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The problem with
Technology and the Law: 

opaque AI

“I would rather discover one true 
cause than be the king of Persia” 

– Democritus.

By Asher Austen Fainman
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Opacity

The ability to uncover, evaluate and predict 
causality is fundamental in disciplines of 
inquiry, such as law. Effective adoption of 

Artificial Intelligence (AI) applications in domains 
in which legally significant consequences result 
will depend heavily on the user’s ability to provide 
explanations and contest decisions. While doing 
so is needed to effectively meet the requirements 
of legal tests for causation and intent (which assess 
reasonable foreseeability and decision making) in 
order to establish legal liability, this is complicated 
by that fact that AI applications can be opaque in 
their decision-making processes.

This problem cannot simply be ignored, as an 
increasing number of AI applications can currently 
match or outperform (Stumpe and Peng, 2017) 
humans in a variety of tasks – both low-wage, low-
skilled jobs and those that require higher levels 
of education (Muro et al, 2019). Jobs that typically 
involve some collection of rule-based routines 
and automatable tasks (Frontier Economics, 
2018) are even more likely to become automated 
in the future. For instance, the performance 
of convolutional neural networks in detecting 
abnormalities in radiographs has led some, such 
as prominent AI researcher Geoffrey Hinton, to 
declare that medical schools “should stop training 
radiologists now” (Snow, 2018). Although this 
statement is likely somewhat hyperbolic (European 
Society of Radiology, 2018), the encroachment of AI 
in professional disciplines remains likely. 

In the past, knowledge-based AI such as 
“expert systems” failed to gain substantial traction 
in professions due to their rigidity in decision-
making (Yanase and Triantaphyllou, 2019). These 
applications often relied on hard-coded “static” 
rules for inferential reasoning and evaluation. For 
example, in computer chess games, machine 
learning (ML) algorithms could allow modern 
AI programs to be given rules to learn from so 
that it could find optimal patterns that could be 
generalised to play against real players (Goodfellow 
et al, 2016). Today, however, AI has been developed 
to the point that it might be trained on something 
more complex, such as historical stock market 
price data (Flach, 2012).

For this article, I will be principally discussing AI 
applications that use algorithms from the subfield 
of ML in some configuration.  In supervised learning, 

a “training” dataset of images created by experts is 
processed by ML algorithms, and the model that is 
created can then be tested to see if it is generalisable 
(Flach, 2012) and thus used on live data (Burrell, 
2016). However, the issue is that, in such processes, 
opacity can develop in different ways and to 
different degrees, with some ML approaches such 
as Bayesian networks and decision tree learning 
having greater transparency than deep neural 
networks1 and support vector machines (SVM).2 In 
this article, opaque AI (OAI) refers to applications 
that exhibit any degree of opacity. 

Interpretability 
Some legal scholars (Selbst and Powles, 2017) 

have pointed to a “right to explanation” in the 
General Data Protection Regulation (GDPR) as a 
principle safeguard to protect rights in automated 
decision-making. However, the right to explanation 
is not currently legally binding (Wachter et al, 
2017). The safeguards that do exist may together 
constitute a non-binding right that could apply in 
certain, very limited, circumstances (Bensoussan, 
2017), where a decision that was fully automated 
had legally significant effects (Edwards and Veale, 
2017). However, where it does apply, this right only 
seems to extend to an explanation of the general 
system as it functioned before the decision was 

1	  In deep neural networks, multiple layered networks of interconnected 
neurons (nodes) alongside a backpropagation algorithm progressively 
find relational connections between data points. These layers 
learn ‘patterns of patterns’ (Schmidhauber, 2014) from each other 
hierarchically, learning to model a complex function. No single neuron 
encodes for one part of the decision-making process; instead, many 
layers converge on a decision. Thus, the network learns from experience 
in a process akin to intuition, so it cannot be reduced to a set of 
instructions (Goodfellow, 2016). The large number (sometimes hundreds 
of thousands) of interconnected neurons performing individually simple 
computations can together produce sophisticated outcomes through 
what is known as “connectionism”.  

2	  SVMs find geometric patterns between variables. The SVM will find 
an optimal solution by maximising the margin (distance) between 
each category that is classified and a dividing line. This line (in a 
two-dimensional example) is generally the most generalisable and 
predictive. With three variables, the dividing line becomes a plane, and 
with more variables, the human mind cannot visualise the line because 
it cannot process high dimensionality. This is especially true with non-
linear (curved) divisions (Flach, 2012). Therefore, with large numbers, it 
becomes impossible to visualise how the model distinguishes between 
variables, which results in opacity (Deng and Yu, 2013).

The ability to uncover, evaluate and  
predict causality is fundamental in 

disciplines of inquiry, such as law. Effective 
adoption of Artificial Intelligence (AI) 

applications in domains in which legally 
significant consequences result will depend 

heavily on the user’s ability to provide 
explanations and contest decisions. 
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made, rather than an explanation of the localised 
internal logic, or even a loose ranking of variables of 
an individual decision after that decision (Wachter 
et al, 2018). 

The benefit that can accrue from explaining 
the internal logic of OAI has thus led to the 
emergence of subfield explainable AI (XAI). 
Interpretability methods have been created that 
attempt to approximate algorithms to determine 
how a model came to a specific output.3 There 
are problems regarding generalisability, however, 
as most interpretability methods are designed on 
an ad hoc basis for detecting embedded bias or 
debugging a specific algorithm in a domain by an 
expert (Guidotti, 2018). Furthermore, researchers 
typically delineate their own definitions of what 
constitutes an explanation (Guidotti, 2018), and 
there are no standardised criteria for evaluating 
these explanations (Lipton, 2017).

There is also often some trade-off between 
interpretability (describing the system’s internal 
logic using understandable and meaningful 
language) and completeness (describing the 
system’s operation accurately to allow its behaviour 
to be fully anticipated) (Gilpin, 2019). There are 
various methods that exist, located somewhere 
between these two poles. These models are local 
– a simplified model approximating a decision 
about a few data points in an individual instance 
– or global – a proximate model for all possible 
data points (Mittelstadt et al, 2018). However, these 
methods are problematic.4
3	  It is important to note, however, that this attempt to towards 

transparency is constrained by the desire not to allow manipulation of 
the decision-making process, violation of other’s rights to privacy or the 
disclosure of proprietary information (Ananny and Crawford, 2016).

4	  An example of a method that trades off completeness for 
interpretability is saliency mapping. However, saliency maps ignore non-
salient background features, which are unstable aspects of an image, 
in favour of more stable salient aspects of the given input. Often these 
background “artefacts” will not be uniformly relevant across inputs, 
but the salient aspects are. These artefacts are thus not captured in an 
explanation, even though they contribute to individual output decisions 
(Alvarez-Melis, 2018). 

	 Another popular method is LIME (Ribeiro et al, 2016), a linear proxy 
model that develops a local linear model as a simplified proxy for a 
local decision. These models assume linearity across the model, to 
approximate local, non-linear behaviour in the original model. Often, 
however, this does not scale to accurately reflect the non-linearity at a 
global level of the model (Hulstaert, 2018). Others have shown that in 
LIME (and other proxy models), the perturbations with little to no effect 
on the global model’s predictions can have outsized effects on local 
explanations (Alvarez-Melis, 2018). 

	 A third method is counterfactual models, which were specifically 
designed to exceed the GDPR requirements. These models aim to show 
how input changes may impact the decision outcome (Wachter, 2018). 
This approach has been adopted by Google as a tool in their TensorFlow 
ML framework (Wexler, 2018). However, counterfactual approaches 
assume that “variables are independent of one another” (Wachter 2018: 
860). By ignoring interdependencies, the method sometimes relies on 
artefacts generated by a classifier rather than a labelled “ground truth” 
data point, creating explanations that do not reflect actual features. Also, 
counterfactuals neglect non-linearity and unstable aspects (Laugel et al, 
2019). 

	 All three of these methods thus lack explanatory robustness, which 
is indicative of a wider problem where methods frequently rank the 

Moreover, it is precisely their complexity and 
dimensionality that make OIA so accurate – and 
which interpretability methods assume away. 
When explanations do not reflect these complex 
interrelationships, small input changes to the 
model have wide effects on the explanation output. 
For instance, in deep learning, “each input… [is] 
represented by many features” and each feature 
in combination represents “many possible inputs” 
creating a “distributed representation” structure 
(Goodfellow, 2016: 16). This diffusion across the 
network means no single node encodes for a 
specific part of the output; input features may be 
represented by interconnected layers or clusters. 
Information is “encoded in the strength of multiple 
connections” rather than at “specific locations, as 
in a conventional database” (Castelvecchi, 2016: 4), 
making it difficult to identify the contribution of 
a specific input feature to an output. Instead, the 
importance of a feature depends on the existence, 
absence or relative influence of other features. The 
precise combination of all of these interconnected 
features and their relative weights in concert 
produce a particular output in a particular instance. 

Adding to these complex interrelationships 
is the manipulation of dimensionality, such as 
through the “kernel trick” in SVMs, which improves 
performance but also means that the relationship 
between a feature and a dimension is not simply 
one-to-one (Burrell, 2016), making it very difficult 
to establish direct relationships between inputs 
and outputs. Other drawbacks also prevent 
interpretability methods from meeting the 
standards required for legal tests. Firstly, because of 
the iterative nature of OAI, it is difficult to reproduce 
results in research from a particular instance. There 
are not standardised best practices (source control) 
for recording changes, and changes to GPU drivers 
and updates to frameworks that models depend 
on all vastly effect accuracy. Moreover, their 
respective frameworks need to balance between 
numeric determinism and performance, which 
can vary outputs when reproduced. Furthermore, 
the expansion or changes to the dataset the model 
learns from, whether continuously or in periodic 
update stages, will affect the model’s predictions, 
meaning it is not static. As such, we would need 
a snapshot of the “whole system” (Warden, 2018) 
to accurately reproduce the exact state of the 

relative importance of features with wide variability, even in simple 
scenarios (Lakkaraju et al, 2017).

GLOBAL



47V o l u m e  8 2  /  2 0 1 9

model for a given instance, which would require 
immense storage and management. Even Article 
5(e) of GDPR requires keeping data that has been 
processed for “no longer than is necessary for the 
purposes”. As such, such, storing such “snapshots” 
is not standard practice for many applications, 
and often individual input data about a particular 
decision will be deleted to optimise data storage 
and protect privacy rights (Doshi-Velez et al, 2018).  

In sum, owing to the assumptions these 
methods make and their lack of robustness, at 
best they provide a general overview of the factors 
considered in a decision and at worst they provide 
unreliable and misleading reassurance about the 
internal logic of an OAI. 

Intent
Humans are also black boxes to some extent. 

We cannot always predict others’ decisions, or 
their reasoning. Currently, intent and causation 
tests scrutinise decision-making and attempt to 
externally validate claims through fact-finding. 
For instance, cross-examination or following 
documentation trails may help to proximate 
reasonable foreseeability, causal relations and 
expectations, or to infer what someone likely 
knew. In contrast, OAI does not provide qualitative 
causal explanations for the purposes of external 
validation. Interpretability methods thus often 
would not satisfy the burden of proof required 
by these tests. Moreover, OAI application do not 
possess intent in any meaningful sense. Their 
developers or users do. With non-OAI, we might 
scrutinise design to approximate intent – for 
instance, a program designed to break into another 
system was likely intended for the “purpose of” 
(Copyright and Related Rights Regulations, 2003) 
unlawful conduct.  With OAI, we can discern an 
overarching goal or “objective function”; however, 
OAI makes decisions within these parameters 

in ways developers may not understand or be 
able to reasonably foresee. Without hard-coded 
instructions to infer intent, these tests may not be 
satisfiable. 

For example, an OAI may be designed to 
develop a profitable trading strategy. It would 
be given historical and real-time stock price data 
for a range of securities and access to business 
newsfeeds and a twitter account (Azar, 2016). After 
validation and then live testing, the OAI would 
begin consistently profiting. The OAI would rapidly 
place and withdraw orders, and occasionally 
re-tweet news articles before and after trades. 
The developers would not be able discern a clear 
strategy from its behaviour, only that it remained 
profitable. If, however, the OAI takes a short 
position on a security it often trades and profit, 
some investors may then bring a lawsuit alleging 
market manipulation through “phantom orders” 
and making misleading statements (re-tweets) 
before placing orders. 

The developers might defend that access to 
the twitter account was given but not designed 
to retweet information or place phantom orders; 
they had no intent to manipulate prices and were 
surprised by the OAI’s actions. The developers 
could demonstrate that they only provided the 
lawful objective of profit maximisation (Bathaee, 
2018) – the OAI independently developed a strategy 
involving a prohibited practice. Indeed, the OAI 
may only be able to interpret market impact, not 
inaccurate information, and so may re-tweet a 
misleading article with this effect. Because intent is 
usually required for fraud, it cannot in this case be 
proven. Interpretability methods might determine 
the importance OAI placed on these misleading 
tweets but would not be able to uncover the 
overall strategy, nor the impact of a single tweet 
on the decision.

Intent tests also examine the basis for conduct. 
Without knowing the OAI’s strategy, we cannot 
determine if it was engaging in illegal “spoofing” 
(rapidly placing then withdrawing trades, causing 
the desired movement) – we could also assume 
that it may have found in past data that placing/
withdrawing bets was correlated with price rises. 
Whilst the developers could have prevented this 
conduct, failing to do so could be negligence, not a 
design decision, therefore falling short of criminal 
causes of action. Currently, it is extremely difficult 

Humans are also black boxes to  
some extent. We cannot always predict 
others’ decisions, or their reasoning. 
Currently, intent and causation tests 

scrutinise decision-making and attempt 
to externally validate claims through 

fact-finding. 
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to prove intent in algorithmic trading. United 
States v Corsica was the first prosecutions for 
spoofing using High-Speed Trading (HFT) systems. 
HFT systems exploit market inefficiencies, trading 
them away before others can, using algorithms 
faster than humans. Proving manipulation here 
relied on conduct being wilful (Bathaee, 2018). The 
developers foresaw the effects of the system on the 
market, and as such were likely to have designed 
the system for an unlawful purpose (Yadav, 2016). 
The proof of wrongful intent in this case relied on 
the developer’s testimony regarding the unlawful 
purpose for which he was instructed to design the 
system.  Intent tests use this burden to prevent 
legitimate transactions resulting in liability, but 
this can also insulate defendants who can point to 
program unpredictability due to speed or opacity 
to defend that there was no criminal intended 
consequence. OAI compounds this problem 
because there may be no explicit instructions for 
spoofing or an illegal strategy – the OAI might 
have intuitively do so. 

In other cases, intent serves to limit the scope 
of possible claims. For instance, a judge could 
use an OAI, which is given access to data about 
past sentencing, types of crime committed and 
personal attributes of the previous defendant, 
to output a sentence reflective of the likelihood 
of recidivism. A Wisconsin supreme court ruled 
a program that used actuarial data to predict 
recidivism did not violate due process rights 
(State v Loomis, 2016), suggesting that a warning 
to judges about methodological dangers was 
a sufficient safeguard against discrimination. 
However, of course, this does not inform the judge 
about how much to discount the assessment 
(Ibid). Furthermore, if the sentencing training data 
contained latent bias against a particular group, 
the OAI may, unbeknownst to its developers or 
users, propagate discriminatory decisions. For 
instance, even unprotected features such as postal 
code may correlate significantly with race and may 
in some circumstances be outcome-determinative 
in the OAI’s decision. Indeed, some studies have 
demonstrated that several unprotected factors 
can act as proxies for protected characteristics in 
existing COMPAS recidivism prediction systems 
used in the US (Angwin, 2016). Opacity may 
exacerbate this effect.

To contest judicial decisions, individuals would 

have to appeal the decision itself (Equality and 
Human Rights Commission, 2015), requiring a 
demonstration that the judge took an irrelevant 
factor (such as race) – or relied on an OAI that 
did – into account during sentencing. Even if 
interpretability methods could show that postal 
code ranked highly, this could be seen as indicative 
of economic inequality rather than discriminatory 
intent. Furthermore, merely pointing to the OAI’s 
history of sentencing would not be sufficient: 
because the OAI may reason in a non-linear 
way, a parameter that is highly weighted for one 
individual may not be for another with a different 
combination of characteristics. The burden of 
proof can be reversed once a prima facie case for 
indirect discrimination is established (Equality 
Act, 2010), requiring decision-makers to prove the 
practice’s legitimacy. However, without knowledge 
of the internal logic of that particular output, 
arguing for overall accuracy may sometimes be 
sufficient (Grimmelmann and Westreich, 2017). 
Indeed, there is only minimal case law suggesting 
that the inability to disclose the underlying factors 
are necessarily construed against decision-makers 
(Meister v Speech Design, 2012). 

These sorts of intent tests serve to limit arbitrary 
appeal cases but, where the internal logic of an 
OAI is inscrutable, it may be impossible to prove 
discriminatory intent, shielding users of OAI and 
leading to fewer appeals and making it less likely 
for an expert to uncover bias. Because developers 
cannot reliably foresee outcomes of OAIs to achieve 
decisions and we cannot deduce intent from 
explanations, OAI can create both ex-ante and 
ex-post barriers to proving that an illegal outcome 
was intended. 

Causation
Causation tests balance the scope of causes 

of action with the administrative burden of 

These sorts of intent tests serve to  
limit arbitrary appeal cases but, where the 

internal logic of an OAI is inscrutable, it 
may be impossible to prove discriminatory 

intent, shielding users of OAI and leading to 
fewer appeals and making it less likely for 

an expert to uncover bias. 
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enforcement. These tests seek to ensure harm 
was indeed caused by another’s actions. Tests for 
reasonable foreseeability can thus help identify 
the form of liability through examining whether 
outcomes were foreseeable consequences for 
a reasonable person, with higher burdens for 
professionals. Reliance tests require the injured to 
prove they relied on another’s unlawful conduct, 
manifesting as misrepresentation, for example, 
causing them harm (Robinson, 2010).

Causation is often highly dependent on context. 
In medicine, for instance, an analysis (Caruana 
et al, 2015) of an ML research project sought to 
predict the likelihood of death from pneumonia 
and thus to establish a system for admitting 
high-risk patients whilst treating low-risk patients 
as outpatients. In one of the datasets, the model 
found the counterintuitive rule that individuals 
with a history of asthma were at lower risk than 
the general population of developing pneumonia. 
The dataset reflected the fact that patients with 
asthma, presenting with pneumonia to hospital, 
were usually admitted to the ICU and this intensive 
treatment lowered their risk of dying compared 
to the general public. Because their prognosis 
improved so much, models trained on the data 
found the rule that asthma lowers risk, when in 
fact the opposite is true (providing they are not 
hospitalised). As such, the models incorrectly 
classified these patients in the validation data set. 
Both a neural network and a rule-based logistic 
regression approach were used and came to the 
same conclusion. Importantly, the researchers 
favoured the logistic regression approach, despite it 
having lower accuracy, because it was transparent 
and so they were able to identify the problematic 
rule and adjust individual weights to correct for it 
(which, as described in section 3, cannot be done 
with OAI) (Burrell, 2016). 

Indeed, the risk of using OIA are apparent. For 
instance, an OAI model may be applied for the 
same purpose but with live data input to predict 
both risk and appropriate treatment. If incorrect 
information was entered, which could be a 
predictor for a serious complication for pneumonia, 
was reported in a patient’s medical record fed to 
the OAI, the system would incorrectly identify them 
as requiring immediate and specialist treatment. 
Eventually, the mistake would be identified 
by medical staff but only after further testing  

or treatment, incurring considerable expenses to 
the hospital. 

The opposite may also occur, resulting in 
accusations of negligence. An evidentiary burden 
then exists to prove the model relied on this 
particular input, such that, without the reliance on 
OAI, they would have “acted differently” (Customs 
& Excise Commissioners v Barclays Bank, 2006). 
This may be an impossible burden. Unlike with a 
transparent logistic regression model, an expert 
cannot simply adjust the weight of the feature in 
question to establish that, ceteris paribus, the same 
outcome would occur or not. One might contend 
that, because the input was given to the model, this 
is evidence of at least some reliance. However, this 
fact does not demonstrate that the information 
was weighted by the model, in that particular 
decision, to be outcome-determinative. Indeed, 
even if we could obtain a snapshot of the model 
as it existed at the time, interpretability methods 
would provide loose rankings of importance, but 
the outcome depended on the confluence of them 
all in that particular instance (Goodfellow, 2016), 
making it difficult to establish reliance.

The outcomes OAI arrive at may not be reasonably 
foreseeable in individual instances because they 
also may uncover latent patterns correlating 
with counter-intuitive recommendations, thus 
presenting difficulties in establishing causation 
when relied upon by doctors. In a 2018 study 
(Peng et al, 2018), researchers used convolutional 
neural networks trained on retinal fundus images 
to accurately predict sex, with an impressive 
AUC of 0.97 (alongside age, blood pressure, 
smoking status, and major cardiac events), on an 
independent validation dataset. Whilst admittedly 
there are better ways to determine sex, this 
illustrates an important point. ML has been widely 
used in classification tasks before; however, these 
generally involved “feature engineering”, or the 

Indeed, the risk of using OIA are 
apparent. For instance, an OAI 

model may be applied for the same 
purpose but with live data input to 
predict both risk and appropriate 

treatment. 
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computation of explicit features that experts 
have specified. However, the model used in the 
2018 study could “learn the appropriate predictive 
features based on examples rather than requiring 
features to be hand-engineered” (Peng et al, 2018). 
This allowed the OAI to find latent predictive 
features that the ophthalmologists were not 
aware existed. The researchers used saliency maps 
of anatomical regions important to the model in 
predicting gender. Ophthalmologists reviewed 
these maps, categorising the highlighted sections. 
They noted these sometimes focused on vessels 
and optic disks, but also “non-specific features” in 
50% of the sample, but no discernible pattern or 
mechanism could be identified (Ruyu Qi, 2018). This 
finding is significant because, in some instances, 
specialists can infer causal relationships from 
existing medical knowledge about, for instance, 
predictors for cardiac events. 

Similar associations could also develop in live 
clinical data with an OAI, with further risks. For 
instance, using the example of an application 
predicting pneumonia survival rates, the model 
could uncover a counterintuitive indication, highly 
correlating some set of patient characteristics with 
a treatment considered last resort, because it is 
generally considered unnecessarily high-risk at an 
early stage of disease progression. Nevertheless, 
the OAI could recommend the treatment. A 
doctor could then decide against intervening and 
the patient improves anyway. This process would 
repeat until, eventually, one patient is harmed from 
unusual complications, which then could result in 
an action alleging that the doctor’s decision not 
to follows to application’s recommendation was 
negligent. 

In cases of medical negligence, individuals 
must usually establish a duty of care, a breach, and 
a causal link to the harm (Laurie et al, 2016). The 
“Bolam test” is often used, which states that the 
“standard of care” is that of the “ordinary skilled 
doctor”. Where multiple options exist, a doctor 
does not act negligently if the intervention accords 
with a practice accepted as proper by a responsible 
body of medical specialists in that field (Bolam 
Hospital Management Committee v Friern, 1957). 
The common law also provides more flexibility 
for innovation, allowing reasonable risk-taking, 
providing a practice is endorsed by at least one sub-
specialty of a responsible medical body (De Freitas 

v O-Brien and Connolly, 1997) and is not considered 
unreasonable under the circumstances (Bolitho 
v City and Hackney Health Authority, 1998). This 
provides an allowance for innovative techniques 
but is limited by the particular circumstances 
(Cooper v Royal United Hospital Bath NHS Trust, 
2004). The standard of care develops dynamically 
through common practice, professional guidelines, 
legislation, and case law.

However, because the standard of care for 
OAI is effectively non-existent, the transition 
period to wider adoption presents uncertainty. 
Non-OAI decision aides in medicine are generally 
considered to “augment the physician’s existing 
knowledge by providing further information” 
(Miller and Miller, 2007: 433). As such, the software is 
seen only to provide clinical information, while the 
treatment decision is always made independently 
by the doctor. However, with OAI, because neither 
the doctor nor the developer knows the exact 
process underlying the recommendations made, 
the doctor cannot verify the recommendation 
against their body of expertise (Price, 2017); they 
can only accept or reject the recommendation. 
As such, if an OAI that has been appropriately 
approved (Schonberger, 2019)  recommends 
changing the dosage of a drug, in contrast to 
medical knowledge, and the doctor proceeds, the 
problem is how this approach might be clinically 
validated, particularly when specialists cannot 
identify a causal mechanism of this decision 
through interpretability methods. Where an OAI 
application’s status regarding the standard of care 
is unclear, the same decisions are equally risky and 
may be left for a court to decide whether harm 
eventuates (Cooper v Royal United Hospital Bath 
NHS Trust, 2004). 

To mitigate risk, some have suggested 
that doctors may have to validate OAI and its 
recommendations based on their relative risk, 
looking at analytical validity, clinical validity and 
clinical utility (Price, 2018) of the OAI. Price suggests 
that validation could be conducted through 
clinical trial models, where algorithmic support 
might be randomised through computational 
validation involving procedural safeguards for data 
quality or tracking outcomes in clinical settings to 
retrospectively confirm algorithm quality and thus 
both validate and enable updates (Price, 2017). 
However, the effectiveness of these approaches 
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may still depend on a static OAI model, which is 
not updating dynamically based on patient data 
and still presents a difficult risk calculus for doctors 
on an individual basis. The exact parameters for 
balancing intervention risk or evidence in the 
recommendation are still unclear (Ibid) but likely 
will be, again, highly domain-specific. 

When a developer or user of the OAI cannot 
predict the extent or nature of the decisions in a 
particular instance and cannot probe the OAI after 
the output to determine if its recommendation 
was based on unorthodox but sound medical 
reasoning or an error, the scope of liability does not 
seem reflective of the precautionary risk calculus 
of the reasonable person, making the test arbitrary. 
Causation tests are equally unequipped to 
recognise the difficulty in establishing unavoidable 
harm, where a recommendation falls outside 
established medical knowledge and cannot be 
scrutinised by doctors, who must decide whether 
to intervene.

This issue is further complicated because, in 
an increasingly wide variety of prediction and 
classification tasks, OAI have lower error rates than 
specialists, sometimes substantially (Topol, 2019). 
One may thus suggest we should always favour OAI 
in such cases because, on aggregate – and in the 
long run – they produce better outcomes. However, 
this argument misses a great deal of nuance. 
In a pragmatic sense, a doctor may subjectively 
evaluate the size of the deviation between 
outcome and expectation to assess the likelihood 
of errors. However, doctors often underestimate 
the likelihood of false positives (Gigerenzer et al, 
2007). This problem may be addressed by using a 
confidence score alongside a decision. Similarly, 
doctors may request retaking the decision to 
reduce the likelihood of false positives/negatives. 
However, because the model dynamically adjusts, 
there may be a different outcome – which is not 

necessarily false – between decisions if periodic 
“batched” updates or continuous learning is used. 
Furthermore, there may often be multiple valid 
outcomes if different treatment options exist, 
which may complicate the foreseeability of errors. 
Relatedly, when creating “ground truth” data to 
train models on, researchers often find significant 
subjective variance amongst practitioners, for 
instance when using diagnostic grading scales 
for disease progression (Krause et al, 2018). 
Further exacerbating this problem are adversarial 
examples, where ambiguity in an image, for 
instance, may lead to an incorrect classification by 
both a model and humans (Wexler, 2017).5 

To address this issue, researchers may have 
specialists deliberate over ambiguous outliers 
and aggregate decisions to ensure that the 
benchmark for testing is the best approximation 
of medical knowledge (Krause et al, 2018). Many 
technical issues may arise in training, but these are 
resolved insofar as the model will only be used if 
it performs with the same or lower error rate than 
humans. However, when applied to live data, issues 
with “overfitting” the model so that it does not 
generalise effectively may emerge. For instance, as 
in the example of judicial sentencing above, there 
is a possibility of algorithmic discrimination.

If the underlying datasets contain biases 
against minorities or other groups, algorithms 
will often reproduce these in their outputs (Romei 
and Ruggieri, 2014). There are many techniques 
to address this to improve fairness, but more 
subtle encodings may be hard to remove without 
impacting accuracy. There is naturally (in the west) 
proportionally less training data about minorities 
(Hardt, 2014), and this sample size disparity will 
often increase error rates for those groups (Zou and  
Schiebinger, 2018), especially when data sources 
do not reflect true epidemiology (Neighbors, 1989) 
or where broader socio-economic factors may 
exclude minorities from health services and clinical 
studies (Schonberger, 2019). However, an influential 
study argued that “relevant attributes”, such as 

5	  Adversarial networks can be used to make models more robust 
against outliers, but they can also be used to deliberately disrupt the 
functionality of OAI models. Inputs can be designed to induce mistakes 
in other networks through imperceptible changes to images, causing 
misclassification. These attacks can be conducted with or without 
access to the policy network of the OAI (Goodfellow, 2017). Researchers 
have suggested embedded applications in medicine may hold technical 
vulnerabilities making them susceptible, especially when there are 
broader economic incentives for attacks in the healthcare system 
(Finlayson et al, 2017). For cases where system security is compromised, 
established case law exists (Kingston, 2018) for establishing liability in 
non-OAI software, but this is not the case in OAI software. 

This issue is further complicated because,  
in an increasingly wide variety of prediction and 
classification tasks, OAI have lower error rates 

than specialists, sometimes substantially (Topol, 
2019). One may thus suggest we should always 

favour OAI in such cases because, on aggregate 
– and in the long run – they produce better 
outcomes. However, this argument misses a 

great deal of nuance. 
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targeting individuals susceptible to addiction, 
are meaningfully shaped by “sensitive attributes”, 
such as growing up in a poorer neighbourhood, 
correlated with a particular ethnicity (Barocas 
and Selbst, 2016). Therefore, removing correlations 
of sensitive attributes, or proxies, significantly 
impacts accuracy (Calder and Verwer, 2010), 
ultimately harming identification and treatment 
of those at higher risk. As such, some trade-off 
between fairness and utility may be unavoidable. 
Nevertheless, if the error rates can be shown to 
be disproportionately distributed (Homer v Chief 
Constable of West Yorkshire Police, 2010), this 

may still present litigation risks through indirect 
discrimination or data protection legislation (Art. 
9 and 22(4) GDPR), where special protections 
when processing sensitive data is required. 
Although this may improve with the digitisation of 
underrepresented group’s medical records, these 
uncertainties may impede developers. Moreover, 
whilst algorithmic discrimination can reinforce 

discrimination, insofar as OAI is reflecting existing 
discrimination in the data, developers may be 
uniquely placed to detect this on aggregate if 
not individually (Savulescu and Maslen, 2015) and 
subsequently correct for this through automated 
decision-making. 

Regulations
The problems arising from OAI may well resolve 

themselves if interpretability methods reach a 
level of detail to satisfy legal requirements in all 
contexts. Indeed, approaches in reinforcement 
learning and models involving causal “do-calculus” 
yield promising results (Lavin, 2019). However, they 
also rely on sometimes substantial assumptions 
about causal relationships. Moving away from this 
associational, a-theoretical and opaque model of 
decision-making is central to the debate about the 
theoretical basis of AI and there may be inherent 
limitations to the ability of many current approaches 
(Pearl, 2018) to produce “explainability”. Creating 
such models without reducing accuracy seems a 
significant hurdle, and in the meanwhile, it may 
be that the fractious domain-specific landscape 
of interpretability methods may continue, and we 
must concede Box’s aphorism that “All models are 
wrong but some are useful”. 

Regulatory approaches have been equally 
problematic (Guihot, 2017). It may be appropriate 
to hold AI to the same standards as humans in 
some circumstances, focusing on the kind of 
explanations required by the law in individual 
contexts (Doshi-Velez et al, 2017) and weighting 

the need for clarity against 
the relative domain risks 
whilst refining interpretability 
methods (Reed, 2018). Some 
have suggested using 
standards-based regulation 
to mitigate risks arising from 
opacity and have argued that 
algorithms should be held to 
even higher standards than 
humans, where explainability 
is also required (Tutt, 2017). The 
European Commission (EC) 
has also been evaluating the 
product liability framework 
to deal with AI concerns 
around their self-learning 

Moving away from this associational, 
a-theoretical and opaque model of 

decision-making is central to the debate 
about the theoretical basis of AI and there 

may be inherent limitations to the ability of 
many current approaches (Pearl, 2018) to 

produce “explainability”.
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capabilities in particular (European Commission, 
2018), while the House of Lords has concluded 
that it is simply not acceptable to deploy any AI  
that has a substantial impact unless it can provide 
a “full and satisfactory explanation” (House of 
Lords, 2018). 

Attempts have been made in this regard, 
but they remain incomplete. For instance, the 
EC expert group on AI (European Commission, 
2018) has broadly addressed the need for 
interpretability mechanisms for explanations and 
to detect bias but does not provide a substantive 
regulatory framework. The FDA seems to have 
the most comprehensive regulatory framework 
for its approval of a few dozen AI applications in 
medicine. It provides standards-based regulation 
for pre-market and post-market approval and 
review, such as protocols for handling algorithmic 
changes by developers that may change the 
output and requiring clear expectations of how 
the model might change over time (FDA, 2018). 
However, it does not provide any requirements for 
transparency in particular decisions or provide an 
explicit framework for the degree of autonomy or 
oversight in decision making. 

Ostensibly it may seem appropriate to favour 
standards-based regulation, similar to schemes in 
finance that are intended to provide transparency 
through disclosure and strict registration 
requirements (Manne, 2007). However, it is not clear 
that, as black box AI becomes more complex with 
the increasing availability of quality data, it would 
necessarily become more auditable – indeed, 
increasing complexity may result in the opposite. 
As such, placing minimum transparency standards 
may restrict any market entrants or require design 
trade-offs, where developers are forced to use a 
shallower architecture with reduced performance. 
Equally, a complex regulatory standards system 
may impose great costs for market entrants with 
regard to meeting compliance requirements, 
thus further increasing the monopolisation of 
AI (Coates, 2015). Standards-based regulations 
that set impossible thresholds for explainability is 
counterproductive and stifles innovation.

Strict liability regimes are another favoured 
approach with, for instance, the European 
Parliament debating the possibility of a “Turing 
registry”, where AI application providers conduct 
“risk pooling” from which to pay out damages 

under a strict liability scheme (European 
Parliament, 2017). Others have proposed doctrines 
such as res ipsa loquitur – or “facts speak for 
themselves” – where negligence is inferred against 
the defendant who must then rebut the prima 
facie case against them (Cassidy v Ministry of 
Health, 1957). This approach is generally applied 
where complicated machinery is involved of 
which the claimant has little knowledge and an 
explanation is not given by the defendant (Laurie 
et al, 2016). However, courts have been reluctant 
to apply the doctrine because it is very difficult 
to establish that a failure to prevent damage 
was caused by a negligent or non-negligent act 
(Ratcliffe v Plymouth & Torbay Health Authority, 
1998). The Automated and Electric Vehicles Act 
2018 imposes a strict liability regime for accidents 
involving autonomous vehicles, allowing injured 
parties to bring claims against insurers and, whilst 
acknowledging in Section 3(2) the possibility of 
contributory negligence, it circumvents decision-
making and oversight questions. Relatedly, often 
the no-fault strict liability for products – in, for 
instance, the Consumer Protection Act 1987 and 
similar international legislation (Wagner, 2018) 
– may be used for claims. Here, a “defect” in a 
“product” would deviate from a standard of safety 
an individual is entitled to expect. However, this may 
only include embedded software (Schonberger, 
2019) and the question of what a defect precisely 
entails concerning OAI remains to be determined.

Often predictive programming necessarily 
involves some degree of unpredictable error (Yadav, 
2017) and as such may lead to widespread breaches 
when regulating algorithms. OAI exacerbates this 
characteristic. Strict liability is only useful when 
developers can predict harmful effects for which 
they might be liable and adjust for them and obtain 
sufficient insurance. They also do not have the 
same level of control as a product designer about 

However, it does not provide  
any requirements for transparency 

in particular decisions or provide an 
explicit framework for the degree  

of autonomy or oversight in  
decision making. 
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known defects. The unpredictability of high-cost 
liability stemming from this scheme would create 
significant barriers to entry and stifle innovation 
(Schwartz, 1992), thus this approach should be 
reserved for the most inherently dangerous 
applications, if any. Yet this regulatory scheme 
relies on aggregate performance, as regulators 
assume that, if developers can predict the error rate 
of the model on aggregate, they can infer from this 
how the model will act in an individual instance. 
This is misguided. Indeed, during an FTC hearing, 
the CEO of the first approved OAI for autonomous 
retinal scanning, when asked how they defined 
an accurate or transparent result, stated “Simply 
correlating AI output to current standard of care 
output does not take into account the underlying 
reasoning and therefore risks” (FTC, 2018). The 
law does not exclusively examine a doctor’s track 
record to determine potential negligence in an 
individual case; it examines the reasonableness of 
the specific decision in question.

The issue with blanket regulatory approaches 
is that they do not acknowledge the variance of 
interpretability methods, nor do they account for 
the degree of supervision and transparency that 
seem central in balancing domain-specific risks. 
lt seems reasonable to ensure OAI is not applied 
in areas where there is an excessive risk; however, 
it may also be undesirable to limit OAI to areas 
we already understand well. When an OAI is 
supervised but has some opacity, an assessment 
may focus on whether the user or creator was 
justified in how they used it, coupled with any 
relevant insight into the OAI itself. This approach 
might rely on the harm being a foreseeable 
consequence of deployment rather than action. 
A regulatory taxonomy of OAI applications may 
be required, which, based on expert insight in a 
particular domain, acknowledges the level of risk 
stemming from the consequences of decisions, 

the degree of interpretability possible with current 
methods and the amount of oversight (Price, 2017) 
required depending on the foreseeability of error.

There are several difficult balances to properly 
align incentives here. Providing too much 
information about internal logic may expose 
proprietary content, while oversight without clear 
boundaries may lead to frivolous litigation, and 
too little of both may disenfranchise individuals. 
Indeed, the lack of direct supervision and 
independence of workers resulting from previous 
industrial revolutions brought difficulties for 
agency law, which led to an expansion of its use 
(Carlson, 2001). A similar expansion to encompass 
OAI may be useful here, specifically the principal-
supervision rule for less dangerous scenarios and 
vicarious liability for more dangerous scenarios 
(Bathaee, 2018).

In essence, the broader problem is that duties of 
care, intent and causation tests are based on our 
understanding of human decision-making and 
ability to verify human behaviour. This evidentiary 
calculus breaks down when we are presented with 
a decision-maker that reasons in a fundamentally 
different way to both humans and hard-coded 
“static” programs. Therefore, a re-evaluation of 
these doctrines seems necessary to account for 
the degree of interpretability, domain-specific 
risks and the level of oversight. ■

Bibliography:

Ananny, M. & Crawford, K. (2016) Seeing Without Knowing: Limitations 
of the Transparency Ideal and its Application to Algorithmic 
Accountability, New Media & Soc 20 http://journalssagepub.com/doi/
full/10.1177/1461444816676645 (Accessed 2nd September 2019).

Bathaee, Y. (2018) The Artificial Intelligence Black Box and the Failure of 
Intent and Causation, Harvard Journal of Law & Technology, 31(2).

Barocas, S. & Selbst, A. (2016) Big Data’s Disparate Impact (2016) Calif L Rev, 
104: 671–732, 694.

Bensoussan, A. (2017) General Data Protection Regulation: Texts, 
Commentaries and Practical Guidelines, Wolters Kluwer, 1st ed.

Burrell, J. (2016) How the Machine ‘Thinks’: Understanding Opacity in 
Machine Learning Algorithms, Sage Publications. 

Calders, T. & Verwer, S. (2010) Three Naive Bayes Approaches for 
Discrimination-free Classification Data Mining and Knowledge Discovery, 
21(2): 277–92.

Carlson, R. (2001) Why the Law Still Can’t Tell an Employee When It Sees 
One, Berkeley J, Emp. & Lab, 22: L. 295, 304.

Caruana, R. et al (2015) Intelligible Models for Healthcare: Predicting 
Pneumonia Risk and Hospital 30-day Readmission, Proc, 21th ACM SIGKDD, 
Int Conference on Knowledge Discovery and Data Mining, ACM: 1721–30.

Castelvecchi, D. (2016) Can We Open the Black Box of AI? Nature, https://
www.ncbi.nlm.nih.gov/pubmed/27708329 

Coates, J. (2015) Cost-Benefit Analysis of Financial Regulation, Yale L.J. 124: 
882, 930.

Deng, L. & Yu, D. (2013) Deep Learning: Methods and Applications, Found & 
Trends Signal Processing 7, 197, 205

Doshi-Velez, F. et al. (2017) Accountability of AI Under the Law: The Role of 
Explanation, https://arxiv.org/abs/1711.01134

Edwards, L., and Veale, M. (2017) Slave to the Algorithm? Why a “Right to 
an Explanation” is Probably not the Remedy you are Looking for, Duke L 
Technol Rev 16: 18, 54.

In essence, the broader problem is that  
duties of care, intent and causation tests are 

based on our understanding of human decision-
making and ability to verify human behaviour. 
This evidentiary calculus breaks down when 
we are presented with a decision-maker that 

reasons in a fundamentally different way to both 
humans and hard-coded “static” programs. 

GLOBAL

https://arxiv.org/abs/1711.01134


55V o l u m e  8 2  /  2 0 1 9

Equality and Human Rights Commission (2015) Your rights to equality from 
the criminal and civil justice systems and national security, Equality Act 
2010, Guidance for individuals, Vol. 3 of 7. P26

European Society of Radiology (2019) What the Radiologist Should Know 
about Artificial Intelligence - An ESR White Paper, Insights Imaging 10(1): 
44. doi10.1186/s13244-019-0738-2 

Finlayson, S.G. et al. (2018) Adversarial Attacks Against Medical Deep 
Learning Systems, https://arxiv.org/abs/1804.05296 

Flach, P. (2012) Machine Learning: The Art and Science of Algorithms That 
Make Sense of Data, Cambridge University Press.

Frontier Economics (2018) The Impact of Artificial Intelligence on Work: An 
Evidence Review Prepared for the Royal Society and the British Academy, 
https://royalsociety.org/-/media/policy/projects/ai-and-work/frontier-review-
the-impact-of-AI-on-work.pdf.

FTC (2018) Hearing #7 on Algorithms, Artificial Intelligence, and Predictive 
Analytics, Panel: Understanding Algorithms, Artificial Intelligence, and 
Predictive Analytics Through Real World Applications, Founder and CEO, 
IDx statements, November 13, https://www.ftc.gov/system/files/documents/
public_comments/2018/11/ftc-2018-0101-d-0004-162932.pdf.

Gigerenzer, G. et al. (2007) Helping Doctors and Patients Make Sense of 
Health Statistics, Psychological Science in the Public Interest, 8(2), doi: 
10.1111/j.1539-6053.2008.00033.x

Goodfellow, I. et al (2016) Deep Learning, MIT Press, http://www.
deeplearningbook.org 

Goodfellow, I. et al. (2017) Adversarial Attacks on Neural Network Policies, 
http://rll.berkeley.edu/adversarial/arXiv2017_AdversarialAttacks.pdf 

Grimmelmann, J. & Westreich, D. (2017) Incomprehensible Discrimination, 
Calif L Rev Online 7: 164–77, 168.

Guidotti, R. (2018) A survey of methods for explaining black box models, 
arXiv preprint arXiv:1802.01938.

Hardt, M. (2014) How Big Data is Unfair, <https://medium.com/@mrtz/how-
big-data-is-unfair-9aa544d739de>.

House of Lords (2018) AI in the UK: Ready, willing and able?,  Select 
Committee on Artificial Intelligence Report of Session 2017–19, published 
16th April 2018, https://publications.parliament.uk/pa/ld201719/ldselect/
ldai/100/100.pdf.

Hulstaert, L. (2018) Understanding model predictions with LIME, Medium, 
https://towardsdatascience.com/understanding-model-predictions-with-
lime-a582fdff3a3b.

Kingston, J. (2018) Artificial Intelligence and Legal Liability, arXiv:1802.07782.

Krause, J. et al. (2018) Grader Variability and the Importance of Reference 
Standards for Evaluating Machine Learning Models for Diabetic 
Retinopathy, Ophthalmology, 125(8): 1264–1272.

Lakkaraju, H. et al. (2017) Interpretable & Explorable Approximations of 
Black Box Models, AʀXɪᴠ, https://arxiv.org/pdf/1707.01154.pdf

Lakkaraju, H. et al. (2017) The Selective Labels Problem: Evaluating 
Algorithmic Predictions in the Presence of Unobservables. In Proceedings 
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery 
and Data Mining, ACM.

Lavin, A. (2019) AI Needs More Why, Forbes, https://www.forbes.com/sites/
alexanderlavin/2019/05/06/ai-needs-more-why/#7089e1e6156d

Laugel, T. et al. (2019) Issues with Post-hoc Counterfactual Explanations: A 
Discussion, arXiv:1906.04774.

Laurie, G. et al. (2016) Mason and McCall Smith’s Law and Medical Ethics, 
OUP 4.112, 10th edition.

Miller R., & S. M. Miller (2007) Legal and Regulatory Issues Related to the 
Use of Clinical Software in Health Care Delivery (423, 426), R.A. Greenes (ed.), 
Clinical Decision Support.

Mittelstadt, B., Wachter, S., and Russell C. (2018) Explaining Explanations in 
AI, arXiv:1811.01439v1 [cs.AI].

Muro, M. et al. (2019) Automation and Artificial Intelligence, Brookings 
Metropolitan Policy Program, https://www.brookings.edu/wp-content/
uploads/2019/01/2019.01_BrookingsMetro_Automation-AI_Report_Muro-
Maxim-Whiton-FINAL-version.pdf 

Neighbors, H.W. et al. (1989) The Influence of Racial Factors on Psychiatric 
Diagnosis: A Review and Suggestions for Research, Comm Ment Health J 
25: 301–11.

Pearl, J. (2018) Theoretical Impediments to Machine Learning With Seven 
Sparks from the Causal Revolution, arXiv:1801.04016.

Peng, L. et al. (2018) Prediction of Cardiovascular Risk Factors from Retinal 
Fundus Photographs via Deep Learning, Nature Biomedical Engineering, 
Volume 2.

Price, W. N. II. (2017) Regulating Black-Box Medicine, Mich. L. Rev. 116: 421, 
https://repository.law.umich.edu/mlr/vol116/iss3/2. 

Reed, C. (2018) How Should we Regulate Artificial Intelligence? Philos Trans 
A Math Phys Eng Sci. 376(2128): pii: 20170360. <https://www.ncbi.nlm.nih.
gov/pubmed/30082306.

Ribeiro, M. T. et al. (2016) Why Should I Trust You?: Explaining The 
Predictions of Any Classifier, in Proceedings of the 22nd ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining. ACM. 

Robinson, R. (2010) The Role of Causation in Decision of Tort Law, Journal of 
Law, Development, and Politics, 1(2).

Romei, A. & Ruggieri, S. (2014) A Multidisciplinary Survey on Discrimination 
Analysis, Knowl Eng Rev, 29(5): 582–638.

Ruyu Qi, S. (2018) Google’s AI Can See Through Your Eyes What Doctors 
Can’t, https://medium.com/health-ai/googles-ai-can-see-through-your-
eyes-what-doctors-can-t-c1031c0b3df4. 

Savulescu J. and Maslen, H. (2015) Moral Enhancement and Artificial 
Intelligence: Moral AI?’, in J. Romportl, E. Zackova, and J. Kelemen (eds), 
Beyond Artificial Intelligence, Topics in Intelligent Engineering and 
Informatics, Volume 9 (Springer, Cham 2015).

Schonberger, D. (2019) Artificial intelligence In Healthcare: A Critical 
Analysis of the Legal and Ethical Implications, Int J Law Info Tech, 27 (2): 171

Schwartz, A. (1992) The Case Against Strict Liability, Fordham L. Rev., 60: 819.

Selbst, A. & Powles, J. (2017) Meaningful Information and the Right to 
Explanation, INT’L DATA PRIV, L. 7: 233, https://doi.org/10.1093/idpl/ipx022.

Shladover, S. (2016) The Truth about “Self-Driving” Cars, Scientific American, 
314: 53–57. 

Snow, J. (2018) AI is Continuing its Assault on Radiologists, MIT Technology 
Review, https://www.technologyreview.com/f/610017/ai-is-continuing-its-
assault-on-radiologists/. 

Stumpe, M. & Peng, L. (2017) Assisting Pathologists in Detecting Cancer 
with Deep Learning, Google Res Blog, https://research.googleblog.
com/2017/03/assisting-pathologists-in-detecting.html

Topol, E. (2019) High-performance Medicine: The Convergence of Human 
And Artificial Intelligence, Review Article, Nature Medicine, 25.

Tutt, A. (2017) An FDA for Algorithms, Admin L Rev, 69: 83.

Wachter S., et al. (2018) Counterfactual Explanation without Opening the 
Black Box: Automated Decisions and the GDPR, Harvard Journal of Law & 
Technology, 31(2).

Wagner, G. (2018) Robot Liability, https://ssrn.com/abstract=3198764, http://
dx.doi.org/10.2139/ssrn.3198764.

Warden, P. (2018) The Machine Learning Reproducibility Crisis, https://
petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis/.

Wexler, J. (2017) Google AI Blog, Facets: An Open Source Visualization Tool 
for Machine Learning Training Data, https://ai.googleblog.com/2017/07/
facets-open-source-visualization-tool.html. 

Wexler, J. (2018) The What-If Tool: Code-Free Probing of Machine Learning 
Models, Google AI Blog, https://ai.googleblog.com/2018/09/the-what-if-tool-
code-free-probing-of.html.

Yadav, Y. (2016) The Failure of Liability in Modern Markets, VA. L. Rev, 102: 
1031, 1077 

Yanase, J. & Triantaphyllou, E. (2019) A Systematic Survey of Computer-
Aided Diagnosis in Medicine: Past and Present Developments, Expert 
Systems with Applications, 112821, doi:10.1016/j.eswa.2019.112821 

Zou, J. & Schiebinger, L. (2018) AI Can Be Sexist and Racist — It’s Time to 
Make it Fair, Nature, 559: 324–6.

Cases

Bolam v Friern Hospital Management Committee [1957] 1 WLR 583.

Bolitho v City and Hackney Health Authority [1998] AC 232.

Cassidy v Ministry of Health [1951] 2 KB 343.

CJEU, Case C-415/10, Meister v Speech Design, 19 April 2012, para 42.

Cooper v Royal United Hospital Bath NHS Trust [2004] All ER (D) 51.

Customs & Excise Commissioners v Barclays Bank [2006] UKHL28 at [14].

De Freitas v O’Brien and Connolly [1995] 6 Med LR 108.

Homer (Appellant) v Chief Constable of West Yorkshire Police (Respondent), 
[2012] UKSC 15, on appeal from: [2010] EWCA Civ 419, para 24Ratcliffe v 
Plymouth & Torbay Health Authority [1998] PIQR P170 (CA).

State v. Loomis, 88 N.W.2d 749 (Wis.2016).

United States v. Coscia, 866 F.3d 782, 790 (7th Cir. 2017).

Legislation

Automated and Electric Vehicles Act 2018. 

Consumer Protection Act 1987.

Copyright and Related Rights Regulations 2003, Section 296zd 1(b)(iii).

Equality Act, 2010.

General Data Protection Regulation (GDPR).

Working papers

European Commission, Working Document, Liability for emerging 
digital technologies Accompanying the document Communication from 
the Commission to the European Parliament, the European Council, 
the Council, the European Economic and Social Committee and the 
Committee of the Regions Artificial intelligence for Europe, Brussels, 
25.4.2018 SWD(2018) 137 final (EC Staff Working Document on Liability, 
2018).

FDA Artificial Intelligence and Machine Learning Discussion Paper, 2018, 
2018https://www.fda.gov/media/122535/download.

GLOBAL

https://www.ftc.gov/system/files/documents/public_comments/2018/11/ftc-2018-0101-d-0004-162932.pdf
https://www.ftc.gov/system/files/documents/public_comments/2018/11/ftc-2018-0101-d-0004-162932.pdf
https://publications.parliament.uk/pa/ld201719/ldselect/ldai/100/100.pdf
https://publications.parliament.uk/pa/ld201719/ldselect/ldai/100/100.pdf
https://ssrn.com/abstract=3198764
http://dx.doi.org/10.2139/ssrn.3198764
http://dx.doi.org/10.2139/ssrn.3198764
https://ai.googleblog.com/2017/07/facets-open-source-visualization-tool.html
https://ai.googleblog.com/2017/07/facets-open-source-visualization-tool.html

	_GoBack

