SQU Journal for Science, 2020, 25(1), 25-44 DOI:10.24200/squjs.vol25iss1pp25-44 SQU Journal for Science, 2020, 25(1), 26-47 DOI:10.24200/squjs.vol25iss1pp26-47 Sultan Qaboos University 26 Dimension Reduction and Relaxation of Johnsonโ€™s Method for Two Machines Flow Shop Scheduling Problem Mekonnen Redi* and Mohammad Ikram Department of Mathematics, Arba Minch University, Arba Minch, Ethiopia. *Email: mekonnen.redi@ambou.edu.et. ABSTRACT: The traditional dimensionality reduction methods can be generally classified into Feature Extraction (FE) and Feature Selection (FS) approaches. The classical FE algorithms are generally classified into linear and nonlinear algorithms. Linear algorithms such as Principal Component Analysis (PCA) aim to project high dimensional data to a lower-dimensional space by linear transformations according to certain criteria. The central idea of PCA is to reduce the dimensionality of the data set consisting of a large number of variables. In this paper, PCA was used to reduce the dimension of flow shop scheduling problems. This mathematical procedure transforms a number of (possibly) correlated jobs into a smaller number of uncorrelated jobs called principal components, which are the linear combinations of the original jobs. These jobs are carefully determined so that from the solution of the reduced problem multiple solutions of the original high dimensional problem can readily be obtained, or completely characterized, without actually listing the optimal solution(s). The results show that by fixing only some critical jobs at the beginnings and ends of the sequence using Johnson's method, the remaining jobs could be arranged in an arbitrary order in the remaining gap without violating the optimality condition that also guarantees minimum completion time. In this regard, Johnson's method was relaxed by terminating the listing of jobs at the first/last available positions when the job with minimum processing time on either machine attains the highest processing time on the other machine for the first time. By terminating Johnson's algorithm at an early stage, the method minimizes the time needed for sequencing those jobs that could be left arbitrarily. By allowing these jobs to be arranged in arbitrary order it gives job sequencing freedom for job operators without affecting minimum completion time. The results of the study were originally obtained for deterministic scheduling problems but they are more relevant on test problems randomly generated from uniform distribution ๐‘ˆ[๐‘Ž,๐‘] with lower bound ๐‘Ž and upper bound ๐‘ and normal distribution ๐‘[๐œ‡,๐œŽ2] with mean ๐œ‡ and standard deviation ๐œŽ2. Keywords: Dimension reduction; Flow shop scheduling problems; Principal component analysis; Relaxation of Johnsonโ€™s algorithm. ุฌู‡ุงุฒูŠู† ู…ุชุฌุฑ ุงู„ุชุฏูู‚ ููŠ ุฌุฏูˆู„ุฉู„ู…ุณุฃู„ุฉ ุฌูˆู†ุณูˆู† ุชุฎููŠุถ ูˆุฅุณุชุฑุฎุงุก ุงู„ุจุนุฏ ู„ุทุฑูŠู‚ุฉ ู…ูŠูƒูˆู†ูŠู† ุฑูŠุฏูŠ ูˆ ู…ุญู…ุฏ ุฅูƒุฑุงู… FE ูŠุชู… ุชุตู†ูŠู ุฎูˆุงุฑุฒู…ูŠุงุช. (FS)ูˆุงุฎุชูŠุงุฑู‡ุง (FE) ูŠู…ูƒู† ุชุตู†ูŠู ุทุฑู‚ ุชุฎููŠุถ ุงุฃู„ุจุนุงุฏ ุงู„ุชู‚ู„ูŠุฏูŠุฉ ุนู…ูˆู‹ู…ุง ุจุงุงู„ู‚ุชุฑุงุจ ู…ู† ุงุณุชุฎุฑุงุฌ ุงู„ุตูุงุช :ู„ุฎุตู…ุงู„ ุฅู„ู‰ ุนุฑุถ ุงู„ุจูŠุงู†ุงุช ุนุงู„ูŠุฉ ุงุฃู„ุจุนุงุฏ (PCA) ุงู„ูƒุงู„ุณูŠูƒูŠุฉ ุนู…ูˆู‹ู…ุง ููŠ ุฎูˆุงุฑุฒู…ูŠุงุช ุฎุทูŠุฉ ูˆุบูŠุฑ ุฎุทูŠุฉ. ุชู‡ุฏู ุงู„ุฎูˆุงุฑุฒู…ูŠุงุช ุงู„ุฎุทูŠุฉ ู…ุซู„ ุชุญู„ูŠู„ ุงู„ู…ูƒูˆู†ุงุช ุงู„ุฑุฆูŠุณูŠุฉ ุฃู„ุจุนุงุฏ ู„ู…ุฌู…ูˆุนุฉ ุงู„ุจูŠุงู†ุงุช ุงู„ุชูŠ ุชุชูƒูˆู† ู…ู† ุนุฏุฏ ูƒุจูŠุฑ ุงู„ู…ุฑูƒุฒูŠุฉ ู‡ูŠ ุชุฎููŠุถ ุง PCA ุนู„ู‰ ูุถุงุก ุฃู‚ู„ ุจุนุฏู‹ุง ุจุงุณุชุฎุฏุงู… ุงู„ุชุญูˆูŠุงู„ุช ุงู„ุฎุทูŠุฉ ูˆูู‚ู‹ุง ู„ู…ุนุงูŠูŠุฑ ู…ุนูŠู†ุฉ. ุฅู† ููƒุฑุฉ ููŠ ู‡ุฐู‡ ุงู„ูˆุฑู‚ุฉ ู„ุชุฎููŠุถ ุงู„ุจุนุฏ ู„ู…ุณุงุฆู„ ุฌุฏูˆู„ุฉ ู…ุชุฌุฑ ุงู„ุชุฏูู‚. ูŠุญูˆู„ ู‡ุฐุง ุงุฅู„ุฌุฑุงุก ุงู„ุฑูŠุงุถูŠ ุนุฏุฏ )ู…ู…ูƒู†( ู…ู† ุงู„ูˆุธุงุฆู PCA ู…ู† ุงู„ู…ุชุญูˆุงู„ุช. ู„ู‚ุฏ ุชู… ุงุณุชุฎุฏุงู… ู…ูˆุนุงุช ุฎุทูŠุฉ ู…ู† ุงู„ูˆุธุงุฆู ุงุฃู„ุตู„ูŠุฉ. ูŠุชู… ุชุญุฏูŠุฏ ู‡ุฐู‡ ุงู„ูˆุธุงุฆู ุจุนู†ุงูŠุฉ ุงู„ู…ุฑุชุจุทุฉ ุฅู„ู‰ ุนุฏุฏ ุฃุตุบุฑ ู…ู† ุงู„ูˆุธุงุฆู ุบูŠุฑ ุงู„ู…ุฑุชุจุทุฉ ุชุณู…ู‰ ุงู„ู…ูƒูˆู†ุงุช ุงู„ุฑุฆูŠุณูŠุฉุŒ ูˆู‡ูŠ ู…ุฌ ู…ุซู„ู‰. ุชุธู‡ุฑ ุงู„ู†ุชุงุฆุฌ ุญูŠุซ ุฃู† ุญู„ ู…ุณุฃู„ุฉ ุงู„ุชุฎููŠุถ ูŠุคุฏูŠ ุฅู„ู‰ ุญู„ูˆู„ ู…ุชุนุฏุฏุฉ ู„ู„ู…ุณุฃู„ุฉ ุงุฃู„ุตู„ูŠุฉ ุนุงู„ูŠุฉ ุงุฃู„ุจุนุงุฏุŒ ุฃูˆ ุชู…ูŠูŠุฒู‡ุง ุจุดูƒู„ ูƒุงู…ู„ุŒ ุจุฏูˆู† ุฌุฏูˆู„ุฉ ูุนุงู„ูŠุฉ ู„ู„ุญู„ูˆู„ ุงู„ ุช ูˆู†ู‡ุงูŠุงุช ุงู„ู…ุชุณู„ุณู„ุฉ ุจุงุณุชุฎุฏุงู… ุทุฑูŠู‚ุฉ ุฌูˆู†ุณูˆู†ุŒ ุฃู†ู‡ ูŠู…ูƒู† ุชุฑุชูŠุจ ุงู„ูˆุธุงุฆู ุงู„ู…ุชุจู‚ูŠุฉ ุจุดูƒู„ ุนุดูˆุงุฆูŠ ุฃู†ู‡ ู…ู† ุฎุงู„ู„ ุชุซุจูŠุช ุนุฏุฏ ู…ู† ุงู„ูˆุธุงุฆู ุงู„ุญุฑุฌุฉ ูู‚ุท ููŠ ุจุฏุงูŠุง ููŠ ู‡ุฐุง ุงู„ุตุฏุฏุŒ ุชู… ุงุณุชุฑุฎุงุก ุทุฑูŠู‚ุฉ ุฌูˆู†ุณูˆู† ุจุฅู†ู‡ุงุก ู‚ุงุฆู…ุฉ ุงู„ูˆุธุงุฆู ููŠ ุงู„ูุฌูˆุฉ ุงู„ู…ุชุจู‚ูŠุฉ ุฏูˆู† ุงู†ุชู‡ุงูƒ ุดุฑุท ุงุฃู„ู…ุซู„ูŠุฉ ุงู„ุฐูŠ ูŠุถู…ู† ุงู„ุญุฏ ุงุฃู„ุฏู†ู‰ ุฃูŠุถุง ุงู„ูƒุชู…ุงู„ ุงู„ุฒู…ู†. ูˆ ู‰/ุงุฃู„ุฎูŠุฑุฉ ุนู†ุฏู…ุง ุชูƒูˆู† ุงู„ูˆุธูŠูุฉ ู…ุน ุฒู…ู† ุงู„ู…ุนุงู„ุฌุฉ ุงุฃู„ุฏู†ู‰ ุนู„ู‰ ุฃุญุฏ ุงุฃู„ุฌู‡ุฒุฉ ุงู„ุชูŠ ุชุตู„ ุฃู„ุนู„ู‰ ุฒู…ู† ู„ู„ู…ุนุงู„ุฌุฉ ุนู„ู‰ ุฌู‡ุงุฒ ุขุฎุฑ ุฃู„ูˆู„ ููŠ ุงู„ู…ูˆุงุถุน ุงู„ู…ุชุงุญุฉ ุงุฃู„ูˆู„ .ู…ุฑุฉ mailto:mekonnen.redi@ambou.edu.et DIMENSION REDUCTION AND RELAXATION 27 ู† ุฎุงู„ู„ ุงู„ุณู…ุงุญ ู…ู† ุฎุงู„ู„ ุฅู†ู‡ุงุก ุฎูˆุงุฑุฒู…ูŠุฉ ุฌูˆู†ุณูˆู† ููŠ ู…ุฑุญู„ุฉ ู…ุจูƒุฑุฉุŒ ูุฅู† ุงู„ุทุฑูŠู‚ุฉ ุชู‚ู„ู„ ุงู„ุฒู…ู† ุงู„ุงู„ุฒู… ู„ุชุณู„ุณู„ ุชู„ูƒ ุงู„ูˆุธุงุฆู ุงู„ุชูŠ ูŠู…ูƒู† ุชุฑูƒู‡ุง ุจุดูƒู„ ุนุดูˆุงุฆูŠ. ู… ุงุฃู„ุตู„ ุชู… ุงู„ุญุตูˆู„ ุนู„ู‰ ุจุชุฑุชูŠุจ ู‡ุฐู‡ ุงู„ูˆุธุงุฆู ุนุดูˆุงุฆูŠุง ูŠุชู… ุงู„ุญุตูˆู„ ุนู„ู‰ ุญุฑูŠุฉ ุงู„ุชุณู„ุณู„ ู„ู…ุคุซุฑุงุช ุงู„ูˆุธูŠูุฉ ุจุฏูˆู† ุงู„ุชุฃุซูŠุฑุนู„ู‰ ุงู„ุญุฏ ุงุฃู„ุฏู†ู‰ ุงู„ูƒุชู…ุงู„ ุงู„ุฒู…ู†. ูููŠ ูˆุงู„ุญุฏ a ู…ุน ุงู„ุญุฏ ุงุฃู„ุฏู†ู‰ U[a,b]ู†ุชุงุฆุฌ ุงู„ุฏุฑุงุณุฉ ู„ู…ุณุงุฆู„ ุงู„ุฌุฏูˆู„ุฉ ุงู„ุญุชู…ูŠุฉุŒ ู„ูƒู†ู‡ุง ูƒุงู†ุช ุฃูƒุซุฑ ุตู„ุฉ ุจู…ุณุงุฆู„ ุงุงู„ุฎุชุจุงุฑ ุงู„ุชูŠ ุชู… ุฅู†ุดุงุคู‡ุง ุนุดูˆุงุฆูŠู‹ุง ู…ู† ุงู„ุชูˆุฒูŠุน ุงู„ู…ู†ุชุธู… .ฯƒ^2ูˆุงุงู„ู†ุญุฑุงู ุงู„ู…ุนูŠุงุฑูŠ ฮผู…ุชูˆุณุท ู…ุน ุงู„N[ฮผ,ฯƒ^2] ูˆุงู„ุชูˆุฒูŠุน ุงู„ุทุจูŠุนูŠ bุงุฃู„ุนู„ู‰ .ู†ุณุชุฑุฎุงุก ุฎูˆุงุฑุฒู…ูŠุฉ ุฌูˆู†ุณูˆุฅุฌุฑ ุงู„ุชุฏูู‚ ุŒ ุชุญู„ูŠู„ ุงู„ู…ูƒูˆู† ุงู„ุฑุฆูŠุณูŠ ุŒ ุฌุฏูˆู„ุฉ ู…ุช ู…ุณุงุฆู„ุŒ ุชุฎููŠุถ ุงู„ุจุนุฏ: ุงู„ู…ูุชุงุญูŠุฉุงู„ูƒู„ู…ุงุช 1. Introduction wo machines flow shop scheduling problem has been considered as a major problem in machine sequencing because it appears independently and as a sub-problem in the '๐‘›-Jobs, m-Machines Problem'. The criterion of optimality in a flow shop scheduling problem is usually specified as minimization of makespan, which is defined as the time gap between the beginning of the first job on the first machine and finishing of the last job on the last machine to ensure that all jobs are completed on all machines. The objective of minimizing makespan in The Two Machines Flow Shop Scheduling model is also known as Johnson's problem. The Johnson's algorithm is an exact solution method of the two machines, one-way, no-passing scheduling tasks problem, which serves as a basis for many heuristic algorithms. This rule is a complete list of ordering the jobs by filling the first or the last available space based on minimum operation times in the two machines from the waiting list into the optimal list until finally only one free space in the optimal list and one last job to be assigned remain in the waiting list. In this procedure, ๐‘›! comparisons are needed to obtain the optimal sequence. This needs large computation time for large size problems. To overcome this limitation, the current study identified a relaxation of Johnson's algorithm by developing an early stopover criteria, due to the fact that, after listing only some important jobs at the beginning and end of the optimal sequence using Johnson's method, it does not matter in whichever order the remaining jobs are operated as far as makespan is concerned. These criteria minimize the time needed for further computations of ordering the remaining jobs in either direction (first/last available positions) and it reduces the dimension of the problem. By allowing the remaining jobs to be arranged in an arbitrary order irrespective of Johnson's method without violating the optimality condition, the study creates job sequencing freedom for job operators to give priority without affecting minimum completion time. 2. Literature Review Johnson [1] produced a pioneering work on machine sequencing literature and great advancements have been made in the field after other researchers also started to investigate solutions to many related problems. The studies discussed in this literature review are mainly concerned with relaxations that were oriented to produce alternate optimal solutions of the problem different from the strict Johnson's rule. In this regard, an early work on the relaxation of Johnson's method for The Two Machines Flow Shop Scheduling Problem was that of Ikram [2]. The study produced alternate ways of performing jobs in a way different from the one specified by Johnson's method without affecting minimum completion time by interchanging two jobs at a time from the optimal Johnson's sequence subject to the existence of certain conditions. In [3] also, the concept of [2] was used to find alternate optimal solutions for โ€˜๐‘›-Jobs, 2- Machines Flow Shop Scheduling Problem with transportation time and equivalent job-blockโ€™. In [4] the idea was extended to โ€˜๐‘›-Jobs, 3-Machinesโ€™ Flow Shop Scheduling Problem' based on the work of [2]. These studies are indicators of increasing pressures on alternate ways of performing the same set of jobs in different ways without affecting minimum completion time. Alternate ways enable the assigning of priorities between jobs, and give freedom for job operators. For those groups of studies that generate alternate optimal sequences by interchanging two jobs at a time from the optimal Johnson's sequence, the total number of such alternate sequences is 2๐‘˜ where ๐‘˜ is the number of all interchangeable pairs. In the original paper [1], Johnson also solved the 'n-Jobs, 3-Machines Flow Shop Scheduling Problem' in which the processing order for all the jobs in three machines A,B and C is A โ†’ B โ†’ C for two particular cases for which all jobs ji; i = 1,2,3,โ€ฆ,n;; satisfy max{B} โ‰ค min{A} or max{B} โ‰ค min{C}. Few relaxations were made to this condition. The same assumption was made in [4] to the formulation of their alternate solution for the three machine problem. Conway, Maxwell and Miller [5] have shown that the same rule works if B is a non-bottleneck machine, i.e., is a machine that can process any number of jobs at the same time. Maggu, Alam and Ikram [6] also developed an algorithm for a special type of 'n -Jobs, m-Machines Scheduling Problem' which is an extension of Johnson's โ€˜๐‘›-Jobs, m-Machinesโ€™ sequencing rule. The general '๐‘›-Jobs, m-Machines Problem' becomes NP-complete [7] for all ๐‘š โ‰ฅ 3 (cannot be solved optimally in polynomial time) and the Johnson's algorithm can be applied only for some few particular cases that obey some primary conditions. The general '๐‘›-Jobs, m-Machines' flow shop scheduling problems are NP-Hard, so exact optimization techniques are impractical for large size problems. In other words, classical optimization methods such as the branch and bound method, dynamic programming, etc. can be used only for small size problems. Problem size has been the main challenge for the development of solution methods for these problems because the solution space in its original form is of combinatorial order of number of jobs, which makes it more difficult to solve the problems in polynomial time for large ๐‘›. Therefore, large size problems are solved by heuristic methods. T MEKONNEN REDI ET AL 28 Many heuristic methods reduce the ๐‘š machines into two virtual machines and apply Johnson's algorithm based on some specific rules or decisions. Important and earlier heuristic algorithms are due to Palmer [8], Gupta [9] and Campbell, Dudek, and Smithโ€™s (CDS) heuristic [10]. The other heuristic is due to Nawaz, Enscore, and Ham [11], and is known as the NEH Heuristic. Both CDS and NEH are constructive heuristics. This means that they produce a sequence of at most ๐‘š โˆ’ 1 solutions from which the best sequence is chosen. In these methods, all ๐‘š machines are first divided into two groups which are considered as two virtual machines, and the problem is solved by applying Johnson's algorithm. The other heuristic, the HFC heuristic of Koulamas [12] on the other hand, is an improvement heuristic. In contrast, an improvement heuristic starts with a given sequence and searches for improvement, but the computational effort is unpredictable. Improvement heuristics are usually based on generic methods such as neighborhood search. They also use the algorithm of Johnson in the first phase, and then by specific rules, make better solutions, starting from an existing feasible solution in a sequence of steps. In another heuristic, Rapid Access (RA) heuristic [13], two virtual machines are defined, and as in the CDS heuristic, method and weights are assigned, one for each virtual machine. Finally, the flow shop scheduling problem is solved by applying Johnson's algorithm. In [7] also, two variants of heuristic algorithms were developed to solve the classic flow shop scheduling problem. The first algorithm was a constructive heuristic, in which each job was placed in the optimal schedule based on a greedy-type selection. The second algorithm changes the construction of an optimal schedule in a stochastic manner. In [14] also, genetic algorithms were used to solve The Two Machines Flow Shop Problem with the objective of minimizing makespan. The multi-objective flow shop scheduling problems have been the subject of extensive studies. The majority of bi- criteria flow shop investigations consider the combination of makespan with other performance measures [15-19]. In multi-objective problems, creating alternate solutions for the makespan objective by applying the results of this study will relax the other objectives and open more space for the applicability of multi-criteria decision making. All the above works emphasize the importance of The Two Machines Flow Shop Scheduling Problem and the high reliance of solution methods on Johnson's algorithm. According to [7], even though the various studies have suggested many approaches, it is difficult to find the simplest approach to find an optimal sequence for solving the ๐‘›- Jobs, ๐‘š-Machines Flow Shop Scheduling Problems. Problem size has been the major challenge for all these heuristic methods. Researchers point out the need for scheduling algorithms to minimize makespan for the โ€˜๐‘›-Jobs ๐‘š-Machinesโ€™ flow shop scheduling problems with the simplest steps as an alternative. However, little attempt has been made in the previous studies to decrease problem size for the applicability of the exact (heuristic) methods developed so far. Dimension reduction would create enough room for the application of these methods. Once the optimal sequence for the reduced problem is identified, it enables the complete characterization of all alternative optimal solutions of the original high dimensional problem. This research therefore considers dimension reduction for The Two Machine Flow Shop Scheduling Problem to be an important first step to decrease problem size, while at the same time creating alternative ways of sequencing jobs that guarantee the non-increase of total elapsed time on the fictitious machines formed by reducing the ๐‘š machines into two virtual machines. 3. Problem Statement and Basic Assumptions In this problem two machines (๐ด and ๐ต) of high automation and unlimited buffer size are working together in such a way that machine ๐ด is always available to start the next job as soon as it finishes the current job. The finished jobs in machine ๐ด are then immediately transferred to the queue in machine ๐ต, and machine ๐ต operates the jobs in the same order as they have been executed in machine ๐ด. If there is no job in the queue, machine ๐ต has to wait until machine ๐ด finishes the current job. In this case an idle time occurs for machine ๐ต between its finishing of previous job and until machine A finishes its current one. The objective of the problem is therefore to minimize the sum of all these idle times in machine ๐ต for all the jobs from start to end. The criterion of optimality in a flow shop scheduling problem is usually specified as minimization of makespan, which is defined as the time gap between the beginning of the first job on the first machine and finishing of the last job on the last machine to ensure that all jobs are completed on both machines. Many variants of the problem have evolved since its formulation. As an objective function, mean flowtime, completion time variance and total tardiness can also be used. The results originally obtained in [1] are among the very first formal results in the theory of scheduling. The objective of minimizing makespan in The Two Machines Flow Shop Scheduling model is also known as Johnson's problem. The Johnson's algorithm is an exact solution method of the two machines, one-way, no-passing scheduling tasks problem which serves as a basis for many heuristic algorithms [20]. The values of the processing times of a job ๐‘— ๐‘– on machines ๐ด and ๐ต are denoted by ๐‘Ž๐‘— ๐‘– and ๐‘๐‘— ๐‘– respectively for ๐‘– = 1,2,โ€ฆ,๐‘› are deterministically known, constant and positive. They include also all the necessary auxiliary times involved in the technological process. The following important assumptions are made in the problem. Assumption 1: A set of ๐‘› unrelated, multiple-operation jobs are available for processing at time zero. (Each job requires 2 operations, and each operation requires a different machine.) Assumption 2: Both machines are continuously available. Assumption 3: Only one operation is carried out on a machine at a time. Assumption 4: Once an operation begins in a machine, it proceeds without interruption. DIMENSION REDUCTION AND RELAXATION 29 Assumption 5: Processing times are known in advance and are deterministic, constant and positive. Assumption 6: Setup times for the operations are sequence independent and are included in processing times. Assumption 7: The time required in moving jobs from one machine to another is negligibly small. Assumption 8: The same job-sequence is maintained over each machine, in other words no passing is allowed. 3.1. Algorithm: Johnson's Rule Johnson's Rule: Job ๐‘— ๐‘– = (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) precedes job ๐‘— ๐‘™ = (๐‘Ž๐‘— ๐‘™ , ๐‘๐‘— ๐‘™ ) in an optimal sequence {๐‘—โˆ— ๐‘– , ๐‘– = 1,2,3,โ€ฆ ,๐‘›} if ๐‘š๐‘–๐‘›{๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘™ }โ‰ค ๐‘š๐‘–๐‘›{๐‘Ž๐‘— ๐‘™ , ๐‘๐‘— ๐‘– }. In practice, an optimal sequence is directly constructed with an adaptation of Johnson's Rule. The positions in sequence are filled by a one-pass mechanism that, at each stage, identifies a job that should fill either the first [last] available position. ๏‚ท Step 1 Examine the columns of ๐ด and ๐ต for processing times on machines ๐ด and ๐ต and find the smallest processing time among unscheduled jobs (waiting list). ๏‚ท Step 2a If the smallest processing time occurs for the first machine, then place the corresponding job in the first available position in the sequence (optimal list). (Ties may be broken arbitrarily.) Go to step 3. ๏‚ท Step 2b If the smallest processing time occurs for the second machine, then place the corresponding job in the last available position in the sequence (optimal list). (Ties may be broken arbitrarily.) Go to step 3. ๏‚ท Step 3 Remove the assigned job from consideration (waiting list) and return to Step 1 until all sequence positions are filled. 3.2. Algorithm: Alternate formulation of Johnson's Rule An alternative way to describe Johnson's Rule [21] that provides a different perspective on the structure of optimal schedules is used for this study. In this formulation, the problem is considered as a sequencing problem put mathematically as ๐‘ƒ = {๐‘—๐‘– = (๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–); ๐‘– = 1,2,3,โ€ฆ,๐‘›} where ๐‘Ž๐‘—๐‘– and ๐‘๐‘— ๐‘– are processing times of job ๐‘— ๐‘– on machines ๐ด and ๐ต, respectively with no passing of jobs on the two machines in the order ๐ด โ†’ ๐ต. The jobs in ๐‘ƒ are then partitioned into two disjoint clusters ๐ฝ 1 and ๐ฝ 2 where ๐ฝ 1 = {๐‘— ๐‘– = (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐‘ƒ: ๐‘Ž๐‘— ๐‘– โ‰ค ๐‘๐‘— ๐‘– ; ๐‘– = 1,2,3,โ€ฆ ,๐‘›} and ๐ฝ 2 = {๐‘— ๐‘– = (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐‘ƒ: ๐‘Ž๐‘— ๐‘– > ๐‘๐‘— ๐‘– ; ๐‘– = 1,2,3,โ€ฆ ,๐‘›}. We call jobs in ๐ฝ 1 jobs of the first kind and jobs in ๐ฝ 2 jobs of the second kind. It is important to note that jobs in ๐ฝ 1 have longer processing time (at least equal) on the second machine while jobs in ๐ฝ 2 have strictly longer processing time on the first machine. Then in the optimal Johnson's sequence, jobs in ๐ฝ 1 are first arranged in a non-decreasing order of their processing times on the first machine and then jobs in ๐ฝ 2 are arranged in a non-increasing order of their processing times on the second machine. The present approach is often helpful and easy to apply and implement. Therefore, we follow this procedure to describe the optimal Johnson's sequence for The Two Machines Flow Shop Scheduling Problem. ๏‚ท Step 1: Let ๐ฝ 1 = {๐‘— ๐‘– = (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐‘ƒ: ๐‘Ž๐‘— ๐‘– โ‰ค ๐‘๐‘— ๐‘– ; ๐‘– = 1,2,3,โ€ฆ ,๐‘›} and ๐ฝ 2 = {๐‘— ๐‘– = (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐‘ƒ: ๐‘Ž๐‘— ๐‘– > ๐‘๐‘— ๐‘– ; ๐‘– = 1,2,3,โ€ฆ ,๐‘›} ๏‚ท Step 2: Arrange the members of set ๐ฝ 1 in non-decreasing order of ๐‘Ž๐‘— ๐‘– to get an ordered set ๐ฝโˆ— 1 , and arrange the members of set ๐ฝ 2 in non-increasing order of ๐‘๐‘— ๐‘– to get an ordered set ๐ฝโˆ— 2 . ๏‚ท Step 3: An optimal sequence is the ordered set ๐ฝโˆ— 1 followed by the ordered set ๐ฝโˆ— 2 . Notation The optimal Johnson's sequence for ๐‘ƒ = {๐‘—๐‘– = (๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–); ๐‘– = 1,2,3,โ€ฆ,๐‘›} is denoted by {๐‘— โˆ— ๐‘– = (๐‘Ž๐‘—โˆ— ๐‘– , ๐‘๐‘—โˆ— ๐‘– ); ๐‘– = 1,2,3,โ€ฆ ,๐‘›} = ๐‘—โˆ— 1 โ†’ ๐‘—โˆ— 2 โ†’ โ‹ฏ โ†’ ๐‘—โˆ— ๐‘› with an asterisk (*) on ๐‘—. We represent by ๐‘—โˆ— ๐‘– = (๐‘Ž๐‘—โˆ— ๐‘– , ๐‘๐‘—โˆ— ๐‘– ) a job at the ๐‘–๐‘กโ„Ž position in an optimal Johnson's sequence with corresponding processing times on machines ๐ด and ๐ต, equal to ๐‘Ž๐‘—โˆ— ๐‘– units and ๐‘๐‘—โˆ— ๐‘– units, respectively, and we denote its completion times on machines ๐ด and ๐ต by ๐ถ1(๐‘— โˆ— ๐‘– ) and ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘– ) , respectively. We represent by ๐‘— ๐‘– = (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) a job at the ๐‘–๐‘กโ„Ž position in a sub-optimal sequence with corresponding MEKONNEN REDI ET AL 30 processing times on machines ๐ด and ๐ต, equal to ๐‘Ž๐‘— ๐‘– units and ๐‘๐‘— ๐‘– , respectively, and its completion times on machines ๐ด and ๐ต by ๐ถ1(๐‘—๐‘–) and ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘—๐‘–) , respectively. 4. Data Mining and Dimension Reduction Real-world data are typically noisy, enormous in volume, and may originate from a jumble of heterogenous sources [22]. Powerful and versatile tools are very much needed to automatically uncover valuable information from the tremendous amounts of data and to transform such data into organized knowledge. This necessity has led to the birth of data mining. Data mining is the process of discovering interesting patterns and knowledge from large amounts of data, having made a closer investigation of attributes and data values. As a general technology, data mining can be applied to any kind of data as long as the data are meaningful for a target application. The state-of-art data mining tools could be employed for Flow Shop Scheduling Problems to overcome the limitations of the solution methods for large size problems. Due to the limited number of studies so far which have applied the state-of-the-art dimension reduction methods for Flow Shop Scheduling Problems, this paper examines The Two Machines Flow Shop Scheduling Problem more closely because of its significant contribution to Other Flow Shop Problems. In the absence of real-world data for a typical study, generated data play an important role. For this study, generated data from a uniform distribution ๐‘ˆ[๐‘Ž,๐‘] with lower bound ๐‘Ž and upper bound ๐‘ and a normal distribution ๐‘[๐œ‡,๐œŽ2] with mean ๐œ‡ and standard deviation ๐œŽ2 were used for different parameter values, and alternatives were analysed to describe a large size problem in terms of a small number of parameters. The effort was to discover important features of Flow Shop Scheduling Problems. This knowledge discovery process involves a sequence of logical understanding of the basic features of the high dimensional problem to extract a low dimensional representation of its key features. As was suggested in [22], data mining involves a sequence of procedures that require the planners' understanding of the problem at hand. We further elaborate these steps in the context in which they have been applied to this study. Some of these procedures were applied in earlier studies of Flow Shop Scheduling Problems with a different context. For example, the first step, data integration (where multiple data items may be combined), was studied by equivalent job blocks. The concept of equivalent job blocking was introduced in [23] in the theory of scheduling. In the context of this study, however, multiple jobs were, for simplicity, represented by a single representative job, which may be different from the context of equivalent job blocks. In the second step of data mining, data selection, data relevant to the analysis task are retrieved from the database. The other, following, steps of data mining were contextually used for Flow Shop Scheduling Problems to use them for the proposed study to fill the research gap in applying these techniques for dimension reduction. In the third step, data transformation, data are transformed and consolidated into forms appropriate for mining. This step was used for this study to group jobs with identical processing times that hold equal priority in the optimal sequence. Thus it is enough to represent jobs with equal priority by a single representative job to reduce the dimension of the problem. This step was used in the principal component analysis (see Section 4. 1). The fourth step, the data mining step, is an essential process where intelligent methods are applied to extract data patterns and to understand how only important patterns are exhibited. This step was used to develop mini-max criteria (see Section 4.2) to reduce the dimension of jobs of the first kind (see Section 4.2.1) and jobs of the second kind (see Section 4.2.2). The fifth step, the pattern evaluation step, consists of identifying the truly interesting patterns representing knowledge based on interestingness measures, and checking whether further conclusions could be reached about the high dimensional problem from its low dimensional representation. This step was carried out in this research by formulating the results in the form of theorems and giving analytic mathematical proofs (see Section 4.2). In the sixth step, the knowledge presentation step, illustrations are made to confirm the findings on a theory of knowledge; it aims to present mined knowledge convincingly to other users. This involves the organization of this study in a form of publication with all the necessary background information to acceptable competency levels. In particular, the illustration example in Section 5 also plays this role. In the next sub-sections the main findings of the study are organized as theorems and algorithms. In section 4.1 Principal Component Analysis (PCA) is discussed in the sense of its application for dimension reduction of Flow Shop Scheduling Problems. In Section 4.2 further dimension reduction is carried out using mini-max criteria. Here, two investigations are made independently for the two kinds of jobs discussed earlier. For jobs with more processing time on the second machine, an early stopover criteria was achieved when the job assigned to the first available position with minimum processing time criteria, for the first time, attains the highest processing time on the second machine for all jobs of the first kind (see Section 4.2.1). Similarly, for jobs with more processing time on the first machine, an early stopover criteria was achieved when the job assigned to the last available position with minimum processing time criteria, for the first time, attains the highest processing time on the first machine for all jobs of the second kind (see Section 4.2.2). Finally, these results are formulated in the form of algorithms. The first algorithm is a dimension reduction algorithm and it combines the dimension reductions carried out DIMENSION REDUCTION AND RELAXATION 31 in Section 4.1 and Section 4.2 together. The second algorithm is a relaxation of Johnson's algorithm and it combines the early stopover criteria achieved in Section 4.1 and Section 4.2 as termination criteria for Johnson's algorithm. 4.1. Dimension Reduction by Principal Component Analysis The state-of-the-art Dimensional Reduction (DR) methods are divided into projective methods and methods that model the manifold on which the data lies. Perhaps the simplest approach is to attempt to find low dimensional projections that extract useful information from the data, by maximizing a suitable objective function [25]. Cluster analysis is one of the major data analysis methods which are widely used for many practical applications. The purpose of clustering is to group together data points, which are close to one another [26]. Let problem ๐‘ƒ = {๐‘—๐‘– = (๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–); ๐‘– = 1,2,3,โ€ฆ,๐‘›} be the original high dimensional problem where the notation ๐‘— ๐‘– = (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ); ๐‘– = 1,2,3,โ€ฆ , ๐‘› means job ๐‘— ๐‘– has processing time equal to ๐‘Ž๐‘— ๐‘– units on machines A and processing time of ๐‘๐‘— ๐‘– units on machine ๐ต , and the aim is to find the optimal sequence S = {๐‘—โˆ— ๐‘– ; ๐‘– = 1,2,3,โ€ฆ,๐‘›} that minimizes total elapsed time of operating all jobs in the same order in the two machines uninterrupted with no passing of jobs on the two machines in the order A โ†’ ๐ต. Now we partition all jobs in ๐‘ƒ into two clusters, by defining a function ๐ฝ: ๐‘ƒ โ†’ {0,1} given by the formula (1). ๐ฝ(๐‘—๐‘–) = ๐ฝ((๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–)) = { 0 ๐‘–๐‘“ ๐‘—๐‘– = (๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–) โˆˆ ๐‘ƒ: ๐‘Ž๐‘—๐‘– โ‰ค ๐‘๐‘—๐‘– 1 ๐‘–๐‘“ ๐‘—๐‘– = (๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–) โˆˆ ๐‘ƒ: ๐‘Ž๐‘—๐‘– > ๐‘๐‘—๐‘– (1) Let ๐ฝ 1 = {๐‘— ๐‘– = (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐‘ƒ: ๐ฝ(๐‘— ๐‘– ) = ๐ฝ((๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– )) = 0} and ๐ฝ 2 = {๐‘— ๐‘– = (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐‘ƒ: ๐ฝ(๐‘— ๐‘– ) = ๐ฝ((๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– )) = 1}. Define the projection mapping :๐‘“:๐‘ƒ โ†’ {0,1} ร— โ„œ given by the formula (2). ๐‘“(๐‘—๐‘–) = ๐‘“((๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–)) = { (0,๐‘Ž๐‘—๐‘–) ๐‘–๐‘“ ๐ฝ((๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–)) = 0 (1,๐‘๐‘—๐‘–) ๐‘–๐‘“ ๐ฝ((๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–)) = 1 (2) This map specifies the kind of job and the corresponding processing time of the job that is relevant for assigning it to the optimal Johnsonโ€™s sequence. Let the image of ๐‘ƒ under ๐‘“ be given by ๐ผ๐‘š(๐‘ƒ) = ๐‘“(๐‘ƒ) = {๐‘ฅ:๐‘ฅ = ๐‘“(๐‘—๐‘–) ๐‘“๐‘œ๐‘Ÿ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘—๐‘– โˆˆ ๐‘ƒ}. We call the elements of ๐‘“(๐‘ƒ) Principal Components of ๐‘ƒ. Then the inverse image of ๐‘“ is given by ๐‘“โˆ’1(๐‘ƒ): ๐‘“(๐‘ƒ) โ†’ ๐‘ƒ given by the formula (3). ๐‘“โˆ’1(๐‘ฅ) = {๐‘— ๐‘– = (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐‘ƒ: ๐‘“(๐‘— ๐‘– ) = ๐‘“((๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– )) = ๐‘ฅ} (3) Equation (3) clusters all jobs into disjoint equivalence classes consisting of exactly those jobs in ๐ฝ 1 that have equal processing times on the first machine or those jobs in ๐ฝ 2 that have equal processing times on the second machine. In the optimal Johnson's sequence the jobs in each cluster are arranged successively. Let there be ๐พ principal components ๐‘ฅ1, ๐‘ฅ2,โ€ฆ ,๐‘ฅ๐พ with ๐œ‚1, ๐œ‚2,โ€ฆ ,๐œ‚๐พ number of jobs in ๐‘“ โˆ’1(๐‘ฅ1), ๐‘“ โˆ’1 (๐‘ฅ2),โ€ฆ ,๐‘“ โˆ’1(๐‘ฅ๐พ) , respectively, such that ๐œ‚1 + ๐œ‚2 + โ‹ฏ+ ๐œ‚ ๐พ = ๐‘›. Thus all jobs in the same cluster could be represented by a single job from the group and number of reserved positions for these jobs by ๐œ‚ 1 , ๐œ‚ 2 ,โ€ฆ ,๐œ‚ ๐พ . In particular if we determine to represent each cluster with the job that has the longest total processing time on the two machines, then a unique identifier is assigned to each job. Define ๐‘“โˆ—:{๐‘ฅ1, ๐‘ฅ2,โ€ฆ ,๐‘ฅ๐พ} โ†’ ๐‘ƒ given by the formula (4). ๐‘“โˆ—(๐‘ฅ๐‘˜) = ๐‘—๐‘˜ = (๐‘Ž๐‘—๐‘˜, ๐‘๐‘—๐‘˜) where ๐‘Ž๐‘—๐‘˜ + ๐‘๐‘—๐‘˜ = ๐‘š๐‘Ž๐‘ฅ(๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–)โˆˆ๐‘“ โˆ’1(๐‘ฅ๐‘˜) {๐‘Ž๐‘— ๐‘– + ๐‘๐‘— ๐‘– } (4) This is a choice function selecting the job with highest total processing time on the two machines from each cluster. The collection ๐‘ƒโˆ— = {(๐‘“โˆ—(๐‘ฅ๐‘˜), ๐œ‚๐‘˜, ๐‘“ โˆ’1(๐‘ฅ๐‘˜)) , ๐‘˜ = 1,2,โ€ฆ ,๐พ} characterizes all jobs in ๐‘ƒ that occupy equal priority in the optimal Johnson's sequence by ๐‘“โˆ’1(๐‘ฅ๐‘˜), the total number of jobs in the group by ๐œ‚๐‘˜ and a representative job ๐‘“โˆ—(๐‘ฅ๐‘˜) for ๐‘˜ = 1,2,โ€ฆ,๐พ. This way the original high dimensional problem is represented by a lower dimensional sub-problem ๐‘ƒโˆ—. For each job ๐‘— ๐‘– = (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐‘ƒ, there is a unique identifier (๐‘“โˆ—(๐‘ฅ๐‘˜), ๐œ‚๐‘˜, ๐‘“ โˆ’1(๐‘ฅ๐‘˜)) โˆˆ ๐‘ƒ โˆ— such that ๐‘“((๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–)) = ๐‘“((๐‘Ž๐‘—๐‘˜,๐‘๐‘—๐‘˜)) and ๐‘“ โˆ—(๐‘ฅ๐‘˜) = (๐‘Ž๐‘— ๐‘˜ , ๐‘๐‘— ๐‘˜ ). MEKONNEN REDI ET AL 32 Thus, the original high dimensional Flow Shop Scheduling Problem was defined in terms of the low dimensional sub-problem from which the solution of the original Two Machines Flow Shop Scheduling Problem could be obtained more readily by replacing the representative job by the block of jobs it corresponds to. More specifically, the original '๐‘› -Job 2-Machine Problem' is reduced into ๐พ clusters with ๐œ‚ 1 , ๐œ‚ 2 ,โ€ฆ ,๐œ‚ ๐พ number of jobs respectively where ๐œ‚ 1 + ๐œ‚ 2 + โ‹ฏ+ ๐œ‚ ๐พ = ๐‘›. At this stage of dimension reduction there are at least ๐œ‚ 1 ! โˆ— ๐œ‚ 2 ! โˆ— โ€ฆโˆ— ๐œ‚ ๐พ ! alternative optimal sequences to this problem. 4.2. Dimension Reduction of Jobs by Means of Mini-Max Criteria The traditional and the state-of-the-art dimension reduction methods can be generally classified into Feature Extraction (FE) and Feature Selection (FS) approaches. FE algorithms aim to extract features by projecting the original high-dimensional data to a lower-dimensional space through algebraic transformations [26]. The classical FE algorithms are generally classified into linear and nonlinear approaches. In contrast to the FE algorithms, FS algorithms have been widely used on large-scale data and aim at finding out a subset of the most representative features according to some objective function. It is optional that we assume dimensional reduction by PCA method discussed in the previous section has already been carried out for the problem before we apply Mini-Max Criteria in this section. Principle of Mathematical Induction (PMI) We use the Principle of Mathematical Induction (PMI) to prove the results of the next section. It states as follows: Let ๐‘ƒ(๐‘›) be a property that depends on natural numbers ๐‘› satisfies the following two conditions: i. ๐‘ƒ(๐‘˜0) holds true and ii. ๐‘ƒ(๐‘˜ + 1) holds true whenever ๐‘ƒ(๐‘˜) holds true. Then ๐‘ƒ(๐‘›) holds true for all natural numbers ๐‘› โ‰ฅ ๐‘˜0. 4.2.1. Dimension Reduction of Jobs with More Processing Time on the Second Machine Theorem 1 Let the '๐‘›- Jobs, 2- Machines' sequencing problem ๐‘ƒ = {๐‘—๐‘– = (๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–); ๐‘– = 1,2,3,โ€ฆ,๐‘›} be in the reduced form after dimension reduction using PCA has been performed where the notation ๐‘— ๐‘– = (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) means ๐‘Ž๐‘— ๐‘– and ๐‘๐‘— ๐‘– are processing times of job ๐‘— ๐‘– on machines ๐ด and ๐ต respectively for all ๐‘– = 1,2,3,โ€ฆ,๐‘› and the machine order is ๐ด โ†’ ๐ต with no passing rule. Suppose we partition all jobs in ๐‘ƒ into two disjoint classes ๐ฝ 1 and ๐ฝ 2 where ๐ฝ 1 = {๐‘— ๐‘– = (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐‘ƒ: ๐‘Ž๐‘— ๐‘– โ‰ค ๐‘๐‘— ๐‘– ; ๐‘– = 1,2,3,โ€ฆ ,๐‘›} and ๐ฝ 2 = {๐‘— ๐‘– = (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐‘ƒ: ๐‘Ž๐‘— ๐‘– > ๐‘๐‘— ๐‘– ; ๐‘– = 1,2,3,โ€ฆ ,๐‘›}. Let there be ๐‘›1 jobs in ๐ฝ1 and ๐‘›2 jobs in ๐ฝ2 with ๐‘›1 + ๐‘›2 = ๐‘›. Let the sequence {๐‘— โˆ— ๐‘– ; ๐‘– = 1,2,3,โ€ฆ ,๐‘›} = ๐‘—โˆ— 1 โ†’ ๐‘—โˆ— 2 โ†’ ๐‘—โˆ— 3 โ†’ โ‹ฏ โ†’ ๐‘—โˆ— ๐‘› be an optimal Johnson's sequence obtained by the second alternative rule. Consider the jobs in ๐ฝ 1 only. Let ๐‘๐‘—โˆ— ๐‘˜ = ๐‘š๐‘Ž๐‘ฅ๐‘Ž๐‘—๐‘–โ‰ค๐‘๐‘—๐‘– {๐‘๐‘— ๐‘– : (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐‘ƒ} = ๐‘š๐‘Ž๐‘ฅ(๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–) โˆˆ๐ฝ1 {๐‘๐‘— ๐‘– } occur in the optimal sequence for some job ๐‘—โˆ— ๐‘˜ = (๐‘Ž๐‘—โˆ— ๐‘˜ , ๐‘๐‘—โˆ— ๐‘˜ ) where 1 โ‰ค ๐‘˜ โ‰ค ๐‘›1. If this job is not unique, choose the first occurrence of all such jobs. That is, choose the job ๐‘— โˆ— ๐‘˜ = (๐‘Ž๐‘—โˆ— ๐‘˜ , ๐‘๐‘—โˆ— ๐‘˜ ) such that ๐‘๐‘—โˆ— ๐‘˜ =๐‘š๐‘Ž๐‘ฅ(๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–) โˆˆ๐ฝ1 {๐‘๐‘— ๐‘– } and ๐‘Ž๐‘—โˆ— ๐‘˜ =๐‘š๐‘–๐‘›๐‘๐‘—๐‘–=๐‘๐‘—โˆ—๐‘˜ {๐‘Ž๐‘— ๐‘– : (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐ฝ 1 }. Then the block of jobs ๐‘—โˆ— ๐‘˜+1 โ†’ ๐‘—โˆ— ๐‘˜+2 โ†’ ๐‘—โˆ— ๐‘˜+3 โ†’ โ‹ฏ โ†’ ๐‘—โˆ— ๐‘›1 could be arranged in an arbitrary order within the block while keeping all the remaining jobs fixed in their position in the optimal Johnson's sequence without violating the optimality condition. Moreover, these jobs do not create any idle time for machine , and the completion time of job ๐‘—โˆ— ๐‘˜+๐‘š on machine ๐ต is given by the formula (5) for ๐‘˜ โ‰ค ๐‘˜ + ๐‘š โ‰ค ๐‘›1. ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜+๐‘š ) = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + โˆ‘ ๐‘๐‘—โˆ— ๐‘˜+๐‘– ๐‘š ๐‘–=1 (5) Consequently, the completion time of all jobs of the first kind on machine ๐ต is given by the formula (6) irrespective of the order of operation of the jobs ๐‘—โˆ— ๐‘˜+1 โ†’ ๐‘—โˆ— ๐‘˜+2 โ†’ ๐‘—โˆ— ๐‘˜+3 โ†’ โ‹ฏ โ†’ ๐‘—โˆ— ๐‘›1 . ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 ) = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + โˆ‘ ๐‘๐‘—โˆ— ๐‘– ๐‘›1 ๐‘–=๐‘˜+1 (6) Proof Let {๐‘—โˆ— ๐‘– ; ๐‘– = 1,2,3,โ€ฆ ,๐‘›} = ๐‘—โˆ— 1 โ†’ ๐‘—โˆ— 2 โ†’ ๐‘—โˆ— 3 โ†’ โ‹ฏ โ†’ ๐‘—โˆ— ๐‘› be an optimal Johnsonโ€™s sequence, and ๐‘—โˆ— ๐‘˜ be the job described in the theorem. Let machine ๐ด finish job ๐‘—โˆ— ๐‘˜ at ๐ถ1(๐‘— โˆ— ๐‘˜ ) and machine ๐ต finish job ๐‘—โˆ— ๐‘˜ at ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) and let the sequence of jobs ๐‘— k+1 โ†’ ๐‘— k+2 โ†’ ๐‘— k+3 โ†’ โ‹ฏ โ†’ ๐‘— n1 be any permutation of the sequence ๐‘—โˆ— k+1 โ†’ ๐‘—โˆ— k+2 โ†’ ๐‘—โˆ— k+3 โ†’ โ‹ฏ โ†’ ๐‘—โˆ— n1 . DIMENSION REDUCTION AND RELAXATION 33 For any job ๐‘— ๐‘– ; ๐‘– = 1,2,3,โ€ฆ ,๐‘› the following relation (7) holds. ๐ถ1(๐‘—๐‘–) + ๐‘๐‘—๐‘– โ‰ค ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘—๐‘–) (7) from which we get also ๐ถ1(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘—โˆ— ๐‘˜ โ‰ค ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ). For any job ๐‘— ๐‘˜+๐‘– ; ๐‘– = 1,2,โ€ฆ ,๐‘›1 โˆ’ ๐‘˜ the following relations (8)-(9) hold. ๐‘Ž๐‘— ๐‘˜+๐‘– โ‰ค ๐‘๐‘— ๐‘˜+๐‘– โ‰ค ๐‘๐‘—โˆ— ๐‘˜ (8) ๐‘Ž๐‘—โˆ— ๐‘˜ โ‰ค ๐‘Ž๐‘— ๐‘˜+๐‘– โ‰ค ๐‘๐‘— ๐‘˜+๐‘– (9) Let us consider the starting and finishing times of the jobs in {๐‘— ๐‘˜+๐‘– ; ๐‘– = 1,2,โ€ฆ ,๐‘›1 โˆ’ ๐‘˜} on the two machines ๐ด and ๐ต. It is important to note that at any stage of machine sequencing, if machine ๐ต finishes job ๐‘— ๐‘– at ๐‘ก = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘—๐‘–) and machine ๐ด finishes the next job ๐‘— ๐‘–+1 at ๐‘ก = ๐ถ1(๐‘—๐‘–+1), then machine ๐ต starts job ๐‘—๐‘–+1 at ๐‘š๐‘Ž๐‘ฅ{๐ถ1(๐‘—๐‘–+1), ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘—๐‘–)}. 1. Machine ๐ด starts job ๐‘— ๐‘˜+1 at ๐‘ก = ๐ถ1(๐‘— โˆ— ๐‘˜ ) and completes it at ๐‘ก = ๐ถ1(๐‘—๐‘˜+1) = ๐ถ1(๐‘— โˆ— ๐‘˜ ) + ๐‘Ž๐‘— ๐‘˜+1 . Using equations (7)-(9), the finishing time of job ๐‘— ๐‘˜+1 on machine ๐ด satisfies the relations (10)-(13) below. ๐ถ1(๐‘—๐‘˜+1) = ๐ถ1(๐‘— โˆ— ๐‘˜ ) + ๐‘Ž๐‘— ๐‘˜+1 (10) ๐ถ1(๐‘—๐‘˜+1) โ‰ค ๐ถ1(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘— ๐‘˜+1 (11) ๐ถ1(๐‘—๐‘˜+1) โ‰ค ๐ถ1(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘—โˆ— ๐‘˜ (12) ๐ถ1(๐‘—๐‘˜+1).โ‰ค ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) (13) The right side of (13) is the finishing time of job ๐‘—โˆ— ๐‘˜ on machine B. Hence machine B starts job ๐‘— ๐‘˜+1 at ๐‘š๐‘Ž๐‘ฅ{๐ถ1(๐‘—๐‘˜+1),๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ )} = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ). Thus, this job does not create any idle time for machine ๐ต. The finishing time of this job on machine ๐ต is given by equation (14). ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘—๐‘˜+1) = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘— ๐‘˜+1 = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + โˆ‘ ๐‘๐‘— ๐‘˜+๐‘– 1 ๐‘–=1 (14) Thus, the theorem holds true for ๐‘š = 1. 2. Machine ๐ด starts job ๐‘— ๐‘˜+2 at ๐‘ก = ๐ถ1(๐‘—๐‘˜+1) and completes it at ๐‘ก = ๐ถ1(๐‘—๐‘˜+2) = ๐ถ1(๐‘—๐‘˜+1) + ๐‘Ž๐‘—๐‘˜+2. Using equations (7)-(9), the finishing time of job ๐‘— ๐‘˜+2 on machine ๐ด satisfies the relations (15)-(18) below. ๐ถ1(๐‘—๐‘˜+2) = ๐ถ1(๐‘— โˆ— ๐‘˜ ) + ๐‘Ž๐‘— ๐‘˜+1 + ๐‘Ž๐‘— ๐‘˜+2 (15) ๐ถ1(๐‘—๐‘˜+2) โ‰ค ๐ถ1(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘— ๐‘˜+1 + ๐‘๐‘— ๐‘˜+2 (16) ๐ถ1(๐‘—๐‘˜+2) โ‰ค ๐ถ1(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘— ๐‘˜+1 + ๐‘๐‘—โˆ— ๐‘˜ (17) ๐ถ1(๐‘—๐‘˜+2) โ‰ค ๐ถ1(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘—โˆ— ๐‘˜ + ๐‘๐‘— ๐‘˜+1 (18) ๐ถ1(๐‘—๐‘˜+2) โ‰ค ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘— ๐‘˜+1 = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘—๐‘˜+1) (19) The right side of (19) is the finishing time of job ๐‘— ๐‘˜+1 on machine ๐ต. Hence machine ๐ต starts job ๐‘— ๐‘˜+2 at ๐‘š๐‘Ž๐‘ฅ{๐ถ1(๐‘—๐‘˜+2),๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘—๐‘˜+1)} = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘—๐‘˜+1). Thus, this job does not create any idle time for machine ๐ต. Using (14) the finishing time of this job on machine ๐ต is given by equations (20)-(21). ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘—๐‘˜+2) = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘—๐‘˜+1) + ๐‘๐‘—๐‘˜+2 = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘— ๐‘˜+1 + ๐‘๐‘— ๐‘˜+2 (20) ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘—๐‘˜+2) = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘—๐‘˜+1) + ๐‘๐‘—๐‘˜+2 = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + โˆ‘ ๐‘๐‘— ๐‘˜+๐‘– 2 ๐‘–=1 (21) Thus, the theorem holds true for ๐‘š = 2. MEKONNEN REDI ET AL 34 Induction assumption 3. Suppose the formula works for ๐‘š such that ๐‘˜ + 1 โ‰ค ๐‘˜ + ๐‘š โ‰ค ๐‘›1 i. e. machine ๐ต finishes job ๐‘—๐‘˜+m at formula (22). ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘—๐‘˜+๐‘š) = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘— ๐‘˜+1 + ๐‘๐‘— ๐‘˜+2 + โ‹ฏ+ ๐‘๐‘— ๐‘˜+๐‘š (22) ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘—๐‘˜+๐‘š) = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + โˆ‘ ๐‘๐‘— ๐‘˜+๐‘– ๐‘š ๐‘–=1 (23) Then machine ๐ด finishes job ๐‘— ๐‘˜+m+1 at time ๐‘ก = ๐ถ1(๐‘—๐‘˜+๐‘š+1) given by equation (24) ๐ถ1(๐‘—๐‘˜+๐‘š+1) = ๐ถ1(๐‘— โˆ— ๐‘˜ ) + ๐‘Ž๐‘— ๐‘˜+1 + ๐‘Ž๐‘— ๐‘˜+2 + โ‹ฏ+ ๐‘Ž๐‘— ๐‘˜+๐‘š+1 (24) Using equations (7)-(9), the finishing time of job ๐‘— ๐‘˜+m+1 on machine ๐ด satisfies the relations (25)-(29) below. ๐ถ1(๐‘—๐‘˜+m+1) = ๐ถ1(๐‘— โˆ— ๐‘˜ ) + ๐‘Ž๐‘— ๐‘˜+1 + ๐‘Ž๐‘— ๐‘˜+2 + โ‹ฏ+ ๐‘Ž๐‘— ๐‘˜+m+1 (25) ๐ถ1(๐‘—๐‘˜+m+1) โ‰ค ๐ถ1(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘— ๐‘˜+1 + ๐‘๐‘— ๐‘˜+2 + โ‹ฏ+ ๐‘๐‘— ๐‘˜+m+1 (26) ๐ถ1(๐‘—๐‘˜+m+1) โ‰ค ๐ถ1(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘— ๐‘˜+1 + ๐‘๐‘— ๐‘˜+2 + โ‹ฏ+ ๐‘๐‘— ๐‘˜+m + ๐‘๐‘—โˆ— ๐‘˜ (27) ๐ถ1(๐‘—๐‘˜+m+1) โ‰ค ๐ถ1(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘—โˆ— ๐‘˜ + ๐‘๐‘— ๐‘˜+1 + ๐‘๐‘— ๐‘˜+2 + โ‹ฏ+ ๐‘๐‘— ๐‘˜+m (28) ๐ถ1(๐‘—๐‘˜+m+1) โ‰ค ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘— ๐‘˜+1 + ๐‘๐‘— ๐‘˜+2 + โ‹ฏ+ ๐‘๐‘— ๐‘˜+m = ๐ถmax(๐‘—๐‘˜+m) (29) The right side of (29) is the finishing time of job ๐‘— ๐‘˜+m on machine ๐ต. Hence machine ๐ต starts job ๐‘— ๐‘˜+m+1 at ๐‘š๐‘Ž๐‘ฅ{๐ถ1(๐‘—๐‘˜+๐‘š+1), ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘—๐‘˜+๐‘š)} = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘—๐‘˜+๐‘š). Thus, this job does not create any idle time for machine ๐ต. The finishing time of this job on machine ๐ต is given by equations (30)-(31). ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘—๐‘˜+๐‘š+1) = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘— ๐‘˜+1 + ๐‘๐‘— ๐‘˜+2 + โ‹ฏ+ ๐‘๐‘— ๐‘˜+๐‘š+1 (30) ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘—๐‘˜+๐‘š+1) = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + โˆ‘ ๐‘๐‘— ๐‘˜+๐‘– ๐‘š+1 ๐‘–=1 (31) Hence the formula also works for ๐‘š + 1. Thus, by the principle of mathematical induction, formula (5) holds for all m such that ๐‘˜ + 1 โ‰ค ๐‘˜ + ๐‘š โ‰ค ๐‘›1. Thus, the finishing time of job ๐‘—โˆ— ๐‘›1 is given by: ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 ) = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘—โˆ— ๐‘˜+1 + ๐‘๐‘—โˆ— ๐‘˜+2 + โ‹ฏ+ ๐‘๐‘—โˆ— ๐‘›1 (32) ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 ) = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + โˆ‘ ๐‘๐‘—โˆ— ๐‘– ๐‘›1 ๐‘–=๐‘˜+1 (33) Equation (33) is identical to (6). The total elapsed time to finish ๐‘›1 jobs of the first kind on machine ๐ต is ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘—โˆ— ๐‘˜+1 + ๐‘๐‘—โˆ— ๐‘˜+2 + โ‹ฏ+ ๐‘๐‘—โˆ— ๐‘›1 and it is independent of the order of the jobs ๐‘— ๐‘˜+1 , ๐‘— ๐‘˜+2 , ๐‘— ๐‘˜+3 ,โ€ฆ , ๐‘— ๐‘›1 and it creates no additional idle time for machine ๐ต after job ๐‘—โˆ— ๐‘˜ . Since the jobs ๐‘— ๐‘˜+1 , ๐‘— ๐‘˜+2 , ๐‘— ๐‘˜+3 ,โ€ฆ , ๐‘— ๐‘›1 are permutations of the jobs ๐‘—โˆ— ๐‘˜+1 , ๐‘—โˆ— ๐‘˜+2 , ๐‘—โˆ— ๐‘˜+3 ,โ€ฆ , ๐‘—โˆ— ๐‘›1 , we get ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘— ๐‘˜+1 + ๐‘๐‘— ๐‘˜+2 + โ‹ฏ+ ๐‘๐‘— ๐‘›1 = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘—โˆ— ๐‘˜+1 + ๐‘๐‘—โˆ— ๐‘˜+2 + โ‹ฏ+ ๐‘๐‘—โˆ— ๐‘›1 . The optimal sequence is also obtained by one of these permutations and the total elapsed time in the optimal sequence to finish ๐‘›1 jobs of the first kind is ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘—โˆ— ๐‘˜+1 + ๐‘๐‘—โˆ— ๐‘˜+2 + โ‹ฏ+ ๐‘๐‘—โˆ— ๐‘›1 . If, further, we keep all jobs in ๐ฝ 2 fixed in the optimal sequence, the total elapsed time to finish all jobs with the above freedom will be equal to the optimal value. Hence any sequence obtained by the above sequencing freedom is optimal. Since we are free to arrange the jobs ๐‘—โˆ— ๐‘˜+1 , ๐‘—โˆ— ๐‘˜+2 , ๐‘—โˆ— ๐‘˜+3 ,โ€ฆ , ๐‘—โˆ— ๐‘›1 in an arbitrary order, the above machine sequencing freedom creates (๐‘›1 โˆ’ ๐‘˜)! sequences all of which are optimal. For references, we call the job ๐‘—โˆ— ๐‘˜ in the above theorem formulation the minimal job of {๐‘—โˆ— ๐‘– ; ๐‘– = 1,2,3,โ€ฆ ,๐‘›} = ๐‘—โˆ— 1 โ†’ ๐‘—โˆ— 2 โ†’ ๐‘—โˆ— 3 โ†’ โ‹ฏ โ†’ ๐‘—โˆ— ๐‘› and we call the block of jobs ๐‘—โˆ— ๐‘˜+1 โ†’ ๐‘—โˆ— ๐‘˜+2 โ†’ ๐‘—โˆ— ๐‘˜+3 โ†’ โ€ฆ โ†’ ๐‘—โˆ— ๐‘›1 the free jobs of first kind. DIMENSION REDUCTION AND RELAXATION 35 4.2.2. Dimension Reduction of Jobs with More Processing Time on the First Machine Theorem 2 Let the '๐‘›- Jobs, 2- Machines' sequencing problem ๐‘ƒ = {๐‘—๐‘– = (๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–); ๐‘– = 1,2,3,โ€ฆ,๐‘›} be in the reduced form after dimension reduction using PCA has been performed where the notation ๐‘— ๐‘– = (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) means ๐‘Ž๐‘— ๐‘– and ๐‘๐‘— ๐‘– are processing times of job ๐‘— ๐‘– on machines ๐ด and ๐ต respectively for all ๐‘– = 1,2,3,โ€ฆ,๐‘› and the machine order is ๐ด โ†’ ๐ต with no passing rule. Suppose we partition all jobs in ๐‘ƒ into two disjoint classes ๐ฝ1 and ๐ฝ2 where ๐ฝ1 = {๐‘—๐‘– = (๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–) โˆˆ ๐‘ƒ: ๐‘Ž๐‘—๐‘– โ‰ค ๐‘๐‘—๐‘–; ๐‘– = 1,2,3,โ€ฆ,๐‘›} and ๐ฝ2 = {๐‘—๐‘– = (๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–) โˆˆ ๐‘ƒ: ๐‘Ž๐‘—๐‘– > ๐‘๐‘—๐‘–; ๐‘– = 1,2,3,โ€ฆ,๐‘›}. Let there be ๐‘›1 jobs in ๐ฝ1 and ๐‘›2 jobs in ๐ฝ2 with ๐‘›1 + ๐‘›2 = ๐‘›. Let the sequence {๐‘— โˆ— ๐‘– ; ๐‘– = 1,2,3,โ€ฆ,๐‘›} = ๐‘—โˆ— 1 โ†’ ๐‘—โˆ— 2 โ†’ ๐‘—โˆ— 3 โ†’ โ‹ฏ โ†’ ๐‘—โˆ— ๐‘› be an optimal Johnson's sequence obtained by the second alternative rule. Consider the jobs in ๐ฝ2 only. Let ๐‘Ž๐‘—โˆ—๐‘ž = ๐‘š๐‘Ž๐‘ฅ๐‘Ž๐‘—๐‘–>๐‘๐‘—๐‘– {๐‘Ž๐‘—๐‘–: (๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–) โˆˆ ๐‘ƒ} = ๐‘š๐‘Ž๐‘ฅ(๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–) โˆˆ๐ฝ2 {๐‘Ž๐‘—๐‘–} occur in the optimal sequence for some job ๐‘— โˆ— ๐‘ž = (๐‘Ž๐‘—โˆ—๐‘˜,๐‘๐‘— โˆ— ๐‘˜ ) where ๐‘›1 + 1 โ‰ค ๐‘ž โ‰ค ๐‘›. If this job is not unique, choose the last occurrence of all such jobs. That is, choose the job ๐‘—โˆ— ๐‘ž = (๐‘Ž๐‘—โˆ—๐‘ž,๐‘๐‘— โˆ— ๐‘ž ) such that ๐‘Ž๐‘—โˆ—๐‘ž =๐‘š๐‘Ž๐‘ฅ(๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–) โˆˆ๐ฝ2 {๐‘Ž๐‘—๐‘–} and ๐‘๐‘—โˆ—๐‘ž =๐‘š๐‘–๐‘›๐‘Ž๐‘—๐‘–=๐‘Ž๐‘—โˆ—๐‘ž {๐‘๐‘—๐‘–, (๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–) โˆˆ ๐ฝ2}. Let the sequence {๐‘—๐‘–; ๐‘– = ๐‘›1 + 1, โ€ฆ,๐‘ž โˆ’ 2,๐‘ž โˆ’ 1} = ๐‘—๐‘›1+1 โ†’ โ‹ฏ โ†’ ๐‘—๐‘žโˆ’2 โ†’ ๐‘—๐‘žโˆ’1 be any permutation of the sequence {๐‘— โˆ— ๐‘– ; ๐‘– = ๐‘›1 + 1, โ€ฆ,๐‘ž โˆ’ 2,๐‘ž โˆ’ 1} = ๐‘—โˆ— ๐‘›1+1 โ†’ โ‹ฏ โ†’ ๐‘—โˆ— ๐‘žโˆ’2 โ†’ ๐‘—โˆ— ๐‘žโˆ’1 . Then individual jobs in the block of jobs ๐‘—โˆ— ๐‘›1+1 โ†’ โ‹ฏ โ†’ ๐‘—โˆ— ๐‘žโˆ’2 โ†’ ๐‘—โˆ— ๐‘žโˆ’1 could be arranged in an arbitrary order among themselves while keeping all the remaining jobs fixed in their position in the optimal sequence without violating the optimality condition. In other words, the sequence ๐‘—โˆ— 1 โ†’ ๐‘—โˆ— 2 โ†’ ๐‘—โˆ— 3 โ†’ โ‹ฏ โ†’ ๐‘—โˆ— ๐‘›1 โ†’ ๐‘—๐‘›1+1 โ†’ โ‹ฏ โ†’ ๐‘—๐‘žโˆ’2 โ†’ ๐‘—๐‘žโˆ’1 โ†’ ๐‘— โˆ— ๐‘ž โ†’ ๐‘—โˆ— ๐‘ž+1 โ†’ ๐‘—โˆ— ๐‘ž+2 โ†’ ๐‘—โˆ— ๐‘ž+3 โ†’ โ‹ฏ โ†’ ๐‘—โˆ— ๐‘› is also optimal. More specifically, the completion time of the job ๐‘—โˆ— ๐‘ž on machine ๐ต is independent of the order of jobs ๐‘— ๐‘›1+1 ,โ€ฆ , ๐‘— ๐‘žโˆ’2 , ๐‘— ๐‘žโˆ’1 and is given by equation (34). ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 , ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’1 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 }. (34) Proof Let the sequence ๐‘— ๐‘›1+1 โ†’ โ‹ฏ โ†’ ๐‘— ๐‘žโˆ’2 โ†’ ๐‘— ๐‘žโˆ’1 be any permutation of the sequence ๐‘—โˆ— ๐‘›1+1 โ†’ โ‹ฏ โ†’ ๐‘—โˆ— ๐‘žโˆ’2 โ†’ ๐‘—โˆ— ๐‘žโˆ’1 . Let us consider the finishing times of the job ๐‘—โˆ— ๐‘ž starting from any job ๐‘— ๐‘›1+1 ,โ€ฆ , ๐‘— ๐‘žโˆ’2 , ๐‘— ๐‘žโˆ’1 downward. First, observe that for all jobs ๐‘— ๐‘›1+1 ,โ€ฆ , ๐‘— ๐‘žโˆ’2 , ๐‘— ๐‘žโˆ’1 we see that the following relations (35) - (36) hold. ๐‘๐‘— ๐‘žโˆ’๐‘– < ๐‘Ž๐‘— ๐‘žโˆ’๐‘– โ‰ค ๐‘Ž๐‘—โˆ— ๐‘ž (35) ๐‘๐‘—โˆ— ๐‘ž โ‰ค ๐‘๐‘— ๐‘žโˆ’๐‘– โ‰ค ๐‘Ž๐‘— ๐‘žโˆ’๐‘– (36) We use induction on the number of jobs in between ๐‘›1 and ๐‘ž. 1. We first show the theorem holds for the case when there is no job in between ๐‘›1 and ๐‘ž i. e. ๐‘ž โˆ’ 1 = ๐‘›1. In this case, machine ๐ด starts job ๐‘—โˆ— ๐‘ž at ๐ถ1 (๐‘— โˆ— ๐‘›1 ) and completes it at ๐ถ1 (๐‘— โˆ— ๐‘ž ) given by equation (37). ๐ถ1 (๐‘— โˆ— ๐‘ž ) = ๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž (37) Thus machine ๐ต starts job ๐‘—โˆ— ๐‘ž at ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž , ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 )}, and completes it at ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘ž ) given by equation (38) ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž , ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 ) + ๐‘๐‘—โˆ— ๐‘ž } (38) If we replace ๐‘š = 0 in the formula in equation (34), we get equations (39)-(41). ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘žโˆ’0โˆ’1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘žโˆ’๐‘– 0 ๐‘–=1 , ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’0โˆ’1 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– 0 ๐‘–=1 } (39) = ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘žโˆ’1 ) + ๐‘Ž๐‘—โˆ—๐‘ž + ๐‘๐‘— โˆ— ๐‘ž ,๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’1 ) + ๐‘๐‘—โˆ—๐‘ž} (40) = ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘Ž๐‘—โˆ—๐‘ž + ๐‘๐‘— โˆ— ๐‘ž ,๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 ) + ๐‘๐‘—โˆ—๐‘ž} (41) Equation (41) is identical to equation (38). MEKONNEN REDI ET AL 36 Thus, the theorem holds true for the case when ๐‘ž โˆ’ 1 = ๐‘›1. 2. We next show the theorem holds for the case when there is only one job in between ๐‘›1 and ๐‘ž i. e. ๐‘ž โˆ’ 2 = ๐‘›1. In this case, machine ๐ด starts job ๐‘— ๐‘›1+1 at ๐ถ1 (๐‘— โˆ— ๐‘›1 ) and completes it at ๐ถ1 (๐‘—๐‘›1+1 ) = ๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘Ž๐‘— ๐‘›1+1 and machine ๐ต starts job ๐‘— ๐‘›1+1 at ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘Ž๐‘— ๐‘›1+1 , ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 )}, and completes it at ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘—๐‘›1+1 ) = ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘Ž๐‘— ๐‘›1+1 + ๐‘๐‘— ๐‘›1+1 , ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 ) + ๐‘๐‘— ๐‘›1+1 }. Then, machine ๐ต starts job ๐‘—โˆ— ๐‘ž at ๐ถ1 (๐‘—๐‘›1+1 ) and completes it at ๐ถ1 (๐‘— โˆ— ๐‘ž ) = ๐ถ1 (๐‘—๐‘›1+1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž and machine ๐ต starts job ๐‘—โˆ— ๐‘ž at ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘ž ) , ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘—๐‘›1+1 )}. ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘—๐‘›1+1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž ,๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘Ž๐‘— ๐‘›1+1 + ๐‘๐‘— ๐‘›1+1 , ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 ) + ๐‘๐‘— ๐‘›1+1 }} (42) ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘Ž๐‘— ๐‘›1+1 + ๐‘Ž๐‘—โˆ— ๐‘ž ,๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘Ž๐‘— ๐‘›1+1 + ๐‘๐‘— ๐‘›1+1 ,๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 ) + ๐‘๐‘— ๐‘›1+1 } (43) But since ๐‘๐‘— ๐‘›1+1 โ‰ค ๐‘Ž๐‘— ๐‘›1+1 โ‰ค ๐‘Ž๐‘—โˆ— ๐‘ž , we get ๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘Ž๐‘— ๐‘›1+1 + ๐‘๐‘— ๐‘›1+1 โ‰ค ๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘Ž๐‘— ๐‘›1+1 + ๐‘Ž๐‘—โˆ— ๐‘ž . Thus, the maximum of the three numbers in equation (43) reduces to a maximum of two numbers in equation (44). ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘Ž๐‘— ๐‘›1+1 + ๐‘Ž๐‘—โˆ— ๐‘ž ,๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 ) + ๐‘๐‘— ๐‘›1+1 } (44) Thus, the finishing time of job ๐‘—โˆ— ๐‘ž on machine ๐ต is given by the equation (45) ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + ๐‘Ž๐‘— ๐‘›1+1 , ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 ) + ๐‘๐‘—โˆ— ๐‘ž + ๐‘๐‘— ๐‘›1+1 } (45) (11) If we put ๐‘š = 1, in the formula (34) we get (46)-(49) ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘žโˆ’1โˆ’1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘žโˆ’๐‘– 1 ๐‘–=1 , ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’1โˆ’1 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– 1 ๐‘–=1 } (46) ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘žโˆ’2 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + ๐‘Ž๐‘— ๐‘žโˆ’1 ,๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’2 ) + ๐‘๐‘—โˆ— ๐‘ž + ๐‘๐‘— ๐‘žโˆ’1 } (47) ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + ๐‘Ž๐‘— ๐‘žโˆ’1 , ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 ) + ๐‘๐‘—โˆ— ๐‘ž + ๐‘๐‘— ๐‘žโˆ’1 } (48) ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + ๐‘Ž๐‘— ๐‘›1+1 , ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 ) + ๐‘๐‘—โˆ— ๐‘ž + ๐‘๐‘— ๐‘›1+1 } (49) Equation (49) is identical to equation (45). Thus, the formula works for ๐‘š = 1. Thus, the theorem holds for the case when ๐‘ž โˆ’ 2 = ๐‘›1. Induction assumption 3. Suppose for any ๐‘š such that ๐‘›1 + 1 โ‰ค ๐‘ž โˆ’ ๐‘š โ‰ค ๐‘ž, the finishing time of the job ๐‘— โˆ— ๐‘ž on machine ๐ต is independent of the order of jobs ๐‘— ๐‘žโˆ’๐‘š ,โ€ฆ , ๐‘— ๐‘žโˆ’2 , ๐‘— ๐‘žโˆ’1 and is given by equation (50). ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 , ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’1 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 } (50) We want to show that the formula works for ๐‘š + 1. It is sufficient that we show the finishing time of the job ๐‘—โˆ— ๐‘ž on machine ๐ต is independent of the order of jobs ๐‘— ๐‘žโˆ’๐‘šโˆ’1 , ๐‘— ๐‘žโˆ’๐‘š ,โ€ฆ , ๐‘— ๐‘žโˆ’2 , ๐‘— ๐‘žโˆ’1 and is given by equation (51). ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘žโˆ’๐‘– ๐‘š+1 ๐‘–=1 , ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘š+1 ๐‘–=1 } (51) Machine ๐ด starts job ๐‘— ๐‘žโˆ’๐‘šโˆ’1 at ๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) and completes it at ๐ถ1 (๐‘—๐‘žโˆ’๐‘šโˆ’1) = ๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘Ž๐‘— ๐‘žโˆ’๐‘šโˆ’1 and machine ๐ต starts job ๐‘— ๐‘žโˆ’๐‘šโˆ’1 at ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘Ž๐‘— ๐‘žโˆ’๐‘šโˆ’1 , ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 )} and the finishing time is given by equation (52). ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘Ž๐‘—๐‘žโˆ’๐‘šโˆ’1 + ๐‘๐‘—๐‘žโˆ’๐‘šโˆ’1,๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘๐‘—๐‘žโˆ’๐‘šโˆ’1} (52) DIMENSION REDUCTION AND RELAXATION 37 Since there are ๐‘š jobs ๐‘— ๐‘žโˆ’๐‘š ,โ€ฆ , ๐‘— ๐‘žโˆ’3 , ๐‘— ๐‘žโˆ’2 , ๐‘— ๐‘žโˆ’1 , by induction assumption, the finishing time of the job ๐‘—โˆ— ๐‘ž on machine ๐ต is independent of the order of jobs ๐‘— ๐‘žโˆ’๐‘š ,โ€ฆ , ๐‘— ๐‘žโˆ’3 , ๐‘— ๐‘žโˆ’2 , ๐‘— ๐‘žโˆ’1 and is given by equation (53). ๐‘š๐‘Ž๐‘ฅ {๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 , ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’1 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 } (53) Equation (53) is rewritten as equation (54) to save space, and substituting equation (52) in equation (54), we get equation (55). ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ { ๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’1 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 } (54) ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ { ๐ถ1 (๐‘—๐‘žโˆ’๐‘šโˆ’1) + ๐‘Ž๐‘—โˆ—๐‘ž + ๐‘๐‘— โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 ๐‘š๐‘Ž๐‘ฅ { ๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘Ž๐‘— ๐‘žโˆ’๐‘šโˆ’1 + ๐‘๐‘— ๐‘žโˆ’๐‘šโˆ’1 ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘๐‘— ๐‘žโˆ’๐‘šโˆ’1 } + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 } (55) ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ { ๐ถ1 (๐‘—๐‘žโˆ’๐‘šโˆ’1) + ๐‘Ž๐‘—โˆ—๐‘ž + ๐‘๐‘— โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 ๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘Ž๐‘— ๐‘žโˆ’๐‘šโˆ’1 + ๐‘๐‘— ๐‘žโˆ’๐‘šโˆ’1 + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘๐‘— ๐‘žโˆ’๐‘šโˆ’1 + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 } (56) ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ { ๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘Ž๐‘— ๐‘žโˆ’๐‘šโˆ’1 + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 ๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘Ž๐‘— ๐‘žโˆ’๐‘šโˆ’1 + ๐‘๐‘— ๐‘žโˆ’๐‘šโˆ’1 + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘๐‘— ๐‘žโˆ’๐‘šโˆ’1 + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 } (57) ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ { ๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘žโˆ’๐‘– ๐‘š+1 ๐‘–=1 ๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘Ž๐‘— ๐‘žโˆ’๐‘šโˆ’1 + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘š+1 ๐‘–=1 ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘š+1 ๐‘–=1 } (58) But since ๐‘๐‘— ๐‘žโˆ’๐‘– < ๐‘Ž๐‘— ๐‘žโˆ’๐‘– โ‰ค ๐‘Ž๐‘—โˆ— ๐‘ž , the second number in (58) is less than the first number. ๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘Ž๐‘— ๐‘žโˆ’๐‘šโˆ’1 + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘j ๐‘žโˆ’๐‘– ๐‘š+1 ๐‘–=1 (59) < ๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘Ž๐‘—โˆ—๐‘ž + ๐‘๐‘— โˆ— ๐‘ž + โˆ‘ ๐‘Žj๐‘žโˆ’๐‘– ๐‘š+1 ๐‘–=1 (60) The maximum of the three numbers in equation (58) reduces to a maximum of two numbers given in equation (61). ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ { ๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘žโˆ’๐‘– ๐‘š+1 ๐‘–=1 ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘š+1 ๐‘–=1 } (61) If we substitute ๐‘š + 1 in place of ๐‘š in the formula in equation (34) also, we get ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ { ๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’1 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 } (62) ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ { ๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’1โˆ’1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘žโˆ’๐‘– ๐‘š+1 ๐‘–=1 ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’1โˆ’1 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘š+1 ๐‘–=1 } (63) ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ { ๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘žโˆ’๐‘– ๐‘š+1 ๐‘–=1 ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’2 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘š+1 ๐‘–=1 } (64) MEKONNEN REDI ET AL 38 Equation (64) is identical to equation (61). Hence we have shown that the theorem also holds for ๐‘š + 1. Thus, by the principle of mathematical induction the theorem holds for all ๐‘š such that ๐‘›1 + 1 โ‰ค ๐‘ž โˆ’ ๐‘š โ‰ค ๐‘ž โˆ’ 1. If ๐‘ž โˆ’ ๐‘š = ๐‘›1 + 1 i. e. ๐‘š = ๐‘ž โˆ’ ๐‘›1 โˆ’ 1 the formula (64) yields equations (65)-(66). ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ { ๐ถ1 (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’๐‘šโˆ’1 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘š ๐‘–=1 } (65) ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ { ๐ถ1 (๐‘— โˆ— ๐‘žโˆ’(๐‘žโˆ’๐‘›1โˆ’1)โˆ’1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘žโˆ’๐‘– ๐‘žโˆ’๐‘›1โˆ’1 ๐‘–=1 ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘žโˆ’(๐‘žโˆ’๐‘›1โˆ’1)โˆ’1 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘žโˆ’๐‘›1โˆ’1 ๐‘–=1 } (66) By simplification, the formula (66) for ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) reduces to the formula (67) ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ { ๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘žโˆ’๐‘– ๐‘žโˆ’๐‘›1โˆ’1 ๐‘–=1 ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘žโˆ’๐‘– ๐‘žโˆ’๐‘›1โˆ’1 ๐‘–=1 } (67) Changing the index ๐‘ž โˆ’ ๐‘– by the index ๐‘›1 + ๐‘–, the formula (67) for ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) reduces to the formula (68) and (69). ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ { ๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘Ž๐‘—โˆ— ๐‘ž + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘– ๐‘žโˆ’1 ๐‘–=๐‘›1+1 ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘๐‘— ๐‘– ๐‘žโˆ’1 ๐‘–=๐‘›1+1 } (68) ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ { ๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘— ๐‘– ๐‘ž ๐‘–=๐‘›1+1 ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 ) + โˆ‘ ๐‘๐‘— ๐‘– ๐‘ž ๐‘–=๐‘›1+1 } (69) Formula (69) gives the completion time of the job ๐‘—โˆ— ๐‘ž explicitly as maximum of the sum of processing times of the jobs in the two machines and that of job ๐‘—โˆ— ๐‘ž . In this formula the maximum of the two numbers ๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Žj ๐‘– ๐‘ž ๐‘–=๐‘›1+1 and ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 ) + โˆ‘ ๐‘j ๐‘– ๐‘ž ๐‘–=๐‘›1+1 is symmetric with respect to jobs and so it is independent of the order of operations. Thus, the theorem was proved. Since the jobs ๐‘— ๐‘›1+1 ,โ€ฆ , ๐‘— ๐‘žโˆ’2 , ๐‘— ๐‘žโˆ’1 are permutations of the jobs ๐‘—โˆ— ๐‘›1+1 ,โ€ฆ , ๐‘—โˆ— ๐‘žโˆ’2 , ๐‘—โˆ— ๐‘žโˆ’1 , and the optimal sequence is also obtained by one of these permutations and the total elapsed time in the optimal sequence to finish ๐‘ž jobs ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž )given by formula (69) reduces to formula (70). ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ { ๐ถ1 (๐‘— โˆ— ๐‘›1 ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘—โˆ— ๐‘– ๐‘ž ๐‘–=๐‘›1+1 ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 ) + โˆ‘ ๐‘๐‘—โˆ— ๐‘– ๐‘ž ๐‘–=๐‘›1+1 } (70) If further we keep all jobs in ๐ฝ 1 fixed in the optimal sequence, the total elapsed time to finish all jobs with the above freedom will be equal to the optimal value. Hence any sequence obtained by the above sequencing freedom is optimal. Since we are free to arrange the jobs ๐‘—โˆ— ๐‘›1+1 โ†’ โ‹ฏ โ†’ ๐‘—โˆ— ๐‘žโˆ’2 โ†’ ๐‘—โˆ— ๐‘žโˆ’1 in an arbitrary order, the above machine sequencing freedom creates (๐‘ž โˆ’ ๐‘›1 โˆ’ 1)! sequences, all of which are optimal. For reference, we call the job ๐‘— โˆ— ๐‘ž in the above formulation the maximal job of {๐‘—โˆ— ๐‘– ; ๐‘– = 1,2,3,โ€ฆ ,๐‘›} = ๐‘—โˆ— 1 โ†’ ๐‘—โˆ— 2 โ†’ ๐‘—โˆ— 3 โ†’ โ‹ฏ โ†’ ๐‘—โˆ— ๐‘› and we call the block of jobs ๐‘—โˆ— ๐‘›1+1 โ†’ โ€ฆ โ†’ ๐‘—โˆ— ๐‘žโˆ’3 โ†’ ๐‘—โˆ— ๐‘žโˆ’2 โ†’ ๐‘—โˆ— ๐‘žโˆ’1 the free jobs of second kind. DIMENSION REDUCTION AND RELAXATION 39 Concluding Remark Combining the results of Section 4.2.1 and Section 4.2.2, by substituting ๐ถ๐‘š๐‘Ž๐‘ฅ (๐‘— โˆ— ๐‘›1 ) in formula (70) by the right hand side in formula (33), ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) reduces to the formula (71) and (72). ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ { ๐ถ1(๐‘— โˆ— ๐‘˜ ) + โˆ‘ ๐‘Ž๐‘—โˆ— ๐‘– ๐‘›1 ๐‘–=๐‘˜+1 + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘—โˆ— ๐‘– ๐‘ž ๐‘–=๐‘›1+1 ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + โˆ‘ ๐‘๐‘—โˆ— ๐‘– ๐‘›1 ๐‘–=๐‘˜+1 + โˆ‘ ๐‘๐‘—โˆ— ๐‘– ๐‘ž ๐‘–=๐‘›1+1 } (71) ๐ถ๐‘š๐‘Ž๐‘ฅ ( ๐‘— โˆ— ๐‘ž ) = ๐‘š๐‘Ž๐‘ฅ { ๐ถ1(๐‘— โˆ— ๐‘˜ ) + ๐‘๐‘—โˆ— ๐‘ž + โˆ‘ ๐‘Ž๐‘—โˆ— ๐‘– ๐‘ž ๐‘–=๐‘˜+1 ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— ๐‘˜ ) + โˆ‘ ๐‘๐‘—โˆ— ๐‘– ๐‘ž ๐‘–=๐‘˜+1 } (72) At this point by looking at the formula in (72) only, we suggest not to conclude that the union of the free jobs of first and second kind could also be arranged in an arbitrary order because there are just a few particular cases for which this conclusion does not hold true. Thus, we need to compute the sequence dependent starting and completion times of the remaining jobs ๐‘—โˆ— ๐‘ž+1 โ†’ ๐‘—โˆ— ๐‘ž+2 โ†’ ๐‘—โˆ— ๐‘ž+3 โ†’ โ‹ฏ โ†’ ๐‘—โˆ— ๐‘› on the two machines to find total elapsed time. 4.3. Algorithm: Dimension Reduction Thus we have proved the following algorithm. Let problem ๐‘ƒ = {๐‘—๐‘– = (๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–); ๐‘– = 1,2,3,โ€ฆ,๐‘›} with no passing of jobs on the two machines in the order ๐ด โ†’ ๐ต be given where ๐‘Ž๐‘— ๐‘– and ๐‘๐‘— ๐‘– are processing times of job ๐‘— ๐‘– on machines ๐ด and ๐ต, respectively for ๐‘– = 1,2,3,โ€ฆ,๐‘›. ๏‚ท Step 1: Partition all jobs in ๐‘ƒ into two clusters, ๐ฝ 1 and ๐ฝ 2 where ๐ฝ 1 = {๐‘— ๐‘– = (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐‘ƒ: ๐‘Ž๐‘— ๐‘– โ‰ค ๐‘๐‘— ๐‘– ; ๐‘– = 1,2,3,โ€ฆ ,๐‘›} and ๐ฝ 2 = {๐‘— ๐‘– = (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐‘ƒ: ๐‘Ž๐‘— ๐‘– > ๐‘๐‘— ๐‘– ; ๐‘– = 1,2,3,โ€ฆ ,๐‘›}. Identify all jobs in ๐ฝ 1 and ๐ฝ 2 . Let there be ๐‘›1 jobs in ๐ฝ1 and ๐‘›2 jobs in ๐ฝ2. ๏‚ท Step 2: Let ๏ฟฝฬ…๏ฟฝ = {๐‘Ž๐‘— ๐‘– : (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐ฝ 1 } be the set of distinct operation times on machine ๐ด for all jobs of the first kind and let ๏ฟฝฬ…๏ฟฝ = {๐‘๐‘— ๐‘– : (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐ฝ 2 } be the set of distinct operation times on machine ๐ต for all jobs of the second kind. ๏‚ท Step 3: Define ๐‘“ 1 : ๏ฟฝฬ…๏ฟฝ โ†’ โ„œ by the map given by ๐‘“ 1 (๐‘Ž๐‘— ๐‘™ ) = ๐‘š๐‘Ž๐‘ฅ {๐‘Ž๐‘—๐‘– =๐‘Ž๐‘—๐‘™ } {๐‘๐‘— ๐‘– : (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐ฝ 1 } ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘Ž๐‘—๐‘™ โˆˆ ๏ฟฝฬ…๏ฟฝ. This definition assigns the highest processing time on machine ๐ต for each distinct processing time on machine ๐ด. ๏‚ท Step 4: Define ๐‘“ 2 : ๏ฟฝฬ…๏ฟฝ โ†’ โ„œ by the map given by ๐‘“ 2 (๐‘๐‘— ๐‘™ ) = ๐‘š๐‘Ž๐‘ฅ {๐‘๐‘—๐‘– =๐‘๐‘—๐‘™ } {๐‘Ž๐‘— ๐‘– : (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐ฝ 2 } ,๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘๐‘—๐‘™ โˆˆ ๏ฟฝฬ…๏ฟฝ. This definition assigns the highest processing time on machine ๐ด for each distinct processing time on machine ๐ต. ๐ฝ 1ฬ… = {(๐‘Ž๐‘— ๐‘– , ๐‘“ 1 (๐‘Ž๐‘— ๐‘– ))}๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘Ž๐‘— ๐‘– โˆˆ ๏ฟฝฬ…๏ฟฝ and ๐ฝ 2ฬ… = {(๐‘“ 2 (๐‘๐‘— ๐‘™ ), ๐‘๐‘— ๐‘– )}๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘๐‘— ๐‘– โˆˆ ๏ฟฝฬ…๏ฟฝ give distinct equivalence classes. ๏‚ท Step 5: Therefore, the reduced problem at the end of the first phase of dimension reduction becomes sequencing jobs in ๏ฟฝฬ…๏ฟฝ = J 1ฬ… โˆช J 2ฬ… . ๏‚ท Step 6: Let ๐‘1 = ๐‘š๐‘Ž๐‘ฅ{๐‘Ž๐‘—๐‘–โˆˆ๏ฟฝฬ…๏ฟฝ} {๐‘“ 1 (๐‘Ž๐‘— ๐‘– )} and ๐‘Ž1 = ๐‘š๐‘Ž๐‘ฅ{๐‘๐‘—๐‘–โˆˆ๏ฟฝฬ…๏ฟฝ} {๐‘“ 2 (๐‘๐‘— ๐‘– )} Let ๐‘Žโˆ— = ๐‘š๐‘–๐‘› {๐‘“ 1 (๐‘Ž๐‘—๐‘– )=๐‘1} {๐‘Ž๐‘— ๐‘– } and ๐‘โˆ— = ๐‘š๐‘–๐‘› {๐‘“ 2 (๐‘๐‘—๐‘– )=๐‘Ž1} {๐‘๐‘— ๐‘– } ๏‚ท Step 7a: Identify the job ๐‘—๐‘™1 = (๐‘Ž๐‘—๐‘™1 ,๐‘๐‘—๐‘™1 ) โˆˆ ๐ฝ1 such that ๐‘Ž๐‘—๐‘™1 + ๐‘๐‘—๐‘™1 = ๐‘š๐‘Ž๐‘ฅ๐‘Ž๐‘—๐‘–>๐‘Ž โˆ—{๐‘Ž๐‘—๐‘– + ๐‘๐‘—๐‘–, (๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–) โˆˆ ๐ฝ1}.Identify the job ๐‘—๐‘™2 = (๐‘Ž๐‘—๐‘™2 ,๐‘๐‘—๐‘™2 ) โˆˆ ๐ฝ2 such that ๐‘Ž๐‘—๐‘™2 + ๐‘๐‘—๐‘™2 = ๐‘š๐‘Ž๐‘ฅ๐‘๐‘—๐‘–>๐‘ โˆ—{๐‘Ž๐‘—๐‘– + ๐‘๐‘—๐‘–, (๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–) โˆˆ ๐ฝ2} ๏‚ท Step 7b: ๐ฝ 1ฬ… ฬ… = {(๐‘Ž๐‘— ๐‘– , ๐‘“ 1 (๐‘Ž๐‘— ๐‘™ )): ๐‘Ž๐‘— ๐‘– โ‰ค ๐‘Žโˆ—๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘Ž๐‘— ๐‘– โˆˆ ๏ฟฝฬ…๏ฟฝ} โˆช {๐‘— ๐‘™1 } and ๐ฝ 2ฬ… ฬ… = {(๐‘“ 2 (๐‘๐‘— ๐‘™ ), ๐‘๐‘— ๐‘– )๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘๐‘— ๐‘– โˆˆ ๏ฟฝฬ…๏ฟฝ} โˆช {๐‘— ๐‘™2 }. ๏‚ท Step 8 Therefore, the reduced problem at the end of the second phase of dimension reduction becomes sequencing jobs in ๏ฟฝฬ…ฬ…๏ฟฝ = ๐ฝ 1ฬ… ฬ… โˆช ๐ฝ 2ฬ… ฬ…. MEKONNEN REDI ET AL 40 4.4. Algorithm: Relaxation of Johnson's Algorithm The Johnson's algorithm is an exact solution method of the two machines, one-way, no-passing scheduling tasks problem, which serves as a basis for many heuristic algorithms. This rule is a complete list of ordering the jobs by filling the first or the last available space based on minimum operation times in the two machines from the waiting list until, finally, only one free space and one last job to be assigned remain in the waiting list. We make ๐‘›! comparisons to obtain the optimal sequence. To overcome the problem of computation time, the current study identified a relaxation of Johnson's algorithm by developing an early stopover criteria due to the fact that after listing only some critical jobs at the beginning and end of the optimal sequence using Johnson's procedure, it does not matter in whichever order the remaining jobs are operated as far as makespan is concerned. ๏‚ท Step 0: Compute ๐‘‘ = ๐‘๐‘—๐‘– โˆ’ ๐‘Ž๐‘—๐‘–; ๐‘– = 1,2,3,โ€ฆ,๐‘›. Waiting list 1 is ๐ฝ1 = {๐‘—๐‘– = (๐‘Ž๐‘—๐‘–, ๐‘๐‘—๐‘–) โˆˆ ๐‘ƒ: ๐‘๐‘—๐‘– โˆ’ ๐‘Ž๐‘—๐‘– โ‰ฅ 0; ๐‘– = 1,2,3,โ€ฆ ,๐‘›}. Waiting list 2 is ๐ฝ 2 = {๐‘— ๐‘– = (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐‘ƒ: ๐‘๐‘— ๐‘– โˆ’ ๐‘Ž๐‘— ๐‘– < 0; ๐‘– = 1,2,3,โ€ฆ ,๐‘›}. ๏‚ท Step 1a Identify the job ๐‘—โˆ— ๐‘˜ = (๐‘Ž๐‘—โˆ— ๐‘˜ , ๐‘๐‘—โˆ— ๐‘˜ ) such that ๐‘๐‘—โˆ— ๐‘˜ =๐‘š๐‘Ž๐‘ฅ(๐‘Ž๐‘—๐‘–,๐‘๐‘—๐‘–) โˆˆ๐ฝ1 {๐‘๐‘— ๐‘– } and ๐‘Ž๐‘—โˆ— ๐‘˜ =๐‘š๐‘–๐‘›๐‘๐‘—๐‘–=๐‘๐‘—โˆ—๐‘˜ {๐‘Ž๐‘— ๐‘– , (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐ฝ 1 } ๏‚ท Step 1b Identify the job ๐‘—โˆ— ๐‘ž = (๐‘Ž๐‘—โˆ— ๐‘ž , ๐‘๐‘—โˆ— ๐‘ž ) such that ๐‘Ž๐‘—โˆ— ๐‘ž =๐‘š๐‘Ž๐‘ฅ(๐‘Ž๐‘—๐‘– ,๐‘๐‘—๐‘–) โˆˆ๐ฝ2 {๐‘Ž๐‘— ๐‘– } and ๐‘๐‘—โˆ— ๐‘ž =๐‘š๐‘–๐‘›๐‘Ž๐‘—๐‘–=๐‘Ž๐‘—โˆ—๐‘ž {๐‘๐‘— ๐‘– , (๐‘Ž๐‘— ๐‘– , ๐‘๐‘— ๐‘– ) โˆˆ ๐ฝ 2 } ๏‚ท Step 2 (Johnsonโ€™s algorithm main) Examine the columns of ๐ด and ๐ต for processing times on machines ๐ด and ๐ต and find the smallest processing time among unscheduled jobs (waiting list). Apply Johnsonโ€™s algorithm on ๐‘ƒ and remove the scheduled job from ๐‘ƒ, waiting list 1 and waiting list 2 until jobs ๐‘—โˆ— ๐‘˜ or ๐‘—โˆ— ๐‘ž are assigned. Go to step 3. ๏‚ท Step 3a (Mini-max criteria 1) If ๐‘—โˆ— ๐‘˜ is scheduled, then remove all unscheduled jobs in waiting list 1 from ๐‘ƒ and terminate this step. Go to step 2. ๏‚ท Step 3b (Mini-max criteria 2) If ๐‘—โˆ— ๐‘ž is scheduled, then remove all unscheduled jobs in waiting list 2 from ๐‘ƒ and terminate this step. Go to step 2. ๏‚ท Step 4 (Relaxation of Johnsonโ€™s algorithm) If both ๐‘—โˆ— ๐‘˜ and ๐‘—โˆ— ๐‘ž are assigned, then terminate Johnson's algorithm main. Go to step 5. ๏‚ท Step 5a If waiting list 1 is non-empty, then choose at random a job in waiting list 1 and assign the corresponding job in the first available position in sequence and remove the assigned job from the waiting list 1. Repeat this step until waiting list 1 is empty. ๏‚ท Step 5b If waiting list 2 is non-empty then choose at random a job in waiting list 2 and assign the corresponding job in the last available position in sequence and remove the assigned job from the waiting list 2. Repeat this step until waiting list 2 is empty. ๏‚ท Step 6 Repeat steps 5a and 5b until all ๐‘ƒ, waiting list 1 and waiting list 2 are empty. In the relaxation algorithm above, we did not violate Johnson's algorithm except termination criteria. Thus, ties for jobs with equal processing time on the two machines may be broken arbitrarily. 5. Illustrative Example In the following example, The Two Machines Flow Shop Sequencing Problem of 100 jobs indexed ๐‘— 1 , ๐‘— 2 , ๐‘— 3 โ€ฆ ,๐‘— 100 was generated from a normal distribution ๐‘[๐œ‡,๐œŽ2] with mean ๐œ‡ and standard deviation ๐œŽ2 in Microsoft Excel spreadsheet user interface for different values of the parameters. The processing time on machine ๐ด was assumed to follow a normal distribution with mean ๐œ‡ = 58 and standard deviation ๐œŽ2 = 2 and the processing time on machine ๐ต was assumed to follow a normal distribution with mean ๐œ‡ = 51 and standard deviation ๐œŽ2 = 8. The procedure was as follows: in columns 2 and 3 random numbers were generated from [0,1] representing the probabilities of processing times on machines ๐ด and ๐ต respectively. In column 4 we computed the inverse of the Cumulative Normal Distribution Function for probability values defined in column 2, with distribution mean ๐œ‡ = 58 and standard deviation ๐œŽ2 = 2. Similarly, in column 5 we computed the inverse of the Cumulative Normal Distribution Function for probability values defined in column 3, with distribution mean ๐œ‡ = 51 and standard deviation ๐œŽ2 = 8. Thus, the numbers in columns 4 and 5 represent the corresponding processing times on machines ๐ด and ๐ต. In column 6, jobs were assigned the value 0 if the value in column 4 was less than or equal to the value in column 5, and 1 otherwise to partition all jobs into two clusters ๐ฝ 1 and ๐ฝ 2 as explained before. Then the jobs were sorted in ascending value on column 6 to arrange all jobs of DIMENSION REDUCTION AND RELAXATION 41 the first kind before jobs of the second kind. Next all jobs of the first kind only were selected and sorted by ascending value on column 4 to arrange all jobs of the first kind in a non-decreasing order of processing time on the first machine. Similarly, all jobs of the second kind only were selected and sorted in ascending value on column 5 to arrange all jobs of the second kind in a non-increasing order of processing time on the second machine. The resulting sequence was, therefore, an optimal Johnson's sequence and the corresponding sequence positions for all jobs were assigned in column 1, starting from beginning to end. Table 1 below gives the results. The formulas for starting and completion of jobs on the first machine A were entered in columns 7 and 8. Similarly, the formulas for starting and completion of jobs on second machine B were entered in columns 9 and 10. The formula to calculate the idle time (slack time) due to each job was entered in column 11 so that the formulas automatically run for any other permutations of the jobs. After identifying the optimal Johnsonโ€™s sequence, applying the mini-max criteria discussed earlier, the maximum processing time on the second machine for all jobs of the first kind was identified to be 65 , and its first occurrence was in the ๐‘—โˆ— 8 in the optimal Johnsonโ€™s sequence. Similarly applying the mini-max criteria discussed earlier, the maximum processing time on the first machine for all jobs of the second kind was identified to be 63 and its last occurrence was in the ๐‘—โˆ— 82 in the optimal Johnsonโ€™s sequence. In the next step the concept of random numbers was used to generate multiple alternate optimal sequences and to verify the findings of this study. In column 12, a new sequence in terms of random numbers was defined for all jobs as follows. For the jobs up to and including the minimal job, the same sequence order as the optimal Johnson's sequence was maintained. Also, for jobs starting from the maximal job onward, the same sequence order as the optimal Johnson's sequence was maintained. But for free jobs of the first kind, a random number between 0 and 1 was added to the minimal job position number, and for free jobs of the second kind a random number between 0 and 1 was subtracted from the maximal job position and all jobs are sorted in increasing order of the values in column 12. Then a new sequence was defined in column 13 to get an alternate optimal sequence. Then comparisons were made between the Johnson's sequence in Table 1 and the alternate sequence in Table 2. Table 1. Optimal Johnson's sequence for the generated problem in the illustration example. Joh seq Rand A Rand B A B J1/ J2 In A Out A In B Out B Idle Relax Alt seq 1 0.071 0.782 55 57 0 0 55 55 112 55 1.000 1 2 0.060 0.837 55 59 0 55 110 112 171 0 2.000 2 3 0.070 0.718 55 56 0 110 165 171 227 0 3.000 3 4 0.163 0.786 56 57 0 165 221 227 284 0 4.000 4 5 0.106 0.743 56 56 0 221 277 284 340 0 5.000 5 6 0.157 0.951 56 64 0 277 333 340 404 0 6.000 6 7 0.211 0.951 56 64 0 333 389 404 468 0 7.000 7 8 0.327 0.954 57 65 0 389 446 468 533 0 8.000 8 9 0.676 0.972 57 62 0 446 503 533 595 0 9.173 12 10 0.694 0.852 57 60 0 503 560 595 655 0 9.398 15 11 0.630 0.834 58 59 0 560 618 655 714 0 9.931 22 12 0.323 0.915 58 64 0 618 676 714 778 0 9.401 16 13 0.693 0.864 58 62 0 676 734 778 840 0 9.480 18 14 0.805 0.870 59 60 0 734 793 840 900 0 9.306 13 15 0.379 0.862 59 61 0 793 852 900 961 0 9.505 19 16 0.572 0.947 59 63 0 852 911 961 1024 0 9.995 23 17 0.852 0.995 59 61 0 911 970 1024 1085 0 9.016 9 18 0.503 0.909 59 59 0 970 1029 1085 1144 0 9.046 10 19 0.718 0.897 59 59 0 1029 1088 1144 1203 0 9.108 11 20 0.964 0.990 60 62 0 1088 1148 1203 1265 0 9.475 17 21 0.922 0.920 60 60 0 1148 1208 1265 1325 0 9.322 14 22 0.543 0.833 61 62 0 1208 1269 1325 1387 0 9.843 21 23 0.683 0.934 62 64 0 1269 1331 1387 1451 0 9.626 20 24 0.770 0.675 58 57 1 1331 1389 1451 1508 0 24.300 43 25 0.785 0.715 61 57 1 1389 1450 1508 1565 0 24.570 58 26 0.376 0.415 60 56 1 1450 1510 1565 1621 0 24.046 25 27 0.029 0.555 57 56 1 1510 1567 1621 1677 0 24.870 72 28 0.274 0.310 57 56 1 1567 1624 1677 1733 0 24.199 37 MEKONNEN REDI ET AL 42 29 0.578 0.497 60 56 1 1624 1684 1733 1789 0 24.434 53 30 0.755 0.500 57 55 1 1684 1741 1789 1844 0 24.443 54 31 0.943 0.323 59 55 1 1741 1800 1844 1899 0 24.013 24 32 0.855 0.396 56 55 1 1800 1856 1899 1954 0 24.924 77 33 0.970 0.458 55 54 1 1856 1911 1954 2008 0 24.987 80 34 0.143 0.582 55 54 1 1911 1966 2008 2062 0 24.663 66 35 0.320 0.269 57 54 1 1966 2023 2062 2116 0 24.654 64 36 0.909 0.432 61 54 1 2023 2084 2116 2170 0 24.384 51 37 0.270 0.731 56 53 1 2084 2140 2170 2223 0 24.185 34 38 0.727 0.561 60 53 1 2140 2200 2223 2276 0 24.583 61 39 0.456 0.534 56 53 1 2200 2256 2276 2329 0 24.357 47 40 0.766 0.567 59 53 1 2256 2315 2329 2382 0 24.848 71 41 0.316 0.277 58 53 1 2315 2373 2382 2435 0 24.489 55 42 0.855 0.225 59 52 1 2373 2432 2435 2487 0 24.200 38 43 0.461 0.768 54 52 1 2432 2486 2487 2539 0 24.050 27 44 0.785 0.254 58 52 1 2486 2544 2544 2596 5 24.202 39 45 0.946 0.380 59 52 1 2544 2603 2603 2655 7 24.240 40 46 0.104 0.389 58 51 1 2603 2661 2661 2712 6 24.372 48 47 0.178 0.608 60 51 1 2661 2721 2721 2772 9 24.616 62 48 0.493 0.477 57 51 1 2721 2778 2778 2829 6 24.891 74 49 0.235 0.217 58 51 1 2778 2836 2836 2887 7 24.084 29 50 0.617 0.354 60 51 1 2836 2896 2896 2947 9 24.535 57 51 0.951 0.645 58 51 1 2896 2954 2954 3005 7 24.907 75 52 0.370 0.230 59 51 1 2954 3013 3013 3064 8 24.087 30 53 0.806 0.734 61 50 1 3013 3074 3074 3124 10 24.196 36 54 0.229 0.705 61 50 1 3074 3135 3135 3185 11 24.935 79 55 0.463 0.591 62 50 1 3135 3197 3197 3247 12 24.158 33 56 0.663 0.397 58 50 1 3197 3255 3255 3305 8 24.919 76 57 0.839 0.498 57 50 1 3255 3312 3312 3362 7 24.742 67 58 0.938 0.768 58 50 1 3312 3370 3370 3420 8 24.837 70 59 0.464 0.279 61 49 1 3370 3431 3431 3480 11 24.316 45 60 0.395 0.404 55 49 1 3431 3486 3486 3535 6 24.347 46 61 0.827 0.591 57 49 1 3486 3543 3543 3592 8 24.047 26 62 0.806 0.499 59 49 1 3543 3602 3602 3651 10 24.526 56 63 0.394 0.359 57 49 1 3602 3659 3659 3708 8 24.581 60 64 0.280 0.637 60 49 1 3659 3719 3719 3768 11 24.137 32 65 0.436 0.178 57 48 1 3719 3776 3776 3824 8 24.781 68 66 0.096 0.643 59 48 1 3776 3835 3835 3883 11 24.383 50 67 0.268 0.459 57 48 1 3835 3892 3892 3940 9 24.647 63 68 0.382 0.376 57 47 1 3892 3949 3949 3996 9 24.056 28 69 0.484 0.250 61 47 1 3949 4010 4010 4057 14 24.122 31 70 0.423 0.437 63 47 1 4010 4073 4073 4120 16 24.926 78 71 0.599 0.595 58 46 1 4073 4131 4131 4177 11 24.798 69 72 0.305 0.735 58 46 1 4131 4189 4189 4235 12 24.572 59 73 0.023 0.265 57 46 1 4189 4246 4246 4292 11 24.267 41 74 0.377 0.505 54 46 1 4246 4300 4300 4346 8 24.881 73 75 0.454 0.512 60 46 1 4300 4360 4360 4406 14 24.306 44 76 0.549 0.446 57 46 1 4360 4417 4417 4463 11 24.188 35 77 0.164 0.711 57 45 1 4417 4474 4474 4519 11 24.376 49 78 0.996 0.297 57 45 1 4474 4531 4531 4576 12 24.999 81 79 0.951 0.460 57 45 1 4531 4588 4588 4633 12 24.397 52 80 0.067 0.652 60 45 1 4588 4648 4648 4693 15 24.284 42 81 0.235 0.226 58 44 1 4648 4706 4706 4750 13 24.662 65 82 0.990 0.189 63 44 1 4706 4769 4769 4813 19 82.000 82 83 0.220 0.172 56 43 1 4769 4825 4825 4868 12 83.000 83 84 0.475 0.147 58 43 1 4825 4883 4883 4926 15 84.000 84 85 0.465 0.154 58 43 1 4883 4941 4941 4984 15 85.000 85 86 0.757 0.152 59 43 1 4941 5000 5000 5043 16 86.000 86 DIMENSION REDUCTION AND RELAXATION 43 87 0.855 0.157 60 43 1 5000 5060 5060 5103 17 87.000 87 88 0.411 0.126 58 42 1 5060 5118 5118 5160 15 88.000 88 89 0.482 0.108 58 41 1 5118 5176 5176 5217 16 89.000 89 90 0.548 0.101 58 41 1 5176 5234 5234 5275 17 90.000 90 91 0.623 0.086 59 40 1 5234 5293 5293 5333 18 91.000 91 92 0.626 0.083 59 40 1 5293 5352 5352 5392 19 92.000 92 93 0.758 0.070 59 39 1 5352 5411 5411 5450 19 93.000 93 94 0.812 0.074 60 39 1 5411 5471 5471 5510 21 94.000 94 95 0.575 0.059 58 38 1 5471 5529 5529 5567 19 95.000 95 96 0.279 0.051 57 38 1 5529 5586 5586 5624 19 96.000 96 97 0.159 0.040 56 37 1 5586 5642 5642 5679 18 97.000 97 98 0.266 0.038 57 37 1 5642 5699 5699 5736 20 98.000 98 99 0.853 0.030 60 36 1 5699 5759 5759 5795 23 99.000 99 100 0.744 0.017 59 34 1 5759 5818 5818 5852 23 100.000 100 767 Observe first from Table 1 the following values: Machine ๐ด completes the minimal job at time ๐ถ1(๐‘— โˆ— 8 ) = ๐Ÿ’๐Ÿ’๐Ÿ” and machine ๐ต completes it at time ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— 8 ) = ๐Ÿ“๐Ÿ‘๐Ÿ‘. Machine ๐ด completes all jobs of the first kind at time ๐ถ1(๐‘— โˆ— 23 ) = ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ and machine ๐ต completes the same jobs at time ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— 23 ) = ๐Ÿ๐Ÿ’๐Ÿ“๐Ÿ. Machine ๐ด completes the maximal job at time ๐ถ1(๐‘— โˆ— 82 ) = ๐Ÿ’๐Ÿ•๐Ÿ”๐Ÿ— and machine ๐ต completes it at time ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— 82 ) = ๐Ÿ’๐Ÿ–๐Ÿ๐Ÿ‘. Machine ๐ด completes the last job at time ๐ถ1(๐‘— โˆ— 100 ) = ๐Ÿ“๐Ÿ–๐Ÿ๐Ÿ– and machine ๐ต completes it at ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— 100 ) = ๐Ÿ“๐Ÿ–๐Ÿ“๐Ÿ. All the values described here are outlined in Table 1 by dark line in the corresponding rows containing the values. Also observe the following values: The sum of the processing times of free jobs of the first kind on machine ๐ต is โˆ‘ ๐‘๐‘—โˆ— ๐‘– 23 ๐‘–=9 = ๐Ÿ—๐Ÿ๐Ÿ–. Thus, ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— 8 ) + โˆ‘ ๐‘๐‘—โˆ— ๐‘– 23 ๐‘–=9 = 533 + 918 = ๐Ÿ๐Ÿ’๐Ÿ“๐Ÿ = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— 23 ). Thus equation (6) is verified. The sum of the processing times of free jobs of the second kind on machine ๐ด is โˆ‘ ๐‘Ž๐‘—โˆ— ๐‘– (81) ๐‘–=24 = ๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ“ and the sum of the processing times of free jobs of the second kind on machine ๐ต is โˆ‘ ๐‘Ž๐‘—โˆ— ๐‘– (81) ๐‘–=24 = ๐Ÿ๐Ÿ—๐Ÿ๐Ÿ–. Therefore, ๐ถ1(๐‘— โˆ— 23 ) + ๐‘Ž๐‘—โˆ— 82 + ๐‘๐‘—โˆ— 82 + โˆ‘ ๐‘Ž๐‘—โˆ— ๐‘– (81) ๐‘–=24 = 1331 + 63 + 44 + 3375 = ๐Ÿ’๐Ÿ–๐Ÿ๐Ÿ‘ and ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— 23 ) + ๐‘๐‘—โˆ— 82 + โˆ‘ ๐‘๐‘—โˆ— ๐‘– 81 ๐‘–=24 = 1451 + 44 + 2928 = ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ‘. Thus, ๐‘š๐‘Ž๐‘ฅ{๐ถ1(๐‘— โˆ— 23 ) + ๐‘Ž๐‘—โˆ— 82 + ๐‘๐‘—โˆ— 82 + โˆ‘ ๐‘Ž๐‘—โˆ— ๐‘– (81) ๐‘–=24 , ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— 23 ) + ๐‘๐‘—โˆ— 82 + โˆ‘ ๐‘๐‘—โˆ— ๐‘– 81 ๐‘–=24 } = ๐‘š๐‘Ž๐‘ฅ{4813,4423} = ๐Ÿ’๐Ÿ–๐Ÿ๐Ÿ‘ = ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— 82 ). Thus equation (71) is verified. The total elapsed time is ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— 100 ) = ๐Ÿ“๐Ÿ–๐Ÿ“๐Ÿ The total idle time for machine ๐ต was I = 767 (see the value at the end of column 11 in Tables 1 and 2). It remains to verify Theorems 1 and 2. We show this by sorting the jobs in optimal Johnson's sequence in ascending order of the values assigned to the jobs in column 12, and compare the finishing times of jobs of the first kind as well as the maximal job. To do this, we copy all the values in the bold cells for Johnson's sequence (Table 1) and sort the jobs in ascending value in column 12. This gives a different sequence of jobs. Table 2. Alternate optimal sequence for the generated problem in the illustration example. Joh seq Rand A Rand B A B J1/ J2 In A Out A In B Out B Idle Relax Alt seq 1 0.071 0.782 55 57 0 0 55 55 112 55 1.000 1 2 0.060 0.837 55 59 0 55 110 112 171 0 2.000 2 3 0.070 0.718 55 56 0 110 165 171 227 0 3.000 3 4 0.163 0.786 56 57 0 165 221 227 284 0 4.000 4 5 0.106 0.743 56 56 0 221 277 284 340 0 5.000 5 6 0.157 0.951 56 64 0 277 333 340 404 0 6.000 6 7 0.211 0.951 56 64 0 333 389 404 468 0 7.000 7 8 0.327 0.954 57 65 0 389 446 468 533 0 8.000 8 17 0.852 0.995 59 61 0 446 505 533 594 0 9.173 9 MEKONNEN REDI ET AL 44 18 0.503 0.909 59 59 0 505 564 594 653 0 9.398 10 19 0.718 0.897 59 59 0 564 623 653 712 0 9.931 11 9 0.676 0.972 57 62 0 623 680 712 774 0 9.401 12 14 0.805 0.870 59 60 0 680 739 774 834 0 9.480 13 21 0.922 0.920 60 60 0 739 799 834 894 0 9.306 14 10 0.694 0.852 57 60 0 799 856 894 954 0 9.505 15 12 0.323 0.915 58 64 0 856 914 954 1018 0 9.995 16 20 0.964 0.990 60 62 0 914 974 1018 1080 0 9.016 17 13 0.693 0.864 58 62 0 974 1032 1080 1142 0 9.046 18 15 0.379 0.862 59 61 0 1032 1091 1142 1203 0 9.108 19 23 0.683 0.934 62 64 0 1091 1153 1203 1267 0 9.475 20 22 0.543 0.833 61 62 0 1153 1214 1267 1329 0 9.322 21 11 0.630 0.834 58 59 0 1214 1272 1329 1388 0 9.843 22 16 0.572 0.947 59 63 0 1272 1331 1388 1451 0 9.626 23 31 0.943 0.323 59 55 1 1331 1390 1451 1506 0 24.300 24 26 0.376 0.415 60 56 1 1390 1450 1506 1562 0 24.570 25 61 0.827 0.591 57 49 1 1450 1507 1562 1611 0 24.046 26 43 0.461 0.768 54 52 1 1507 1561 1611 1663 0 24.870 27 68 0.382 0.376 57 47 1 1561 1618 1663 1710 0 24.199 28 49 0.235 0.217 58 51 1 1618 1676 1710 1761 0 24.434 29 52 0.370 0.230 59 51 1 1676 1735 1761 1812 0 24.443 30 69 0.484 0.250 61 47 1 1735 1796 1812 1859 0 24.013 31 64 0.280 0.637 60 49 1 1796 1856 1859 1908 0 24.924 32 55 0.463 0.591 62 50 1 1856 1918 1918 1968 10 24.987 33 37 0.270 0.731 56 53 1 1918 1974 1974 2027 6 24.663 34 76 0.549 0.446 57 46 1 1974 2031 2031 2077 4 24.654 35 53 0.806 0.734 61 50 1 2031 2092 2092 2142 15 24.384 36 28 0.274 0.310 57 56 1 2092 2149 2149 2205 7 24.185 37 42 0.855 0.225 59 52 1 2149 2208 2208 2260 3 24.583 38 44 0.785 0.254 58 52 1 2208 2266 2266 2318 6 24.357 39 45 0.946 0.380 59 52 1 2266 2325 2325 2377 7 24.848 40 73 0.023 0.265 57 46 1 2325 2382 2382 2428 5 24.489 41 80 0.067 0.652 60 45 1 2382 2442 2442 2487 14 24.200 42 24 0.770 0.675 58 57 1 2442 2500 2500 2557 13 24.050 43 75 0.454 0.512 60 46 1 2500 2560 2560 2606 3 24.202 44 59 0.464 0.279 61 49 1 2560 2621 2621 2670 15 24.240 45 60 0.395 0.404 55 49 1 2621 2676 2676 2725 6 24.372 46 39 0.456 0.534 56 53 1 2676 2732 2732 2785 7 24.616 47 46 0.104 0.389 58 51 1 2732 2790 2790 2841 5 24.891 48 77 0.164 0.711 57 45 1 2790 2847 2847 2892 6 24.084 49 66 0.096 0.643 59 48 1 2847 2906 2906 2954 14 24.535 50 36 0.909 0.432 61 54 1 2906 2967 2967 3021 13 24.907 51 79 0.951 0.460 57 45 1 2967 3024 3024 3069 3 24.087 52 29 0.578 0.497 60 56 1 3024 3084 3084 3140 15 24.196 53 30 0.755 0.500 57 55 1 3084 3141 3141 3196 1 24.935 54 41 0.316 0.277 58 53 1 3141 3199 3199 3252 3 24.158 55 62 0.806 0.499 59 49 1 3199 3258 3258 3307 6 24.919 56 50 0.617 0.354 60 51 1 3258 3318 3318 3369 11 24.742 57 25 0.785 0.715 61 57 1 3318 3379 3379 3436 10 24.837 58 72 0.305 0.735 58 46 1 3379 3437 3437 3483 1 24.316 59 63 0.394 0.359 57 49 1 3437 3494 3494 3543 11 24.347 60 38 0.727 0.561 60 53 1 3494 3554 3554 3607 11 24.047 61 47 0.178 0.608 60 51 1 3554 3614 3614 3665 7 24.526 62 67 0.268 0.459 57 48 1 3614 3671 3671 3719 6 24.581 63 35 0.320 0.269 57 54 1 3671 3728 3728 3782 9 24.137 64 81 0.235 0.226 58 44 1 3728 3786 3786 3830 4 24.781 65 DIMENSION REDUCTION AND RELAXATION 45 34 0.143 0.582 55 54 1 3786 3841 3841 3895 11 24.383 66 57 0.839 0.498 57 50 1 3841 3898 3898 3948 3 24.647 67 65 0.436 0.178 57 48 1 3898 3955 3955 4003 7 24.056 68 71 0.599 0.595 58 46 1 3955 4013 4013 4059 10 24.122 69 58 0.938 0.768 58 50 1 4013 4071 4071 4121 12 24.926 70 40 0.766 0.567 59 53 1 4071 4130 4130 4183 9 24.798 71 27 0.029 0.555 57 56 1 4130 4187 4187 4243 4 24.572 72 74 0.377 0.505 54 46 1 4187 4241 4243 4289 0 24.267 73 48 0.493 0.477 57 51 1 4241 4298 4298 4349 9 24.881 74 51 0.951 0.645 58 51 1 4298 4356 4356 4407 7 24.306 75 56 0.663 0.397 58 50 1 4356 4414 4414 4464 7 24.188 76 32 0.855 0.396 56 55 1 4414 4470 4470 4525 6 24.376 77 70 0.423 0.437 63 47 1 4470 4533 4533 4580 8 24.999 78 54 0.229 0.705 61 50 1 4533 4594 4594 4644 14 24.397 79 33 0.970 0.458 55 54 1 4594 4649 4649 4703 5 24.284 80 78 0.996 0.297 57 45 1 4649 4706 4706 4751 3 24.662 81 82 0.990 0.189 63 44 1 4706 4769 4769 4813 18 82.000 82 83 0.220 0.172 56 43 1 4769 4825 4825 4868 12 83.000 83 84 0.475 0.147 58 43 1 4825 4883 4883 4926 15 84.000 84 85 0.465 0.154 58 43 1 4883 4941 4941 4984 15 85.000 85 86 0.757 0.152 59 43 1 4941 5000 5000 5043 16 86.000 86 87 0.855 0.157 60 43 1 5000 5060 5060 5103 17 87.000 87 88 0.411 0.126 58 42 1 5060 5118 5118 5160 15 88.000 88 89 0.482 0.108 58 41 1 5118 5176 5176 5217 16 89.000 89 90 0.548 0.101 58 41 1 5176 5234 5234 5275 17 90.000 90 91 0.623 0.086 59 40 1 5234 5293 5293 5333 18 91.000 91 92 0.626 0.083 59 40 1 5293 5352 5352 5392 19 92.000 92 93 0.758 0.070 59 39 1 5352 5411 5411 5450 19 93.000 93 94 0.812 0.074 60 39 1 5411 5471 5471 5510 21 94.000 94 95 0.575 0.059 58 38 1 5471 5529 5529 5567 19 95.000 95 96 0.279 0.051 57 38 1 5529 5586 5586 5624 19 96.000 96 97 0.159 0.040 56 37 1 5586 5642 5642 5679 18 97.000 97 98 0.266 0.038 57 37 1 5642 5699 5699 5736 20 98.000 98 99 0.853 0.030 60 36 1 5699 5759 5759 5795 23 99.000 99 100 0.744 0.017 59 34 1 5759 5818 5818 5852 23 100.00 100 767 Table 2 was obtained from Table 1 by sorting in ascending values on column 12. To check that it is also the optimal sequence, we checked the values in the bold cells with those recorded for Johnson's sequence (Table 1); in particular we checked the total elapsed time ๐ถ๐‘š๐‘Ž๐‘ฅ(๐‘— โˆ— 100 ) = ๐Ÿ“๐Ÿ–๐Ÿ“๐Ÿ for each "sort ascending values on column 12" instruction. It can easily be verified that Table 2 also gives an optimal sequence irrespective of the order of free jobs of the first kind and free jobs of the second kind if the y are scheduled together. Thus, the results of the two theorems were verified with this example. Our final conclusion about dimension reduction was made in reference to the above example. At termination of Johnson's algorithm, the problem size was reduced to those jobs that hold fixed position in all the alternate optimal sequences. In the above example, the problem size was reduced from 100 to only 29 jobs (8 jobs at the beginning, 19 jobs at the end and a representative job each for free jobs of the two kinds. This is a significant dimension reduction at very low cost of computation. This may be expressed as a 71% decrease in problem size. There are at least 15! โˆ— 57! alternate optimal sequences for the illustrative example above obtained by this procedure only. 6. Summary, Conclusion and Recommendation The purpose of this study was to apply dimension reduction methods for Flow Shop Scheduling Problems to decrease problem size. The development of solution methods for the โ€˜n -Jobs m โ€“Machinesโ€™ Flow Shop Scheduling Problems was limited by the number of jobs n and number of machines m. Due to these difficulties solutions have been developed either for a small number of jobs or a small number of machines. To enable solution methods to be applicable for a large number of jobs, it was important to cluster jobs into principal components by defining a projective mapping. MEKONNEN REDI ET AL 46 This removes the redundant information in the original problem. Then solution methods are needed for only targeted jobs and once the sequence positions of the targeted jobs in the optimal sequence are identified, a number of alternate optimal solutions could be obtained by simple enumeration techniques. Alternate solutions give sequencing freedom for job operators to decide on the relative priority of different jobs. In the optimal sequence it is not necessary to list all the jobs in an order, but rather a few targeted jobs at the beginnings and ends of the sequences completely determine the completion time. More specifically, the first occurrences of the two jobs at the beginnings and ends of the optimal sequence for which the processing time on one machine attains its highest processing time on the other machine are very important because they completely determine the extent to which further computation of jobs to be assigned in the remaining sequence positions is no longer important as far as makespan is concerned. Therefore, Johnson's method was relaxed by terminating listing jobs at the first available positions when the job selected with the minimum processing time criteria on the first machine attains the highest processing time on the second machine for the first time and also by terminating listing jobs at the last available positions when the job with the minimum processing time criteria on the second machine attains the highest processing time on the first machine for the first time. The remaining jobs could be arranged in any convenient way in the remaining gaps without affecting minimum completion time. Conflict of interest The authors declare no conflict of interest. References 1. Johnson, S.M. Optimal two and three-stages production schedules with set up time included, Naval Resh. Logistic Quarterly, 1954, 1(1), 61-68. 2. Ikram, M. On certain new terms in sequencing theory and on alternative optimal sequences. Pure and Applied Mathematic Sciences, 1975, 2, 1, 45-50. 3. Prabha. "On alternate optimal solution procedure for solving nx2 flow-shop problem with transportation time and equivalent job-block", Pure and Applied Mathematica Science, 2014, 80, 1-2. 4. Fora, L., Ikram, M. On Alternative Optimal Sequences for n-Jobs, Three Machines Scheduling Problem with Minimization of Total Elapsed Time, International Journal of Science and Technology, 2016, 6(4), ISSN 2224- 3577. 5. Conway, R.W., Maxwell, W.L., Miller, L. W. Theory of Scheduling, Addison-Wesley, Reading, 1967. 6. Maggu, Alam and Ikram, M. On certain types of sequencing problems with n-jobs and m-machines, Pure and a Applied Mathematika Science, 1975, 1(2), 55-59. 7. Ancรขu, M. On Solving flow-shop Scheduling Problems, The Publishing House Proceedings of the Romanian Academy, 2012, 13, 71-79. 8. Palmer, D.S. "Sequencing jobs through a multi-stage process in the minimum total time-a quick method of obtaining a near optimum", Operational Research Quarterly, 1965, 16(1), 101-107. 9. Gupta, J.N.D. A functional Heuristic Algorithm for flow shop scheduling Problem, Journal of Operational Research Society, 1971, 22(1), 39-47. 10. Campbell, H.G., Dudek, R. A., Smith, M. L. A heuristic algorithm for the n job, m machine sequencing problem, Management Science, 1970, 16(10), 630-637. 11. Nawaz, M, Enscore Jr., E., Ham I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem, OMEGA, The International Journal of Management Science, 1983, 11(1), 91-95. 12. Koulamas, C. A new constructive heuristic for the flow-shop scheduling problem, European Journal of Operational Research Society, 1988, 105, 66-71. 13. Dannenbring, D.G. An evaluation of flow shop sequencing heuristics, Management Science, 1977, 23(11), 1174- 1182. 14. Neppalli, V.R.; Chen, C.L.; Gupta, J.N.D. Genetic algorithms for the two-stage bicriteria flow shop problem. Eur. J. Oper. Res., 1996, 95, 356-373. 15. Daniels, R.L., Chambers, R.J. Multi-objective flow shop scheduling, Naval Research Logistics (NRL), 1990, 37, 6, 981-995. 16. Sayin, S., Karabati, S. Theory and methodology a bicriteria approach to the two-machines flow shop scheduling problem, European Journal of Operational Research, 1999, 113(2), doi: 10.1016/S0377-2217(98)00009-5. 17. Yeh, W.C. A new branch-and-bound approach for the n/2/flowshop/๐›ผ๐น + ๐›ฝโˆ๐‘š๐‘Ž๐‘ฅ flow shop scheduling problem, Computers and Operations Research, 1999, 26(13), 1293-1310. 18. Yandra, H. Tamura. new multiobjective genetic algorithm with heterogeneous population for solving flow shop scheduling problems, International Journal of Computer Integrated Manufacturing, 2007, 20(5), 465-477. 19. Lebbar, G.A., El-Abbassi, Jabri, I.A., El Barkany, A., Darcherif, M. Multi-criteria blocking flow shop scheduling problems: Formulation and performance analysis, Advances in Production Engineering and Management, 2018, 13, 136-146. DIMENSION REDUCTION AND RELAXATION 47 20. Radeleczki, S., T รฒth, T., G รถndri-Nagy, J. A multiple (extended) application of the Johnsonโ€™s algorithm for the two-machine manufacturing cell scheduling based on group technology, Production Systems and Information Engineering, Miskolc, 2003, 1, 55-69. 21. Baker, K.R., Trietsch, D. Principles of sequencing and scheduling, Hoboken: Wiley, 2009. 22. Han, J., Kamber, M., Pei, J. Data Mining Concepts and Techniques (3ed.), Elsevier, 2012. 23. Maggu, P.L. and Das, G. "On 2xn sequencing problem with transportation times of Jobs", Pure and' Applied Mathematika Sciences, 1980, 12(1-2), 1-6. 24. Burges, C.J.C. Dimension Reduction: A Guided Tour, Foundations and Trends in Machine Learning, 2009, 2(4), 275-365. 25. Indhumathi, R., Sathiyabama, S. Reducing and Clustering high Dimensional Data through Principal Component Analysis, International Journal of Computer Applications, 2010, 11(8), 1-4. 26. Yan, J., Zhang, B., Liu, N., Yan, S., Cheng, Q., Fan, W., Yang, Q., Xi, W., Chen, Z. Effective and efficient dimensionality reduction for large-scale and streaming data preprocessing. IEEE transactions on knowledge and data engineering, 2006, 18(3), 320-332. Received 5 February 2019 Accepted 30 October 2019