th Ann x SHERWANI, N. 102 70. Senecio flavus Th Ann x 71. Sonchus oleraceus Th Ann x x x 72. Vernonia cinerea Th Ann x 73. Bignoniaceae Tecomella undulata Ph Per x 74. Boraginaceae Arnebia hispidissima Th Ann x x 75. Echiochilon persicum Ch Per x 76. Heliotropium bacciferum Ch Per x x x 77. Heliotropium calcareum Ch Per x x x 78. Heliotropium kotschyi Ch Per x 79. Heliotropium longiflorum Ch Per x 80. Brassicaceae Anastatica hierochuntia Th Ann x x 81. Diplotaxis harra Th Ann x 82. Physorrhynchus chamerapistrum Ch Per x x x 83. Sisymbrium irio Th Ann x 84. Capparaceae Cadaba farinosa Ph Per x 85. Capparis cartilaginea Ph Per x 86. Capparis spinosa Ph Per x x 87. Capparis decidua Ph Per x 88. Maerua crassiflolia Ph Per x 89. Caryophyllacea e Cometes surattensis He Ann x 90. Herniaria mascatensis He Per x x 91. Polycarpaea repens He Per x x 92. Silene conoidea Th Ann x x 93. Silene linearis Th Ann x 94. Spergula fallax He Ann x 95. Sphaerocoma aucheri Ch Per x 96. Vaccaria hispanica He/ Th Ann x 97. Cleomaceae Cleome austroarabica Ch Per x 98. Cleome brachycarpa Ch Per x x 99. Cleome gynandra Th Ann x 100. Cleome rupicola Ch Per x x 101. Cleome scaposa Th Ann x 102. Dipterygium glaucum Ch Per x x x 103. Convolvulaceae Convolvulus arvensis Ch Per x x 14. Convolvulus cephalopodus Ch Per x x 105. Convolvulus fatmensis Ch Per x 106. Convolvulus glomeratus Ch Per x x x 107. Convovulus prostratus Ch Per x x x 108. Convovulus virgatus Ch Per x x 109. Cressa cretica Ch Per x x 110. Cuscuta planiflora Li Ann x x x 111. Seddera glomerata Ch Per x x 112. Cucurbitaceae Citrullus colocynthis He Ann x 113. Corallocarpus epigaeus Li Per x 114. Cucumis prophetarum Li Ann x x 115. Cyperaceae Cyperus conglomeratus Ge Per x 116. Cyperus laevigatus Ge Per x FLORA, LIFE-FORMS AND BIOLOGICAL SPECTRUM 103 117. Cyperus rotandus Ge Per x x 118. Fimbristylis ferruginea He Per x 119. Euphorbiaceae Andrachne telephoides He Per x 120. Chrozophora oblongifolia Ch Per x x x 121. Euphorbia arabica Th Ann x x 122. Euphorbia hirta Th Ann x x x 123. Euphorbia indica Th Ann x x 124. Euphorbia larica Ch Per x x 125. Jatropha integerrima Ph Per x 126. Ricinus communis Ph Per x x 127. Juncaceae Juncus rigidus Ge Per x x 128. Lamiaceae Lavendula subnuda Ch Per x x 129. Leucas inflata Th Ann x x 130. Ocimum forskaolii Ch Per x x x 131. Salvia aegyptiaca Ch Ann x x 132. Fabaceae Acacia ehrenbergiana Ph Per x x 133. Acacia nilotica Ph Per x 134. Acacia tortolis Ph Per x x x 135. Alhagi graecorum Ch Per x x 136. Argyrolobium roseum He Ann x x 137. Astragalus fatmensis He Ann x 138. Astragalus tribuloides Th Ann x x 139. Astragalus vogelii Th Ann x 140. Caesalpinea bonduc Ch Per x 141. Caeslapinea pulcherrima Ch Per x 142. Crotalaria aegyptiaca Ch Per x x x 143. Crotalaria persica Ch Per x 144. Hippocrepsis constricta Th Ann x x x 145. Indigofera arabica He Per x x 146. Indigofera coerulea Ch Per x x 147. Indigofera intricata Ch Per x x x 148. Indigofera oblongifolia Ch Per x x x 149. Lotus garcini Ch Per x 150. Lotus schimperi He Ann x x 151. Medicago sativa Ch Per x 152. Melilotus indicus Th Ann x 153. Prosopis cineraria Ph Per x x x x 154. Prosopis juliflora Ph Per x x 155. Rhynchosia minima Li Per x 156. Rhynchosia pulverulenta Li Per x x 157. Pseudolotus vilosus He Ann 158. Senna holosericea Ch Per x x x x 159. Senna obtusifolia Ch Ann x 160. Senna italica Ch Per x SHERWANI, N. 104 161. Taverniera glabra Ch Per x x 162. Taverniera spartea Ch Per x 163. Tephrosia appollinea Ch Per x x x 164. Tephrosia nubica Ch Per x x 165. Tephrosia purpurea Ch Per x 166. Lythraceae Ammannia baccifera Th Ann x 167. Lawsonia inermis Ph Per x x x 168. Malpighiaceae Acridocarpus orientalis Ph Per x x 169. Malvaceae Abutilon fruticosum Ch Per x x 170. Abutilon pannosum Ph Per x x 171. Malva parviflora Th Ann x x x 172. Menispermacae Cocculus pendulus Li Per x 173. Moraceae Ficus carica Ph Per x x 174. Ficus cordata Ph Per x x x 175. Moringaceae Moringa peregrina Ph Per x x 176. Myrtaceae Myrtus communis Ph Per x 177. Nyctaginaceae Boerhavia diffusa Th Ann x x 178. Boerhavia elegans Ch Per x x 179. Orobanchaceae Cistanche phelypaea Ge-P Per x 180. Oxalidaceae Oxalis corniculata Th Ann x 181. Phyllanthaceae Andrachne aspera He Per x x 182. Andrachne telephoides He Per x x 183. Phyllanthus maderaspatensis Th Ann x 184. Phyllanthus niruri Th Ann x 185. Phyllanthus rotandifolius Th Ann x 186. Plantaginaceae Plantago major Th Ann x 187. Plantago ovata Th Ann x 188. Poaceae Aeluropus lagopoides He Per x 189. Aristada adscensionis Th Ann x x 190. Arundo donax Ch Per x 191. Cenchrus ciliaris He Per x x x 192. Cenchrus setigerus He Per 193. Chloris barbata Th Ann x x x 194. Chloris gayana He Ann x 195. Chloris virgata Th Ann x x 196. Cymbopogon schoenanthus He Per x x 197. Cynodon dactylon Ge Per x x 198. Dactyloctenium aegyptium Th Ann x 199. Desmostachya bipinnata Th Ann x 200. Dichanthium foveolatum He Per x 201. Digitaria ciliaris Th Ann 202. Echinochloa colona Th Ann x x 203. Eragrostis cilianensis Th Ann x x 204. Halopyrum mucronatum Th Per x 205. Hyparrhenia hirta He Ann x x FLORA, LIFE-FORMS AND BIOLOGICAL SPECTRUM 105 206. Lasiurus scindicus He Per x x 207. Panicum turgidum He Per x x 208. Pennisetum divisum He Per x 209. Pennisetum setaceum He Per x x 210. Phalaris minor Th Ann x x 211. Phragmites australis Hl/Ge Per x 212. Saccharum ravennae Ch Per x 213. Setaria verticillata Th Ann x 214. Sporobolus ioclados Ge Per x 215. Sporobolus spicatus Ge Per x x x 216. Stipagrostis uniplumis He Per x x 217. Typha domingensis Hl/Ge x 218. Polygalaceae Calligonum comosum Ph Per x x 219. Polygala erioptera Th Ann x 220. Polygala irregularis Th Ann x 221. Polygala mascatensis Ch Per x 222. Pteropyrum scoparium Ph Per x x 223. Rumex pictus Th Ann x 224. Rumex vesicarius Th Ann x 225. Portulacaceae Portulaca grandiflora Th Ann x 226. Portulaca oleraceae Th Ann x 227. Primulaceae Anagallis arvensis Th Ann x 228. Ranunculaceae Ranunculus muricatus Th Ann x 229. Resedaceae Ochradenus arabicus Ch Per x x x 230. Ochradenus aucheri Th Ann x x 231. Oligomeris linifolia Th Ann x x 232. Reseda aucheri Th Ann x x 233. Rhamnaceae Ziziphus spina-christi Ph Per x x 234. Rubiaceae Plocama aucheri Ch Per x x 235. Rutaceae Haplophyllum tuberculatum Ch Per x x 236. Salvadoraceae Salvadora persica Ph Per x x x 237. Sapindaceae Dodonaea viscosa Ph Per x 238. Scrophulariacea e Schwienfurthia imbricata Ch Per x x 239. Schwienfurthia papilionacea Th Ann x x 240. Solanaceae Datura innoxia Th Ann x 241. Datura metel Th Ann X X X 242. Hyoscymus gallagheri Ch Per x x 243. Lycium shawii Ph Per x x 244. Physalis minima Th Ann x 245. Solanum incanum Ch Per x 246. Solanum nigrum Th Ann x SHERWANI, N. 106 247. Tamaricaceae Tamarix aphylla Ph Per x x 248. Tamarix mascatensis Ph Per x x 249. Tiliaceae Corcorus depressus He Per x x x 250. Corcorus trilocularis Th Ann x 251. Typhaceae Typha domingensis Hel Per x 252. Typha angustata Hel Per x 253. Urticaceae Forsskalea tenacissima Th Ann x x 254. Verbenaceae Lantana camara Ch Per x 255. Phylla nodiflora Ch Per x 256. Vitex agnus castus Ph Per x 257. Zygophyllaceae Fagonia bruguieri Ch Per x x 258. Fagonia indica Ch Per x x 259. Seetzenia lanata He Per x x 260. Tribulus arabicus He Per x x 261. Tribulus pentandrus He Per x 262. Tribulus terrestris He Ann x x 263. Tetraena quaterense Ch Per x x x x 264. Tetraena simplex He Ann x x x Conflict of interest The author declares no conflict of interest. Acknowledgement The author would like to thank the Herbarium unit at Sultan Qaboos University for access to herbarium plant specimens for comparison and identification. References 1. Gunuwardhana, L.N., and Al Rawas, G.A. Trends in extreme temperature and precipitation in Muscat, Oman. Proceedings of the International Association of Hydrological Sciences, 2014, 364, 57-63. 2. El-Hussain, I., Saad, M.G., Deif, A., Mohamed, A.E.M. and Ezzelarab, M. Seismic Liquefaction Potential in Muscat, Sultanate of Oman. Journal of Earth Science Climate Change, 2018, 9, 451. 3. Hoffmann, G., Meschede, M., Zacke, A. and Al Kindi, M. Field Guide to the Geology of Northeastern Oman. Borntraeger Science Publishers, 2016. 4. Milne, L. and Milne, M. The Arena of Life. The Dynamics of Ecology. Double day Natural History Press, Garden City, New York, 1971, 240. 5. Jafari, Z., Kianian, M.K., Aslani, F. and Akbarlo, M. Floristic Composition, Life Forms and Geographical Distribution (Case Study: Lashgardar Rangelands of Malayer, Iran). Journal of Environmental Science and Technology, 2016, 9, 140-148. 6. Abdel Khalik, K., Al-Gohary, I. and Al-Sodany, Y. Floristic composition and vegetation: Environmental relationships of Wadi Fatimah, Mecca, Saudi Arabia, Arid Land Research and Management, 2017, 31(3), 316- 334. 7. Raunkiaer, C. The life forms of plant and statistical plant geography. Oxford University, Clarendon press. London, 1934. 8. Bazzaz, F.A. Plants in Changing Environments: Linking Physiological, Population and Community Ecology. Cambridge University Press U.K. 1996. 9. Franks, S.J., Weber, J.J. and Aitken, S.N. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evolutionary applications, 2013, 7(1), 123-139. 10. Al-Aklabi, A., Al-Khulaidi, A. W., Hussain, A., and Al-Sagheer, N. Main vegetation types and plant species diversity along an altitudinal gradient of Al Baha region, Saudi Arabia. Saudi Journal of Biological Sciences, 2016, 23(6), 687-697. 11. Abdel-Fattah, R.I. and Ali, A.A. Vegetation-Environment relations in Taif, Saudi Arabia. International Journal of Botany, 2005, 1, 206-211. FLORA, LIFE-FORMS AND BIOLOGICAL SPECTRUM 107 12. Reddy, S.C., Hari Krishna, P., Meena, S.L., Bhardwaj, R. and Sharma, K.C. Composition of Life forms and Biological spectrum along climatic gradient in Rajasthan, India. International Journal of Environmental Sciences, 2011, 1, 1632-1639. 13. Ehrlén, J. and Morris, W.F. Predicting changes in the distribution and abundance of species under environmental change. Ecology letters, 2015, 18(3), 303-14. 14. Anderson, K.M., Gerhart, J.T., Wadgymar, L.M., Wessinger S.M. and Ward. J.K. Examining plant physiological responses to climate change through an evolutionary lens. Plant Physiology, 2016, 172, 635-649. 15. Charabi,Y. Projection of Future Changes in Rainfall and Temperature Patterns in Oman. Journal of Earth Science Climatic Change, 2013, 4, 154. 16. McKinney, M.L. Urbanization, biodiversity, and conservation. BioScience, 2002, 52(10), 883-890. 17. Grimm, N.B., Faeth, S.H., Golubiewski, N.E., Redman, C.L., Wu, J., Bai, X. and Briggs, J.M. Global change and the ecology of cities. Science, 2008, 319, 756-760. 18. Sher, H. and Hussain, F. Ethnobotanical evaluation of some plant resources in Northern part of Pakistan. African. Journal of Biotechnology, 2009, 8(17), 4066-4076. 19. Guneralp, B., McDonald, R.I., Fragkias, M., Goodness, J., Marcotullio, P.J., and Seto, K.C. Urbanization Forecasts, Effects on Land Use, Biodiversity, and Ecosystem Services. In: Elmqvist T. et al. (eds) Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities. Springer, Dordrecht, 2013. 20. Patzelt, A. Synopsis of the Flora and Vegetation of Oman, with Special Emphasis on Patterns of Plant Endemism, 2015. 21. Rollinson, H.R., Searle, M.P., Abbasi, I.A., Al-Lazki, A.I. and Al Kindi M.H. Tectonic evolution of Oman Mountains: An Introduction. Geological Society, London, Special Publications, 2014, 392, 1-7. 22. Jongbloed, M., Feulner, G., Böer, B., Western, A. R., and Environmental Research and Wildlife Development Agency. The comprehensive guide to the wild flowers of the United Arab Emirates. Abu Dhabi: Environmental Research and Wildlife Development Agency, 2003. 23. Ghazanfar, S. A. Flora of the Sultanate of Oman. Vol. 1: Piperaceae–Primulaceae. Scripta Botanica Belgica Series 25. Meise: National Botanic Garden of Belgium. 2003, 262. 24. Ghazanfar, S.A. Flora of the Sultanate of Oman. Vol. 2: Crassulaceae–Apiaceae. Scripta Botanica Belgica. Meise: National Botanic Garden of Belgium. 2007, 220. 25. Pickering, H. and Patzelt, A. Field guide to the wild plants of Oman. Kew: Kew Publishing. 2008. 26. Ghazanfar, S.A. Flora of the Sultanate of Oman. Vol. 3: Loganiaceae–Asteraceae . Scripta Botanica Belgica. Meise: National Botanic Garden of Belgium. 2015, 371. 27. Alshammari, A.M. and Sharawy, S.M. Wild Plants Diversity of the Hema Faid Region (Ha’il Province, Saudi Arabia). Asian Journal of Plant Sciences, 2010, 9, 447-454. 28. Almutairi, K.A., Al-Shami, S. Khorshid, Z. and Moawed, M. Floristic diversity of tabuk province, north Saudi Arabia. The Journal of Animal and Plant Sciences, 2016, 26, 1019-1025. 29. Mohammed-Ibtisam, M.I. and Doka, G.M. Check list of flora and vegetation of Hafer Albatin region, northeastern Saudi Arabia. MOJ Ecology and Environmental Science, 2018, 3(3), 138-143. 30. Sharma, B. and Sharma, K. Biological spectrum of the flora of Ajmer sand dunes. Elixir Applied Botany, 2012, 44, 7367-7369. 31. Maitreya, B.B. Biological Spectrum of Vegetation in Maharaja Krishnakumarsinhji Bhavnagar University Campus, Bhavnagar. Gujarat, India. Indian Journal of Applied Research, 2015, 5(6). 32. Samad, M., Badshah, L. and Khan, S.M. Biological spectra of Lala Kalay area distrist Peshawar Khyber Pakhtunkhwa province Pakistan. Pakistan Journal of Weed Science Research, 2018, 24(4), 353-362. 33. Heneidy, S.Z. and Bidak, L.M. Multipurpose plant species in Bisha, Asir region, south western Saudi Arabia. Journal of King Saud University, 2001, 13, 11-26. 34. Ahmed, D., Shaltout, K., Hosni, H. and El-fahar, R. Flora and vegetation of the different habitats of the western Mediterranean region of Egypt. Taeckholmia, 2015, 35, 45-76. 35. Alatar, A., El-Sheikh, M.A. and Thomas, Journal for Vegetation analysis of Wadi Al-Jufair, a hyper-arid region in Najd, Saudi Arabia. Saudi Journal of Biological Sciences, 2012, 19, 357-368. 36. Al-Yemeni, M. and Sher, H. Biological spectrum with some other ecological attributes of the flora and vegetatio n of the Asir Mountain of South West, Saudi Arabia. African Journal of Biotechnology, 2010, 9(34), 5550-5559. 37. Xuemin, R., Gaihe, Y., Fenmeng, Z., Xiaowei, Q., Dexiang W., Zhenxue, L. and Yongzhong, F. Plant communities, species richness and life-forms along elevational gradients in Taibai Mountain, China. African Journal of Agricultural Research, 2012, 7(12), 1834-1848. 38. Thomas, A., Elliott, D., Dougill, A., Stringer, L., Hoon, S. and Sen, R. The influence of trees, shrubs and grasses on micro‐climate, soil carbon, nitrogen and CO2 efflux: Potential implications of shrub encroachment for Kalahari rangelands. Land Degradation and Development, 2018, 29, 1306-1316. 39. Mosallam, H.A.M. Comparative study on the vegetation of protected and nonprotected areas, Sudera, Taif, Saudi Arabia. International Journal of Agriculture Biology, 2007, 9(2), 202-214. 40. El-Ghanim, W.M., Hassan, L.M., Galal, T.M. and Badi, A. Floristic composition and vegetation analysis in Hail region north of central Saudi Arabia. Saudi Journal of Biological Science, 2010, 17(2), 119-128. SHERWANI, N. 108 41. Al-Hawshabi, O., Al-Meisari, M.A., El-Naggar, S.M.I. Floristic composition, life forms and biological spectrum of Toor Al-Baha District, Lahej Governorate, Yemen. Current life Sciences, 2017, 3, 72-91. 42. Sanchez, P.A. and Logan, T.J. Myths and science about the chemistry and fertility of soils in the tropics. In: Lal R. and Sanchez P.A.(eds.) Myths and Science of Soils of the Tropics, SSSA, Madison, Wisconsin, SSSA Special Publication, 1992, 29, 35-46. 43. El-Ghani, M.A., Bornkamm, R. and El-Sawaf, N. Plant species distribution and spatial habitat heterogeneity in the landscape of desert ecosystems in Egypt. Urban Ecosystems, 2011, 14, 585. 44. Cornell, H.V. and Harrison, S.P. What Are Species Pools and When Are They Important. The Annual Review of Ecology, Evolution, and Systematics, 2014, 45, 45-67. 45. Pappas, C, Fatichi, S, Rimkus, S, Burlando, P. and Huber, M. The role of local scale heterogeneities in terrestrial ecosystem modeling. Journal of Geophysical Research Biogeosciences, 2015, 120, 341– 360. 46. Keddy, P.A. A pragmatic approach to functional ecology. Functional Ecology, 1992, 6, 621-626. 47. Alyemeni, M. Ecological studies on sand dunes vegetation in AI-Kharj region, Saudi Arabia. Saudi Journal of Biological Sciences, 2000, 7, 235-241. 48. Kamal, S.A. and El‐Kady, H.F. Vegetation analysis of some wadis in the Egyptian Mediterranean desert. Feddes Repert., 1993,104, 537-545. 49. Ghazanfar, S.A. The phenology of desert plants: a 3-year study in a gravel desert wadi in Northern Oman. Journal of Arid Environments, 1997, 35, 407-417. 50. A. Zahran, M and J. Willis, A. The Vegetation of Egypt. 2009. 51. Youssef, A.M. and Al-Fredan, M.A. Community composition of major vegetations in the Coastal Area of Al- Uqair, Saudi Arabia in Response to Ecological Variations. Journal of Biological Sciences, 2008, 8, 713-721. 52. Snedaker, S.C., and Brown, M.S. Water quality and mangrove ecosystem dynamics. EPA-600/4-8 1-002. Florida, USA: United States Environmental Protection Agency, Gulf Breeze, 1981. 53. Timothy, J.F. and Timothy, D.C. Plant salt tolerance: Adaptations in halophytes. Annals of Botany, 2015, 115(3), 327-31. 54. Díaz S, Purvis A. and Cornelissen J.H. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution. 2013, 3(9), 2958-2975. 55. IPCC Annex II: glossary. Mach, K.J., Planton, S., Von Stechow, C. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Core Writing Team, Pachauri RK, Meyer LA (eds). IPCC, Geneva, Switzerland, 2014, 117- 130. 56. Fischlin, A., Midgley, G.F., Price, J., Leemans, R., and Gopal, B. Ecosystems, Their Properties, Goods, and Services,” in Climate Change 2007: Impacts, Adaptation and Vulnerability. Cambridge University Press pp. 847- 940. Received 12 February 2019 Accepted 13 May 2019