SQU Journal for Science, 2017, 22(1), 48-52 DOI: http://dx.doi.org/10.24200/squjs.vol22iss1pp48-52 2017 Sultan Qaboos University 48 Theorems on Fixed Points for Asymptotically Regular Sequences and Maps in ๐’ƒ-Metric Space Mohammad S. Khan1* and Pankaj K. Jhade2 1Department of Mathematics and Statistics, Sultan Qaboos University, P.O. Box 36, PC 123, Al-Khoud, Muscat, Sultanate of Oman; 2Department of applied Science, Sagar Institute of Science, Technology and Engineering, Bhopal, India. *Email: mohammad@squ.edu.om. ABSTRACT: In this paper, we present some fixed point theorems for asymptotically regular sequences and asymptotically regular maps in complete ๐‘- metric spaces. Our results extend and generalize the well-known fixed point theorems of Hardy- Roger [1] and Reich [2]. Keywords: b-Metric space; Fixed point; Asymptotically regular sequence; Asymptotically regular maps. ุณู‚ุงุท ููŠ ูุถุงุก ู…ุชุฑูŠุฅู†ู‚ุงุท ุซุงุจุชุฉ ู„ู…ุชุชุงู„ูŠุฉ ุนุงุฏูŠุฉ ู…ุชู‚ุงุฑุจุฉ ูˆุญูˆู„ ู†ุธุฑูŠุงุช ุงุฏู‡ุจูˆู†ูƒุงุฌ ูƒูˆู…ุงุฑ ุฌูˆ ู…ุญู…ุฏ ุณุนูŠุฏ ุฎุงู† ุชุนุชุจุฑ ู†ุชุงุฆุฌู†ุง . ุจุนุถ ู†ุธุฑูŠุงุช ุงู„ู†ู‚ุทุฉ ุงู„ุซุงุจุชุฉ ู„ู…ุชุชุงู„ูŠุงุช ุนุงุฏูŠุฉ ู…ุชู‚ุงุฑุจุฉ ูˆุงุณู‚ุงุท ุนุงุฏูŠ ู…ุชู‚ุงุฑุจ ููŠ ูุถุงุกุงุช ู…ุชุฑูŠุฉ ู…ุชูƒุงู…ู„ุฉู†ู‚ุฏู… ููŠ ู‡ุฐู‡ ุงู„ูˆุฑู‚ุฉ ู…ู„ุฎุต:ุงู„ [.1]ูˆุฑูŠุฎ [ 2]ุฑูˆุฌุฑ -ุชูˆุณูŠุน ูˆุชุนู…ูŠู… ู„ู†ุธุฑูŠุงุช ุงู„ู†ู‚ุทุฉ ุงู„ุซุงุจุชุฉ ุงู„ู…ุนุฑูˆูุฉ ู„ูƒู„ ู…ู† ู‡ุงุฑุฏูŠ .ุณู‚ุงุท ุนุงุฏูŠ ู…ุชู‚ุงุฑุจุฅุงู„ูุถุงุก ุงู„ู…ุชุฑูŠุŒ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงุจุชุฉุŒ ู…ุชุชุงู„ูŠุฉ ุนุงุฏูŠุฉ ู…ุชู‚ุงุฑุจุฉุŒ : ู…ูุชุงุญูŠุฉุงู„ูƒู„ู…ุงุช ุงู„ 1. Introduction etric fixed point theory was born with the well-known Banach contraction principle that was initially published in 1922. This principle states that on a complete metric space(๐‘‹, ๐‘‘) , a self mapping ๐‘‡ for which ๐‘‘(๐‘‡๐‘ฅ, ๐‘‡๐‘ฆ) โ‰ค ๐‘˜๐‘‘(๐‘ฅ, ๐‘ฆ), for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹, 0 < ๐‘˜ < 1, has a unique fixed point. Several generalizations and extensions of this celebrated result have been appeared in the last few decades. The fixed point theorem in metric spaces plays a significant role to construct methods to solve the problems in mathematics and sciences. Metric fixed point theory is a vast field of study and is capable of solving many equations. To overcome the problem of measurable functions with respect to a measure and their convergence, [3] needed an extension of metric space. Using this idea, he introduced the concept of ๐‘-metric space and presented the contraction mapping in ๐‘-metric spaces that is generalization of the Banach contraction principle in metric spaces [4-7]. After that, several papers have dealt with fixed point theory or the variational principle for single-valued and multi-valued operators in ๐‘- metric spaces [8-14]. In this paper our aim is to show the validity of some fixed point theorems for asymptotically regular sequences. We also present results on fixed points of asymptotically regular mappings. 2. Preliminaries: Consistent with [3] and [4,15], we recall some definitions and properties for ๐‘-metric space. Definition 2.1. Let ๐‘€ be a nonempty set and the mapping ๐œŒ: ๐‘€ ร— ๐‘€ โ†’ โ„+ (โ„+ stands for nonnegative reals) satisfies: (i) ๐œŒ(๐‘ฅ, ๐‘ฆ) = 0 if and only if ๐‘ฅ = ๐‘ฆ for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€; (ii) ๐œŒ(๐‘ฅ, ๐‘ฆ) = ๐œŒ(๐‘ฆ, ๐‘ฅ) for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€; (iii) there exists a real number ๐‘  โ‰ฅ 1 such that ๐œŒ(๐‘ฅ, ๐‘ฆ) โ‰ค ๐‘ [๐œŒ(๐‘ฅ, ๐‘ง) + ๐œŒ(๐‘ง, ๐‘ฆ)] for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘€. Then ๐œŒ is called a b-metric on ๐‘€ and the pair (๐‘€, ๐œŒ) is called a ๐‘- metric space with coefficient ๐‘ . Remark 2.1. The class of ๐‘-metric spaces is larger than the class of metric spaces since any metric space is a ๐‘- metric space ๐‘  = 1. Therefore, it is obvious that ๐‘-metric spaces generalizes metric spaces. We present an example which shows that introducing a ๐‘-metric space instead of a metric space is meaningful since there exists ๐‘-metric space instead of a metric space which are not metric spaces. M mailto:mohammad@squ.edu.om THEOREMS ON FIXED POINTS FOR ASYMPTOTICALLY REGULAR SEQUENCE 49 Example 2.1. Let ๐‘€ = [0, โˆž) and ๐œŒ: ๐‘€ ร— ๐‘€ โ†’ โ„+ defined by ๐œŒ(๐‘ฅ, ๐‘ฆ) = |๐‘ฅ โˆ’ ๐‘ฆ|๐‘, where ๐‘ is a real number such that ๐‘ > 1. Let ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘€. By taking ๐‘ข = ๐‘ฅ โˆ’ ๐‘ง and ๐‘ฃ = ๐‘ง โˆ’ ๐‘ฆ we have |๐‘ฅ โˆ’ ๐‘ฆ|๐‘ = |๐‘ข + ๐‘ฃ|๐‘ โ‰ค (|๐‘ข| + |๐‘ฃ|)๐‘ โ‰ค (2max{|๐‘ข|, |๐‘ฃ|})๐‘ โ‰ค 2๐‘(|๐‘ฅ โˆ’ ๐‘ง|๐‘ + |๐‘ง โˆ’ ๐‘ฆ|๐‘), which implies that ๐œŒ(๐‘ฅ, ๐‘ฆ) โ‰ค 2๐‘[๐œŒ(๐‘ฅ, ๐‘ง) + ๐œŒ(๐‘ง, ๐‘ฆ)]. Therefore (๐‘€, ๐œŒ) is a ๐‘-metric space with coefficient 2๐‘. On the other hand, for ๐‘ฅ > ๐‘ง > ๐‘ฆ, we have |๐‘ฅ โˆ’ ๐‘ฆ|๐‘ = |๐‘ข + ๐‘ฃ|๐‘ = (๐‘ข + ๐‘ฃ)๐‘ > ๐‘ข๐‘ + ๐‘ฃ ๐‘ = (๐‘ฅ โˆ’ ๐‘ง)๐‘ + (๐‘ง โˆ’ ๐‘ฆ)๐‘ = |๐‘ฅ โˆ’ ๐‘ง|๐‘ + |๐‘ง โˆ’ ๐‘ฆ|๐‘, which implies that ๐œŒ(๐‘ฅ, ๐‘ฆ) > ๐œŒ(๐‘ฅ, ๐‘ง) + ๐œŒ(๐‘ง, ๐‘ฆ). Therefore (๐‘€, ๐œŒ) is not a metric space. Definition 2.2. Let (๐‘€, ๐œŒ) be a ๐‘-metric space. Then {๐‘ฅ๐‘›} in ๐‘€ is called 1. a Cauchy sequence if and only if for all ๐œ– > 0 there exists ๐‘›(๐œ–) โˆˆ โ„• such that for each ๐‘›. ๐‘š โ‰ฅ ๐‘›(๐œ–), we have ๐œŒ(๐‘ฅ๐‘› , ๐‘ฅ๐‘š ) < ๐œ–. 2. a convergent sequence if and only if there exists ๐‘ฅ โˆˆ ๐‘€ such that for all ๐œ– > 0 there exists ๐‘›(๐œ–) โˆˆ โ„• such that for every ๐‘› โ‰ฅ ๐‘›(๐œ–), we have ๐œŒ(๐‘ฅ๐‘› , ๐‘ฅ) < ๐œ–. Definition 2.3 If (๐‘€, ๐œŒ) is a ๐‘-metric space then a subset ๐ฟ โŠ‚ ๐‘€ is called (i) compact if and only if for every sequence of elements of ๐ฟ there exists a subsequence that converges to an element of ๐ฟ. (ii) closed if and only if for each sequence {๐‘ฅ๐‘› } in ๐ฟ which converges to an element ๐‘ฅ, we have ๐‘ฅ โˆˆ ๐ฟ. (iii) The ๐‘-metric space is complete if every Cauchy sequence in ๐‘€ converges in M. Definition 2.4 [13] Let (๐‘€, ๐œŒ) be a ๐‘-metric space. A sequence {๐‘ฅ๐‘›} in ๐‘€ is said to be asymptotically T-regular if lim ๐‘›โ†’โˆž ๐œŒ( ๐‘ฅ๐‘›, ๐‘‡๐‘ฅ๐‘› ) = 0. Example 2.2. Let ๐‘€ = [0, โˆž) and ๐œŒ: ๐‘‹ ร— ๐‘‹ โ†’ โ„+ defined by ๐œŒ(๐‘ฅ, ๐‘ฆ) = |๐‘ฅ โˆ’ ๐‘ฆ|๐‘, ๐‘ โ‰ฅ 1 then clearly (๐‘€, ๐œŒ) is a ๐‘- metric space with coefficient 2๐‘. Now let ๐‘‡ be a self map of ๐‘€ such that ๐‘‡๐‘ฅ = ๐‘ฅ 2 and choose a sequence {๐‘ฅ๐‘›}, ๐‘ฅ๐‘› โ‰  0 for any positive integer ๐‘›, which converges to zero in metric in ๐‘€ . We deduce that lim ๐‘›โ†’โˆž ๐œŒ( ๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘› ) = lim ๐‘›โ†’โˆž |๐‘ฅ๐‘› โˆ’ ๐‘‡๐‘ฅ๐‘› | ๐‘ = lim ๐‘›โ†’โˆž |๐‘ฅ๐‘› โˆ’ ๐‘ฅ๐‘› 2 | ๐‘ = lim ๐‘›โ†’โˆž | ๐‘ฅ๐‘› 2 | ๐‘ = 0. Hence {๐‘ฅ๐‘› } is an asymptotically T-regular sequence in(๐‘€, ๐œŒ). Definition 2.5 [17] Let (๐‘€, ๐œŒ) be a ๐‘-metric space. A mappings ๐‘‡ of ๐‘€ into itself is said to be asymptotically regular at a point ๐‘ฅ in ๐‘€ if lim ๐‘›โ†’โˆž ๐œŒ(๐‘‡๐‘›๐‘ฅ, ๐‘‡๐‘›+1๐‘ฅ) = 0. Example 2.3. Let (๐‘€, ๐œŒ) be a ๐‘-metric space as defined in Example 2.2 and let ๐‘‡: ๐‘€ โ†’ ๐‘€ be such that ๐‘‡๐‘ฅ = ๐‘ฅ 4 where ๐‘ฅ โˆˆ ๐‘€. Then we have lim ๐‘›โ†’โˆž ๐œŒ( ๐‘‡๐‘›๐‘ฅ, ๐‘‡ ๐‘›+1๐‘ฅ) = lim ๐‘›โ†’โˆž |๐‘‡๐‘›๐‘ฅ โˆ’ ๐‘‡๐‘›+1๐‘ฅ|๐‘ = lim ๐‘›โ†’โˆž | ๐‘ฅ 4๐‘› โˆ’ ๐‘ฅ 4๐‘›+1 | ๐‘ = lim ๐‘›โ†’โˆž | 3๐‘ฅ 4๐‘›+1 | ๐‘ = 0. Hence T is an asymptotically regular map at all points in M. 3. Main Results Theorems 3.1. Let (๐‘€, ๐œŒ) be a complete ๐‘-metric space with the coefficient ๐‘  โ‰ฅ 1 and ๐‘‡ be a self mapping of ๐‘€ satisfying the following inequality ๐œŒ(๐‘‡๐‘ฅ, ๐‘‡๐‘ฆ) โ‰ค ๐‘Ž1๐œŒ(๐‘ฅ, ๐‘‡๐‘ฅ) + ๐‘Ž2๐œŒ(๐‘ฆ, ๐‘‡๐‘ฆ) + ๐‘Ž3๐œŒ(๐‘ฅ, ๐‘‡๐‘ฆ) + ๐‘Ž4 ๐œŒ(๐‘ฆ, ๐‘‡๐‘ฅ) + ๐‘Ž5๐œŒ(๐‘ฅ, ๐‘ฆ), for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€, where ๐‘Ž๐‘– ( ๐‘– = 1,2,3,4,5) are non-negative real numbers with ๐‘š๐‘Ž๐‘ฅ{(๐‘Ž1๐‘  + ๐‘Ž4๐‘  2), (๐‘Ž3๐‘  3 + ๐‘Ž4๐‘  2 + ๐‘Ž5)} < 1 for ๐‘  โ‰ฅ 1. If there exists an asymptotically ๐‘‡-regular sequence in ๐‘€, then ๐‘‡ has a unique fixed point. Proof. Let {๐‘ฅ๐‘› } be an asymptotically ๐‘‡-regular sequence in ๐‘€. Then for ๐‘›, ๐‘š โˆˆ โ„• ๐‘ค๐‘–๐‘กโ„Ž ๐‘š โ‰ฅ ๐‘› , we have ๐œŒ(๐‘ฅ๐‘› , ๐‘ฅ๐‘š ) โ‰ค ๐‘ [๐œŒ(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘› ) + ๐œŒ(๐‘‡๐‘ฅ๐‘› , ๐‘ฅ๐‘š )] MOHAMMAD S. KHAN and PANKAJ K. JHADE 50 โ‰ค ๐‘ [๐œŒ(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘› ) + ๐‘ ๐œŒ(๐‘‡๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘š ) + ๐‘ ๐œŒ(๐‘‡๐‘ฅ๐‘š , ๐‘ฅ๐‘š )] โ‰ค ๐‘  ๐œŒ(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘› ) + ๐‘  2๐œŒ(๐‘‡๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘š ) + ๐‘  2๐œŒ(๐‘‡๐‘ฅ๐‘š , ๐‘ฅ๐‘š ) โ‰ค ๐‘  ๐œŒ(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘› ) + ๐‘  2๐œŒ(๐‘‡๐‘ฅ๐‘š , ๐‘ฅ๐‘š ) + ๐‘  2[๐‘Ž1๐œŒ(๐‘ฅ๐‘›, ๐‘‡๐‘ฅ๐‘› ) + ๐‘Ž2๐œŒ(๐‘ฅ๐‘š , ๐‘‡๐‘ฅ๐‘š ) +๐‘Ž3 ๐œŒ(๐‘ฅ๐‘›, ๐‘‡๐‘ฅ๐‘š )+๐‘Ž4๐œŒ(๐‘ฅ๐‘š , ๐‘‡๐‘ฅ๐‘› ) + ๐‘Ž5๐œŒ(๐‘ฅ๐‘› , ๐‘ฅ๐‘š )] โ‰ค (๐‘  + ๐‘Ž1๐‘  2 + ๐‘Ž4๐‘  3)๐œŒ(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘› ) + (๐‘  2 + ๐‘Ž2๐‘  2 + ๐‘Ž3๐‘  3)๐œŒ(๐‘ฅ๐‘š , ๐‘‡๐‘ฅ๐‘š ) +(๐‘Ž3๐‘  3 + ๐‘Ž4 ๐‘  3 + ๐‘Ž5)๐œŒ(๐‘ฅ๐‘› , ๐‘ฅ๐‘š ). Thus, we get ๐œŒ(๐‘ฅ๐‘› , ๐‘ฅ๐‘š ) โ‰ค { (๐‘ +๐‘Ž1๐‘  2+๐‘Ž4๐‘  3) 1โˆ’(๐‘Ž3๐‘  3+๐‘Ž4๐‘  3+๐‘Ž5) } ๐œŒ(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘› ) + { (๐‘ 2+๐‘Ž2๐‘  2+๐‘Ž3๐‘  3) 1โˆ’(๐‘Ž3๐‘  3+๐‘Ž4๐‘  3+๐‘Ž5) } ๐œŒ(๐‘ฅ๐‘š , ๐‘‡๐‘ฅ๐‘š ). Taking the limit as ๐‘› โ†’ โˆž, we get lim ๐‘›โ†’โˆž ๐œŒ( ๐‘ฅ๐‘› , ๐‘ฅ๐‘š ) = 0, which shows that {๐‘ฅ๐‘› } is a Cauchy sequence. Since ๐‘€ is a complete ๐‘-metric space, the sequence {๐‘ฅ๐‘› } converges in ๐‘€. So let lim ๐‘›โ†’โˆž ๐‘ฅ๐‘› = ๐‘ง for some ๐‘ง โˆˆ ๐‘€. Now we show that ๐‘ง is a fixed point of T. Consider, ๐œŒ(๐‘‡๐‘ง, ๐‘ง) โ‰ค ๐‘ [๐œŒ(๐‘‡๐‘ง, ๐‘‡๐‘ฅ๐‘› ) + ๐œŒ(๐‘‡๐‘ฅ๐‘› , ๐‘ง)] โ‰ค ๐‘ ๐œŒ(๐‘‡๐‘ง, ๐‘‡๐‘ฅ๐‘› ) + ๐‘  2๐œŒ(๐‘‡๐‘ฅ๐‘› , ๐‘ฅ๐‘› ) + ๐‘  2๐œŒ(๐‘ฅ๐‘› , ๐‘ง). โ‰ค ๐‘ [๐‘Ž1๐œŒ(๐‘ง, ๐‘‡๐‘ง) + ๐‘Ž2๐œŒ(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘› ) + ๐‘Ž3๐œŒ(๐‘ง, ๐‘‡๐‘ฅ๐‘› ) + ๐‘Ž4๐œŒ(๐‘ฅ๐‘› , ๐‘‡๐‘ง) + ๐‘Ž5๐œŒ(๐‘ง, ๐‘ฅ๐‘› )] + ๐‘ 2๐œŒ(๐‘‡๐‘ฅ๐‘› , ๐‘ฅ๐‘›) + ๐‘  2๐œŒ(๐‘ฅ๐‘› , ๐‘ง) โ‰ค ๐‘Ž1๐‘ ๐œŒ(๐‘ง, ๐‘‡๐‘ง) + ๐‘Ž2 ๐‘ ๐œŒ(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘› ) + ๐‘Ž3๐‘  2๐œŒ(๐‘ง, ๐‘ฅ๐‘› ) +๐‘Ž3๐‘  2๐œŒ(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘› ) + ๐‘  2๐‘Ž4๐œŒ(๐‘ฅ๐‘› , ๐‘ง) + ๐‘  2๐‘Ž4๐œŒ(๐‘ง, ๐‘‡๐‘ง) +๐‘Ž5๐‘ ๐œŒ(๐‘ง, ๐‘ฅ๐‘› ) + ๐‘  2๐œŒ(๐‘‡๐‘ฅ๐‘› , ๐‘ฅ๐‘› ) + ๐‘  2๐œŒ(๐‘ฅ๐‘› , ๐‘ง). Therefore, (1 โˆ’ ๐‘Ž1๐‘  โˆ’ ๐‘  2๐‘Ž4)๐œŒ(๐‘‡๐‘ง, ๐‘ง) โ‰ค (๐‘  2 + ๐‘Ž2๐‘  + ๐‘Ž3๐‘  2)๐œŒ(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘› ) +(๐‘ 2 + ๐‘Ž3๐‘  2 + ๐‘Ž4๐‘  2 + ๐‘Ž5๐‘ )๐œŒ(๐‘ฅ๐‘› , ๐‘ง), which implies that ๐œŒ(๐‘‡๐‘ง, ๐‘ง) โ‰ค { (๐‘ 2+๐‘Ž2๐‘ +๐‘Ž3๐‘  2) (1โˆ’๐‘Ž1๐‘ โˆ’๐‘  2๐‘Ž4) } ๐œŒ(๐‘ฅ๐‘› , ๐‘‡๐‘ฅ๐‘› ) + { (๐‘ 2+๐‘Ž3๐‘  2+๐‘Ž4๐‘  2+๐‘Ž5๐‘ ) (1โˆ’๐‘Ž1๐‘ โˆ’๐‘  2๐‘Ž4) } ๐œŒ(๐‘ฅ๐‘› , ๐‘ง). Since T is asymptotically T-regular, letting limit ๐‘› โ†’ โˆž we get ๐œŒ(๐‘‡๐‘ง, ๐‘ง) = 0 ๐‘–. ๐‘’. ๐‘‡๐‘ง = ๐‘ง. Hence z is a fixed point of T. Uniqueness: Let ๐‘ข be another fixed point such that ๐‘ง โ‰  ๐‘ข. Then, ๐œŒ(๐‘ง, ๐‘ข) = ๐œŒ(๐‘‡๐‘ง, ๐‘‡๐‘ข) โ‰ค ๐‘Ž1๐œŒ(๐‘ง, ๐‘‡๐‘ง) + ๐‘Ž2๐œŒ(๐‘ข, ๐‘‡๐‘ข) + ๐‘Ž3๐œŒ(๐‘ง, ๐‘‡๐‘ข) + ๐‘Ž4๐œŒ(๐‘ข, ๐‘‡๐‘ง) + ๐‘Ž5๐œŒ(๐‘ง, ๐‘ข). From the last inequality, we have (1 โˆ’ ๐‘Ž3 โˆ’ ๐‘Ž4 โˆ’ ๐‘Ž5) ๐œŒ(๐‘ง, ๐‘ข) = 0. Since ๐‘Ž3 + ๐‘Ž4 + ๐‘Ž5 < 1, therefore ๐‘ง = ๐‘ข,. Next, we discuss the problem of the existence of a fixed point of an operator without using any contractive condition. We shall first consider the situation in a metric space. Theorem 3.2. Let (๐‘€, ๐œŒ) be a metric space, and ๐‘‡ be a continuous self-mapping on ๐‘€. If there exists an asymptotically ๐‘‡-regular sequence {๐‘ฅ๐‘› } such that lim ๐‘›โ†’โˆž ๐‘ฅ๐‘› = ๐‘ง, then ๐‘ง is a fixed point of ๐‘‡. Proof. Let us consider the inequality ๐œŒ(๐‘‡๐‘ง, ๐‘ง) โ‰ค [๐œŒ(๐‘‡๐‘ง, ๐‘‡๐‘ฅ๐‘› ) + ๐œŒ(๐‘‡๐‘ฅ๐‘› , ๐‘ง)] โ‰ค ๐œŒ(๐‘‡๐‘ง, ๐‘‡๐‘ฅ๐‘› ) + ๐œŒ(๐‘‡๐‘ฅ๐‘› , ๐‘ฅ๐‘›) + ๐œŒ(๐‘ฅ๐‘› , ๐‘ง). Taking the limit as ๐‘› โ†’ โˆž, we obtain ๐œŒ(๐‘‡๐‘ง, ๐‘ง) โ‰ค 0 giving thereby ๐‘‡๐‘ง = ๐‘ง. Now, let us see the similar situation in a b-metric space. Theorem 3.3. Let (๐‘€, ๐œŒ) be a ๐‘-metric space with the coefficient ๐‘  โ‰ฅ 1 , and ๐‘‡ be a self-mapping of ๐‘€. If there exists an asymptotically ๐‘‡-regular sequence {๐‘ฅ๐‘› } with lim ๐‘›โ†’โˆž ๐‘ฅ๐‘› = ๐‘ง, then ๐‘ง is not necessarily a fixed point. Proof. Using the triangle inequality twice in a b-metric space, we obtain ๐œŒ(๐‘‡๐‘ง, ๐‘ง) โ‰ค ๐‘ [๐œŒ(๐‘‡๐‘ง, ๐‘‡๐‘ฅ๐‘› ) + ๐œŒ(๐‘‡๐‘ฅ๐‘› , ๐‘ง)] โ‰ค ๐‘  ๐œŒ(๐‘‡๐‘ง, ๐‘‡๐‘ฅ๐‘› ) + ๐‘  2๐œŒ(๐‘‡๐‘ฅ๐‘› , ๐‘ฅ๐‘› ) + ๐‘  2๐œŒ(๐‘ฅ๐‘› , ๐‘ง). Taking the limit as ๐‘› โ†’ โˆž, we obtain (1 โˆ’ ๐‘ 2)๐œŒ(๐‘‡๐‘ง, ๐‘ง) โ‰ค 0 , which is equivalent to the inequality (๐‘ 2 โˆ’ 1)๐œŒ(๐‘‡๐‘ง, ๐‘ง) โ‰ฅ 0, which provides no definite information. Thus z may or may not be a fixed point of T. THEOREMS ON FIXED POINTS FOR ASYMPTOTICALLY REGULAR SEQUENCE 51 Remarks 3.1. 1. Even if T is continuous in Theorem 3.3, we cannot get any information from it about the existence of a/ the fixed point of T. 2. From Theorem 3.2 and Theorem 3.3, we notice yet another difference between the behavior of the two types of metrics defined on a set. Theorem 3.4. Let (๐‘€, ๐œŒ) be a complete ๐‘-metric space with the coefficient ๐‘  โ‰ฅ 1 and ๐‘‡ be a self mapping of ๐‘€ satisfying the inequality ๐œŒ(๐‘‡๐‘ฅ, ๐‘‡๐‘ฆ) โ‰ค ๐‘Ž1๐œŒ(๐‘ฅ, ๐‘‡๐‘ฅ) + ๐‘Ž2๐œŒ(๐‘ฆ, ๐‘‡๐‘ฆ) + ๐‘Ž3๐œŒ(๐‘ฅ, ๐‘‡๐‘ฆ) + ๐‘Ž4๐œŒ(๐‘ฆ, ๐‘‡๐‘ฅ) + ๐‘Ž5๐œŒ(๐‘ฅ, ๐‘ฆ), for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€, where ๐‘Ž๐‘– ( ๐‘– = 1,2,3,4,5) are non-negative real numbers with ๐‘š๐‘Ž๐‘ฅ{(๐‘Ž1๐‘  + ๐‘Ž4๐‘  2), (๐‘Ž3 + ๐‘Ž4 + ๐‘Ž5)} < 1 for ๐‘  โ‰ฅ 1. If ๐‘‡ is asymptotically regular at some point ๐‘ฅ0 โˆˆ ๐‘€, then there exists a unique fixed point of ๐‘‡. Proof. Let ๐‘‡ be an asymptotically regular mapping at ๐‘ฅ0 โˆˆ ๐‘€. Considering the sequence {๐‘‡ ๐‘› ๐‘ฅ0} and ๐‘š, ๐‘› โˆˆ โ„•, we have ๐œŒ(๐‘‡๐‘š ๐‘ฅ0, ๐‘‡ ๐‘› ๐‘ฅ0) โ‰ค ๐‘Ž1๐œŒ(๐‘‡ ๐‘šโˆ’1๐‘ฅ0, ๐‘‡ ๐‘š ๐‘ฅ0) + ๐‘Ž2๐œŒ(๐‘‡ ๐‘›โˆ’1๐‘ฅ0, ๐‘‡ ๐‘›๐‘ฅ0) + ๐‘Ž3๐œŒ(๐‘‡ ๐‘šโˆ’1๐‘ฅ0, ๐‘‡ ๐‘›๐‘ฅ0) +๐‘Ž4๐œŒ(๐‘‡ ๐‘›โˆ’1๐‘ฅ0, ๐‘‡ ๐‘š ๐‘ฅ0) + ๐‘Ž5๐œŒ(๐‘‡ ๐‘šโˆ’1๐‘ฅ0, ๐‘‡ ๐‘›โˆ’1๐‘ฅ0) โ‰ค ๐‘Ž1๐œŒ(๐‘‡ ๐‘šโˆ’1๐‘ฅ0, ๐‘‡ ๐‘š ๐‘ฅ0) + ๐‘Ž2๐œŒ(๐‘‡ ๐‘›โˆ’1๐‘ฅ0, ๐‘‡ ๐‘›๐‘ฅ0) +๐‘Ž3๐‘ ๐œŒ(๐‘‡ ๐‘šโˆ’1๐‘ฅ0, ๐‘‡ ๐‘š ๐‘ฅ0) + ๐‘Ž3๐‘ ๐œŒ(๐‘‡ ๐‘š ๐‘ฅ0, ๐‘‡ ๐‘›๐‘ฅ0) +๐‘Ž4๐‘ ๐œŒ(๐‘‡ ๐‘›โˆ’1๐‘ฅ0, ๐‘‡ ๐‘›๐‘ฅ0) + +๐‘Ž4๐œŒ๐‘ (๐‘‡ ๐‘› ๐‘ฅ0, ๐‘‡ ๐‘š ๐‘ฅ0) +๐‘Ž5๐‘ ๐œŒ(๐‘‡ ๐‘šโˆ’1๐‘ฅ0, ๐‘‡ ๐‘š ๐‘ฅ0) + ๐‘Ž5๐‘  2๐œŒ(๐‘‡๐‘š ๐‘ฅ0, ๐‘‡ ๐‘›๐‘ฅ0) + ๐‘Ž5๐‘  2๐œŒ(๐‘‡๐‘›๐‘ฅ0, ๐‘‡ ๐‘›โˆ’1๐‘ฅ0), which implies that ๐œŒ(๐‘‡๐‘š ๐‘ฅ0, ๐‘‡ ๐‘›๐‘ฅ0) โ‰ค { ๐‘Ž1+๐‘Ž3๐‘ +๐‘Ž5๐‘  1โˆ’(๐‘Ž3๐‘ +๐‘Ž4๐‘ +๐‘Ž5๐‘  2) } ๐œŒ(๐‘‡๐‘šโˆ’1๐‘ฅ0, ๐‘‡ ๐‘š ๐‘ฅ0) + { ๐‘Ž2+๐‘Ž4๐‘ +๐‘Ž5๐‘  2 1โˆ’(๐‘Ž3๐‘ +๐‘Ž4๐‘ +๐‘Ž5๐‘  2) } ๐œŒ(๐‘‡๐‘›โˆ’1๐‘ฅ0, ๐‘‡ ๐‘›๐‘ฅ0) . Since ๐‘‡ is asymptotically regular, as ๐‘š, ๐‘› โ†’ โˆž, the above inequality yields lim ๐‘š,๐‘›โ†’โˆž ๐œŒ(๐‘‡๐‘š ๐‘ฅ0, ๐‘‡ ๐‘› ๐‘ฅ0) = 0 . This shows that {๐‘‡๐‘›๐‘ฅ0} is a Cauchy sequence. Since ๐‘€ is complete, lim ๐‘›โ†’โˆž ๐‘‡๐‘› ๐‘ฅ0 = 0 = ๐‘ง for some ๐‘ง โˆˆ ๐‘€. Next we will show that ๐‘ง is a fixed point of ๐‘‡. Consider, ๐œŒ(๐‘‡๐‘ง, ๐‘ง) โ‰ค ๐‘ ๐œŒ(๐‘‡๐‘ง, ๐‘‡ ๐‘›๐‘ฅ0) + ๐‘ ๐œŒ(๐‘‡ ๐‘›๐‘ฅ0, ๐‘ง) โ‰ค ๐‘Ž1๐‘ ๐œŒ(๐‘ง, ๐‘‡๐‘ง) + ๐‘Ž2๐‘ ๐œŒ(๐‘‡ ๐‘›โˆ’1๐‘ฅ0, ๐‘‡ ๐‘› ๐‘ฅ0) + ๐‘Ž3๐‘ ๐œŒ(๐‘ง, ๐‘‡ ๐‘›๐‘ฅ0) +๐‘Ž4๐‘ ๐œŒ(๐‘‡ ๐‘›โˆ’1๐‘ฅ0, ๐‘‡๐‘ง) + ๐‘Ž5๐‘ ๐œŒ(๐‘ง, ๐‘‡ ๐‘›โˆ’1๐‘ฅ0) + ๐‘ ๐œŒ(๐‘‡ ๐‘›๐‘ฅ0, ๐‘ง) โ‰ค ๐‘Ž1๐‘ ๐œŒ(๐‘ง, ๐‘‡๐‘ง) + ๐‘Ž2๐‘ ๐œŒ(๐‘‡ ๐‘›โˆ’1๐‘ฅ0, ๐‘‡ ๐‘› ๐‘ฅ0) + ๐‘Ž3๐‘ ๐œŒ(๐‘ง, ๐‘‡ ๐‘›๐‘ฅ0) +๐‘Ž4๐‘  2๐œŒ(๐‘‡ ๐‘›โˆ’1๐‘ฅ0, ๐‘‡ ๐‘›๐‘ฅ0) + ๐‘Ž4๐‘  2๐œŒ(๐‘‡๐‘›๐‘ฅ0, ๐‘‡๐‘ง) +๐‘Ž5๐‘  2๐œŒ(๐‘ง, ๐‘‡๐‘› ๐‘ฅ0) + ๐‘Ž5๐‘  2๐œŒ(๐‘‡๐‘› ๐‘ฅ0, ๐‘‡ ๐‘›โˆ’1๐‘ฅ0) + ๐‘ ๐œŒ(๐‘‡ ๐‘›๐‘ฅ0, ๐‘ง). Letting the limit be ๐‘› โ†’ โˆž and since {๐‘‡๐‘›โˆ’1๐‘ฅ0} is a subsequence of {๐‘‡ ๐‘› ๐‘ฅ0} , we obtain ๐œŒ(๐‘‡๐‘ง, ๐‘ง) โ‰ค ๐‘Ž1๐‘ ๐œŒ(๐‘ง, ๐‘‡๐‘ง) + ๐‘Ž4๐‘  2๐œŒ(๐‘ง, ๐‘‡๐‘ง) which gives ๐œŒ(๐‘‡๐‘ง, ๐‘ง) = 0 i.e. ๐‘‡๐‘ง = ๐‘ง. Hence ๐‘ง is a fixed point of ๐‘‡. The uniqueness of the fixed point follows from Theorem 3.1. Theorem 3.5. Let (๐‘€, ๐œŒ) be a complete ๐‘-metric space with coefficient ๐‘  โ‰ฅ 1 and ๐‘‡ be a self mapping of ๐‘€ satisfying the inequality ๐œŒ(๐‘‡๐‘ฅ, ๐‘‡๐‘ฆ) โ‰ค ๐‘Ž1๐œŒ(๐‘ฅ, ๐‘‡๐‘ฅ) + ๐‘Ž2๐œŒ(๐‘ฆ, ๐‘‡๐‘ฆ) + ๐‘Ž3๐œŒ(๐‘ฅ, ๐‘‡๐‘ฆ) + ๐‘Ž4๐œŒ(๐‘ฆ, ๐‘‡๐‘ฅ) + ๐‘Ž5๐œŒ(๐‘ฅ, ๐‘ฆ), for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€, where ๐‘Ž๐‘– ( ๐‘– = 1,2,3,4,5) are non-negative real numbers with ๐‘š๐‘Ž๐‘ฅ{(๐‘Ž2 + ๐‘Ž3)๐‘  2, (๐‘Ž3 + ๐‘Ž4๐‘  + ๐‘Ž5๐‘ )} < 1 for ๐‘  โ‰ฅ 1. If ๐‘‡ is asymptotically regular at some point ๐‘ฅ โˆˆ ๐‘€ and the sequence {๐‘‡๐‘›๐‘ฅ} of iterates has a subsequence {๐‘‡๐‘›๐‘˜ ๐‘ฅ} converging to a point ๐‘ง of ๐‘€, then ๐‘ง is a unique fixed point of ๐‘‡ and {๐‘‡ ๐‘›๐‘ฅ} also converges to ๐‘ง. Proof. Let lim ๐‘˜โ†’โˆž ๐‘‡๐‘›๐‘˜ ๐‘ฅ = ๐‘ง, then ๐œŒ(๐‘ง, ๐‘‡๐‘ง) โ‰ค ๐‘ ๐œŒ(๐‘ง, ๐‘‡๐‘›๐‘˜ ๐‘ฅ) + ๐‘ 2๐œŒ(๐‘‡๐‘›๐‘˜ ๐‘ฅ, ๐‘‡๐‘›๐‘˜+1๐‘ฅ) + ๐‘ 2๐œŒ(๐‘‡๐‘›๐‘˜+1๐‘ฅ, ๐‘‡๐‘ง) โ‰ค ๐‘ ๐œŒ(๐‘ง, ๐‘‡๐‘›๐‘˜ ๐‘ฅ) + ๐‘ 2๐œŒ(๐‘‡๐‘›๐‘˜ ๐‘ฅ, ๐‘‡๐‘›๐‘˜+1๐‘ฅ) + ๐‘Ž1๐‘  2๐œŒ(๐‘‡๐‘›๐‘˜ ๐‘ฅ, ๐‘‡๐‘›๐‘˜+1๐‘ฅ) + ๐‘Ž2๐‘  2๐œŒ(๐‘ง, ๐‘‡๐‘ง) +๐‘Ž3๐‘  2๐œŒ(๐‘‡ ๐‘›๐‘˜ ๐‘ฅ, ๐‘‡๐‘ง) + ๐‘Ž4๐‘  2๐œŒ(๐‘ง, ๐‘‡๐‘›๐‘˜+1๐‘ฅ) + ๐‘Ž5๐‘  2๐œŒ(๐‘‡๐‘›๐‘˜ ๐‘ฅ, ๐‘ง). Letting ๐‘˜ โ†’ โˆž, we get ๐œŒ(๐‘ง, ๐‘‡๐‘ง) โ‰ค (๐‘Ž2๐‘  2 + ๐‘Ž3๐‘  2)๐œŒ(๐‘ง, ๐‘‡๐‘ง) which gives ๐‘ง is a fixed point of ๐‘‡. Now, ๐œŒ(๐‘ง, ๐‘‡๐‘› ๐‘ฅ) = ๐œŒ(๐‘‡๐‘ง, ๐‘‡ ๐‘›๐‘ฅ) โ‰ค ๐‘Ž1๐œŒ(๐‘ง, ๐‘‡๐‘ง) + ๐‘Ž2๐œŒ(๐‘‡ ๐‘›โˆ’1๐‘ฅ, ๐‘‡๐‘›๐‘ฅ) + ๐‘Ž3๐œŒ(๐‘ง, ๐‘‡ ๐‘›๐‘ฅ) + ๐‘Ž4๐œŒ(๐‘‡ ๐‘›โˆ’1๐‘ฅ, ๐‘‡๐‘ง) + ๐‘Ž5๐œŒ(๐‘ง, ๐‘‡ ๐‘›โˆ’1๐‘ฅ) โ‰ค ๐‘Ž1๐œŒ(๐‘ง, ๐‘‡๐‘ง) + ๐‘Ž2๐œŒ(๐‘‡ ๐‘›โˆ’1๐‘ฅ, ๐‘‡๐‘›๐‘ฅ) + ๐‘Ž3๐œŒ(๐‘ง, ๐‘‡ ๐‘›๐‘ฅ) +๐‘Ž4๐‘ ๐œŒ(๐‘‡ ๐‘›โˆ’1๐‘ฅ, ๐‘‡๐‘› ๐‘ฅ) + ๐‘Ž4๐‘ ๐œŒ(๐‘‡ ๐‘› ๐‘ฅ, ๐‘‡๐‘ง) +๐‘Ž5๐‘ ๐œŒ(๐‘ง, ๐‘‡ ๐‘›๐‘ฅ) + ๐‘Ž5๐‘ ๐œŒ(๐‘‡ ๐‘› ๐‘ฅ, ๐‘‡๐‘›โˆ’1๐‘ฅ) which implies that (1 โˆ’ ๐‘Ž3 โˆ’ ๐‘Ž4๐‘  โˆ’ ๐‘Ž5๐‘ )๐œŒ(๐‘ง, ๐‘‡ ๐‘›๐‘ฅ) โ‰ค (๐‘Ž2 + ๐‘Ž4๐‘  + ๐‘Ž5๐‘ )๐œŒ(๐‘‡ ๐‘›โˆ’1๐‘ฅ, ๐‘‡๐‘›๐‘ฅ). MOHAMMAD S. KHAN and PANKAJ K. JHADE 52 Since ๐‘‡ is asymptotically regular at ๐‘ฅ โˆˆ ๐‘€ and using the fact that ๐‘š๐‘Ž๐‘ฅ{(๐‘Ž2 + ๐‘Ž3)๐‘  2, (๐‘Ž3 + ๐‘Ž4๐‘  + ๐‘Ž5๐‘ )} < 1 for ๐‘  โ‰ฅ 1 implies that the sequence {๐‘‡๐‘› ๐‘ฅ} converges to ๐‘ง in ๐‘€. This completes the proof. Example 3.1. Let ๐‘€ = โ„ and ๐œŒ: ๐‘€ ร— ๐‘€ โ†’ โ„ + be defined by ๐œŒ(๐‘ฅ, ๐‘ฆ) = |๐‘ฅ โˆ’ ๐‘ฆ|๐‘, where ๐‘ > 1. Then (๐‘€, ๐œŒ) is a ๐‘- metric space. Define a self map ๐‘‡ on ๐‘€ as follows ๐‘‡๐‘ฅ = ๐‘ฅ 2 for all ๐‘ฅ โˆˆ ๐‘€. Clearly ๐‘‡ is asymptotically regular for all ๐‘ฅ โˆˆ ๐‘€. If we take ๐‘Ž1 = ๐‘Ž2 = ๐‘Ž3 = ๐‘Ž4 = 0 and ๐‘Ž5 = 1 2๐‘ , then the contractive condition used here holds and 0 is the unique fixed point of ๐‘‡. Remark 3.2. The asymptotic regularity of the mapping ๐‘‡ satisfies the Hardy-Rogerโ€™s contraction condition. It is actually a consequence of โˆ‘ ๐‘Ž๐‘– < 1 5 ๐‘–=1 . Thus Theorem 3.3 and Theorem 3.4 extend results due to Hardy-Roger [1] in ๐‘- metric space. It is also worth mentioning that our condition on control constants says that โˆ‘ ๐‘Ž๐‘– 5 ๐‘–=1 may exceed 1. 4. Conclusion It has been demonstrated that one can use asymptotically regular sequences rather than sequences of iterates to obtain interesting results related to fixed point theorems in b-metric spaces. 5. Acknowledgements The authors would like to thank the referees for their valuable comments. References 1. Hardy, G.E. and Roger, T.D., A generalization of a fixed point theorem of Reich, Canadian Mathematical Bulletin, 1973, 16, 201-206. 2. Reich, S., Some results concerning contraction mappings, Canadian Mathematical Bulletin, 1971, 14, 121-124. 3. Bakhtin, I.A., The contraction mapping principle in almost metric spaces, Functional Analyis Gos Ped. Institute Unianowsk, 1989, 30, 26-37. 4. Czerwik, S., Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1993, 1, 5-11. 5. Czerwik, S., Nonlinear set valued contraction mappings in b-metric spaces, Atti del Seminario Matematico e Fisico dell' Universita di Modena, 1998, 46, 263-27 6. Czerwik, S., Dlutek, K. and Singh, S.L., Round off stability of iteration Procedures for operators in b-metric spaces, Journal of Natural and Physical. Sciences, 1997, 11, 87-94. 7. Czerwik, S., Dlutek, K. and Singh, S.L., Round off stability of iteration Procedures for set-valued operators in b- metric spaces, Journal of Natural and Physical Sciences, 2001, 15, 1-2. 8. Aydi, H., Bota, M.F., Karanipar, E. and Mitrovic, S., A fixed point theorem for set-valued quasi-contraction in b- metric spaces, Fixed Point Theory and Applications, 2012, 88,1-8. 9. Boriceanu, M., Fixed point theory on spaces with vector-valued b-metrics, Demonstratio Mathematica, XLII 2009, 4, 285-301. 10. Bota, M., Molnar, A. and Varga, C., On Ekelandโ€™s variational principle in b-metric spaces, Fixed Point Theory, 2011, 12( 2), 21-28. 11. Madalina Pacurar, A fixed point result for ๐œ‘-contraction on b-metric spaces without the boundedness assumption, Fasciculi Mathematici, 2010, 43, 125-137. 12. Madalina Pacurar, Sequences of almost contractions and fixed points in b-metric spaces, analele universitatii de vest timisoara seria matematica-informatica, XLVIII, 2010, 3, 125-137. 13. Mehmet Kir and Hukmi Kiziltunc, On some well-known fixed point theorems in b-metric spaces, Turkish Journal of Analysis and Number Theory, 2013, 1( 1), 13-16. 14. Memudu O. Olatinwo and Christopher O. Imoru, A generalization of some results on multi-valued weakly Picard mappings in b-metric spaces, Fasciculi Mathematici, 2008, 40, 45-56. 15. Mishra, P.K. Sachdeva, S. and Banerjee, S.N., Some fixed point theorems in b-metric spaces, Turkish Journal of Analysis and Number Theory, 2014, 2(1), 19-22. 16. Heinz W. Engl, Weak convergence of asymptotically regular sequences for nonexpansive mappings and connection with certain Chebyshef-centers, Nonlinear Analysis: Theory, Methods and Applications, 1977, 1(5), 495-501. 17. Browder, F.E. and Petryshyn, W.V., The solution by iteration of nonlinear functional equations in Banach spaces, Bulletin of American Mathematical Society, 1966, 72, 571-575. Received 9 November 2015 THEOREMS ON FIXED POINTS FOR ASYMPTOTICALLY REGULAR SEQUENCE 53 Accepted 5 January 2017