Upsala J Med Sci 90: 173-179, 1985 

Arterial Hypertension-A Disease of 
the Juxtaglomerular Apparatus? 

A. Erik G .  Person and UK Boberg 
Department of Urology, University Hospital, and the Department of Physiology 

and Medical Biophysics, University of Uppsala, Sweden 

ABSTRACl 

From a s p e c i a l  s t r a i n  o f  g e n e t i c a l l y  h y p e r t e n s i v e  r a t s ,  t h e  M i l a n  h y p e r t e n -  

s i v e  s t r a i n  (MHS), a r t e r i a l  h y p e r t e n s i o n  can be t r a n s p l a n t e d  w i t h  t h e  k i d n e y  t o  

t h e  M i l a n  n o r m o t e n s i v e  s t r a i n  (MNS). D u r i n g  development o f  h y p e r t e n s i o n  i n  MHS 

r a t s  t h e r e  was an a c t i v a t i o n  o f  t h e  t u b u l o g l o m e r u l a r  feedback c o n t r o l  t h a t  re- 
duced g l o m e r u l a r  f i l t r a t i o n  r a t e ,  l e a d i n g  t o  r e t e n t i o n  o f  e l e c t r o l y t e s  and 

f l u i d .  T h i s  i n c r e a s e d  e x t r a c e l l u l a r  f l u i d  volume r e d u c e s  feedback s e n s i t i v i t y ,  

b u t  i n  a f a s h i o n  t h a t  g i v e s  r i s e  t o  c h r o n i c  e x t r a c e l l u l a r  f l u i d  e x p a n s i o n  and 

can t h e r e b y  r a i s e  t h e  b l o o d  p r e s s u r e .  I n  a l i m i t e d  sense, a r t e r i a l  h y p e r t e n s i o n  

i n  t h e s e  a n i m a l s  e x i s t s  t o  p r e v e n t  t h e  k i d n e y  f r o m  r e t a i n i n g  more e x t r a c e l l u l a r  
f l u i d  volume. The a l t e r e d  f u n c t i o n  i n  t h e  j u x t a g l o r n e r u l a r  a p p a r a t u s  o f  t h e  MHS 

r a t s  t h u s  may e x p l a i n  t h e  r i s e  i n  a r t e r i a l  b l o o d  p r e s s u r e .  

INTRODUCTION 

The t u b u l o g l o m e r u l a r  feedback c o n t r o l  (TGF) i s  i m p o r t a n t  f o r  t h e  c o n t r o l  o f  

e x t r a c e l l u l a r  f l u i d  volume and a r t e r i a l  b l o o d  p r e s s u r e  ( 1 1 , 1 9 ) ,  Recent e x p e r i -  

ments i n  o u r  l a b o r a t o r y  (5,12,13) have i n d i c a t e d  t h a t  m a l f u n c t i o n i n g  o f  t h i s  

mechanism may be t h e  cause o f  development o f  a r t e r i a l  h y p e r t e n s i o n  i n  r a t s  o f  

t h e  M i l a n  h y p e r t e n s i v e  s t r a i n  (MHS). Some e v i d e n c e  i n  s u p p o r t  o f  t h i s  c o n c e p t  

i s  d i s c u s s e d  i n  t h e  p r e s e n t  paper. 

I n  r e c e n t  y e a r s  t h e  g r e a t  i m p o r t a n c e  o f  t h e  i n t e r s t i t i a l  space and i t s  

p r e s s u r e s  f o r  t h e  f u n c t i o n  o f  t h e  k i d n e y  has become a p p a r e n t .  I n  t h e  r a t ,  t h e  

r e n a l  i n t e r s t i t i a l  h y d r o s t a t i c  p r e s s u r e  (Pint) i s  a b o u t  1-2 mm Hg under c o n t r o l  

c o n d i t i o n s ,  and i n c r e a s e d  by a b o u t  2 mm Hg d u r i n g  s a l i n e  volume e x p a n s i o n  b y  
5 5 o f  body w e i g h t  (16,ZO). The i n t e r s t i t i a l  o n c o t i c  p r e s s u r e  ( 3  . ) was f o u n d  

t o  b e  a b o u t  4-5 mm Hg and t o  d e c r e a s e  b y  about 2 vm Hg d u r i n g  s a l i n e  volume ex- 
p a n s i o n  (16). C o n s i d e r a b l e  change e v i d e n t l y  o c c u r r e d  i n  t h e  n e t  i n t e r s t i t i a l  

p r e s s u r e  ( P .  -$. 

i n t  

) d u r i n g  s a l i n e  volume expansion, a s i t u a t i o n  which we have i n t  i n t  

173 



d e s c r i b e d  a s  " i n t e r s t i t i a l  oedema". Under c o n d i t i o n s  o f  d e h y d r a t i o n ,  o n  t h e  

o t h e r  hand, t h e  r a t s  showed v e r y  l o w  h y d r o s t a t i c  and h i g h  i n t e r s t i t i a l  o n c o t i c  

p r e s s u r e ,  c o l l e c t i v e l y  d e s i g n a t e d  " i n t e r s t i t i a l  d e h y d r a t i o n "  i n  o u r  s t u d i e s .  

I n  t h e  d i s c u s s i o n  o f  volume r e g u l a t i o n ,  t h e  nephron may be c o n s i d e r e d  as two 

u n i t s .  One i s  v o l u m e - r e g u l a t i n g ,  c o n s i s t i n g  o f  t h e  g l o m e r u l u s ,  p r o x i m a l  t u b u l e ,  

and l o o p  o f  H e n l e  t o  t h e  macula densa, a t  w h i c h  p o i n t  t h e  p o s s i b i l i t y  o f  a f e e d -  

back l o o p  e x i s t s .  The o t h e r  u n i t  may be c a l l e d  t h e  f i n e - a d j u s t i n g  e l e c t r o l y t e  

and w a t e r  e x c r e t o r y  u n i t ,  c o n s i s t i n g  o f  t h e  d i s t a l  t u b u l e  and c o l l e c t i n g  d u c t s .  

C o n c e r n i n g  t h e  v o l u m e - r e g u l a t i n g  u n i t ,  w h i c h  we s h a l l  d i s c u s s  i n  t h i s  paper, 

a l a r g e  f l u i d  volume i s  f i l t e r e d  i n t o  Bowman's space and from t h e r e  f l o w s  i n t o  

t h e  p r o x i m a l  t u b u l e .  F l u i d  r e a b s o r p t i o n  i n  t h i s  segment u s u a l l y  i s  a c o n s t a n t  

f r a c t i o n  o f  t h e  t o t a l  f i l t r a t e ,  a b o u t  2 / 3 .  I t  would seem t h a t  t h e  mechanism o f  

t h i s  f l u i d  r e a b s o r p t i o n  i s  m u l t i f a c t o r i a l ,  and a l s o  t h a t  a change i n  i n t e r s t i t -  

i a l  p r e s s u r e  i n d u c e d  b y  a l t e r e d  c a p i l l a r y  p r e s s u r e  can modulate f l u i d  t r a n s f e r  

( 6 , 7 ) .  I n  a s i t u a t i o n  t h a t  l e a d s  t o  " i n t e r s t i t i a l  oedema", t h e  p r o x i m a l  t u b u l a r  

f l u i d  r e a b s o r p t i o n  i s  reduced, whereas d u r i n g  " i n t e r s t i t i a l  d e h y d r a t i o n "  i t  i s  

i n c r e a s e d .  T h i s  a l t e r a t i o n  i n  f l u i d  a b s o r p t i o n  r a t e  may be due t o  an e f f e c t  on 

a d i r e c t  pressure-dependent f l u i d  t r a n s f e r  a c r o s s  t h e  p r o x i m a l  t u b u l a r  w a l l  (1, 

10). The n e x t  segment down t h e  nephron t h r o u g h  w h i c h  t h e  f l u i d  passes i s  t h e  

l o o p  o f  Henle. D u r i n g  t h i s  passage e l e c t r o l y t e s  a r e  p r e f e r e n t i a l l y  r e a b s o r b e d ,  

w h i l e  w a t e r  i s  t r a n s p o r t e d  t o  a l e s s e r  e x t e n t .  T h i s  e x p l a i n s  t h e  l o w  sodium 

c o n c e n t r a t i o n  i n  t h e  e a r l y  d i s t a l  t u b u l e .  I f  t h e  f l u i d  f l o w  t h r o u g h  t h i s  seg- 

ment i s  i n c r e a s e d ,  e l e c t r o l y t e  r e a b s o r p t i o n  w i l l  a l s o  be i n c r e a s e d ,  b u t  n o t  

f u l l y  p r o p o r t i o n a t e  t o  t h e  i n c r e a s e  i n  f l o w ,  w i t h  t h e  r e s u l t  t h a t  t h e  e a r l y  

d i s t a l  sodium c h l o r i d e  c o n c e n t r a t i o n ,  w h i c h  n o r m a l l y  i s  l o w ,  w i l l  r i s e  ( 8 , 1 4 ) .  

The s i t e  o f  c o n t a c t  between t h e  a l t e r e d  c e l l s  i n  t h e  d i s t a l  t u b u l e ,  t h e  

macula densa c e l l s  and a r t e r i o l e s  i n  t h e  v a s c u l a r  p o l e  o f  t h e  k i d n e y ,  and t h e  

renin-granule-containing c e l l s  c o n s t i t u t e  t h e  j u x t a g l o m e r u l a r  a p p a r a t u s .  T h i s  
i s  an i m p o r t a n t  r e g u l a t o r y  u n i t ,  t h a t  can sense t h e  c h l o r i d e  c o n c e n t r a t i o n  i n  

t h e  d i s t a l  t u b u l a r  f l u i d .  The system is a c t i v a t e d  when t h e  e l e c t r o l y t e  concen- 

t r a t i o n  i n c r e a s e s ,  l e a d i n g  t o  r e d u c t i o n  i n  g l o m e r u l a r  c a p i l l a r y  p r e s s u r e  and 

g l o m e r u l a r  f i l t r a t i o n  r a t e  (GFR) v i a  a c t i v a t i o n  o f  t h e  TGF mechanism, and t o  

i n c r e a s e d  r e n i n  r e l e a s e .  The b a s i c  f u n c t i o n  o f  a v o l u m e - r e g u l a t i n g  u n i t  i n  t h e  

nephron can now be o u t l i n e d .  

I f  GFR f o r  some r e a s o n  t e n d s  t o  i n c r e a s e  a s  a r e s u l t  o f  c o n s t a n t  f r a c t i o n a l  

p r o x i m a 1  r e a b s o r p t i o n ,  t h e  f l u i d  d e l i v e r y  t o  t h e  l o o p  o f  H e n l e  w i l l  be en- 

hanced. An i n c r e a s e d  f l o w  t h r o u g h  t h i s  nephron segment w i l l  i n c r e a s e  t h e  e l e c -  

t r o l y t e  c o n c e n t r a t i o n  i n  t h e  e a r l y  d i s t a l  t u b u l e  and t h e r e b y  a c t i v a t e  t h e  j u x -  

t a g l o m e r u l a r  a p p a r a t u s  t o  l o w e r t h e G F R  and p r o d u c e  r e n i n .  I t  has a l s o  been 

found, however, t h a t  t h e  TGF mechanism i s  o n l y  s l i g h t l y  a c t i v a t e d  under c o n t r o l  

174 



conditions (11,151, i.e. the operational point is close to no activation at all 

(Fig. 1). This means that under control conditions there is very little activ- 
ation of the TGF system, just as there is only very low renin production. 

The question therefore arises: When is the feedback system activated to e f -  
fect appreciable reduction of GFR '? From several lines of evidence we have de- 
duced that changes in the extracellular fluid volume o r  the blood pressure will 
alter the sensitivity of the TGF via changes in renal interstitial hydrostatic 
and oncotic pressures (11). Under conditions of saline volume expansion o r  post- 
unilateral nephrectorny, o r  in the initial period of ureteral occlusion- all 
situations with "interstitial oedema"- a low o r  abolished TGF response was 

found, as shown by a shift of the response curve to the right in Fig. 1. This 
of course constitutes an important resetting of the sensitivity to avoid reduc- 

tion of GFR in a situation with demand f o r  increased fluid excretion. GFR con- 
sequently can remain high despite increased distal delivery o f  fluid. I n  situat- 

ions such as saline volume expansion, renin release also is low. 

(mmHg) 
glomerular 
c a p i l l a r y  

p r e s s u r e  
0 operation point 

60 - e r s t  i t i a I o edema " 

5 5  

50 c o n t r o l  

4 5  - 

- 

- 

I n t e r s t  i t i a I de h y dr a t ion " 
4G - 

20 30 40 10 
Loop of Henle f l o w  r a t e  (nllmin) 

Fig. 1. Glomerular capillary pressure estimated for stop-flow pressure in re- 
lation to the f l o w  rate in the loop o f  Henlc. Comparisons under con- 
trol conditions or with "interstitial oedema" o r  "interstitial dehyd- 
ration". The operation point for the mechanism is shown. 

175 



In states of dehydration, hypovolaemia o r  hypotension, or following unilater- 
al ureteral occlusion - all situations with "interstitial dehydration"- we 
found high TGF sensitivity with a low flow threshold and a large reduction o f  
maximal glomerular capillary pressure in response to increased flow. This im- 
plies a shift of the response curve to the left compared with the control curve 
in Fig. 1. Further, in all of these situations with "interstitial dehydration", 
although the distal delivery of fluid was normal o r  even subnormal, the increase 
in sensitivity was so large that the feedback was greatly activated to reduce 
glomerular capillary pressure and GFR. In dehydration, hypovolaemia and hypo- 
tension the renin releaseincreased, indicating that activation of the T G F  mech- 
anism also proceeds parallel with renin release, a concept which accords with 
findings in earlier direct micropuncture studies ( 9 ) .  The TGF thus is activated 
as a consequence of the extracellular fluid needs and the blood pressure level, 
and not solely as a result of increased delivery of fluid. 

This interrelationship, representing the influence of renal interstitial 
pressure on renal function, is illustrated in Fig. 2. G F R  and tubular fluid 
reabsorption, the latter being influenced by interstitial pressure, determine 
the excretion rate. Furthermore, GFR and fluid reabsorption up to the early 
distal tubule determine the fluid load tothe juxtaglomerular apparatus. The 
response of this apparatus then depends on the degree of stimulation of the 
renal interstitial pressure. In situations with high-degree stimulation of the 
interstitial pressure receptor mechanism, such as hypotension, hypovolaemia and 
dehydration, the sensitivity of the TGF mechanism will be so high that even nor- 
mal o r  reduced distal delivery of fluid will be sufficient to activate the jux- 
taglomerular apparatus that reduces GFR and increases renin production. These 
alterations will in turn change the urine excretion rate, which will lead to 
restoration of the fluid balance towards the control level. This feedback con- 

trol loop will then act to restore the disturbed extracellular fluid volume 
balance to the control level and to the control operation point. Such resetting 
of the TGF sensitivity is therefore an important determinant of body fluid vol- 
ume and an important factor in normalisation of different types of volume o r  
blood pressure disturbance. The TGF mechanism will strive to restore the fluid 
volume of the body so that it attains the operation point on the control curve. 
In this fashion the T G F  can determine the total volume of body fluid. 

The link between extracellular fluid volume and blood pressure is not yet 
clear, though theories concerning the mode of control have been proposed (17). 
It is clear, however, that in patients without kidneys the extracellular volume 
influences blood pressure. Since the T G F  mechanism and its resetting are im- 
portant for the actual volume of the extracellular fluid, we made comparisons 
of the T G F  and its resetting between rats of the Milan hypertensive strain 

176 



c NS 
I 
I 

W - Tubular 
apparatus 

V I Angiotensinl tubular 
. 

L I I 
rurine excretion] 

V 
Renal lntersti t ial Extra cell. 

vdume 
pressure 4 fluid 

F i g .  2. B l o c k  diagram i l l u s t r a t i n g  t h e  i n f l u e n c e  o f  r e n a l  i n t e r s t i t i a l  
p r e s s u r e  i n  r e n a l  volume r e g u l a t i o n .  
Reproduced by p e r m i s s i o n  from t h e  E d i t o r  o f  Kidney I n t e r n a t i o n a l  
( f r o m  r e f e r e n c e  11). 

(MHS) and t h e  M i l a n  normotensive s t r a i n  (MNS). These s t u d i e s  were o f  p a r t i c u l a r  

i n t e r e s t  because t h e  h y p e r t e n s i v e  disease i n  MHS r a t s  can be t r a n s p l a n t e d  w i t h  

t h e  kidney ( 2 ) .  

Because o f  d i f f e r e n c e s  i n  r e n a l  f u n c t i o n ,  we s t u d i e d  MHS r a t s  d u r i n g  t h r e e  

phases o f  l i f e ,  and MNS r a t s  a t  corresponding ages. The r a t s  were f i r s t  s t u d i e d  

i n  t h e  p r e h y p e r t e n s i v e  phase, a f t e r  weaning a t  t h e  age o f  4-5 weeks, when t h e i r  

weight was 60-100 kg. The second phase was d u r i n g  development o f  h y p e r t e n s i o n ,  

which occurs a t  5-7 weeks when t h e  body weight i s  90-150 g, and t h e  t h i r d  was 

an a d u l t  phase, a t  age about 3 months w i t h  weight 250-350 9. E a r l i e r  s t u d i e s  by 

o t h e r  a u t h o r s  ( 3 )  showed t h a t  MHS r a t s  i n  t h e  p r e h y p e r t e n s i v e  phase had h i g h  

GFR and low r e n i n  p r o d u c t i o n  compared w i t h  MNS r a t s .  I n  r e c e n t  i n v e s t i g a t i o n s  

( 5 , 1 2 )  we found t h a t  i n  t h e  p r e h y p e r t e n s i v e  phase t h e  MHS r a t s  had no TGF re- 

sponse a t  a l l ,  w h i l e  MNS r a t s  showed normal response. T h i s  absence o f  a feed- 

back response can e x p l a i n  t h e  h i g h  GFR, s i n c e  t h e  o p e r a t i o n  p o i n t  u s u a l l y  shows 

some s l i g h t  a c t i v a t i o n  o f  t h e  TGF mechanism i n  response t o  reduced GFR. These 

f i n d i n g s  a r e  a l s o  i n  l i n e  w i t h  t h e  low r e n i n  r e l e a s e  t h a t  was observed. 

D u r i n g  development o f  h y p e r t e n s i o n ,  by c o n t r a s t ,  t h e  MHS r a t s  d i s p l a y e d  a 

TGF mechanism w i t h  very h i g h  s e n s i t i v i t y ,  w i t h  a low f l o w  t h r e s h o l d  l e a d i n g  t o  

177 



activation o f  the TGF to reduce GFR. In this phase there is relative reduction 
in GFR and relative increase in renin production and sodium retention. These 

observations can readily be explained by the high feedback sensitivity, which 
will reduce GFR and retain electrolytes. The process thus will lead to fluid 
retention in the MHS animals that will tend to normalize TGF sensitivity but 
also increase arterial blood pressure. Indeed, in the adult MHS rats we found 
a normal TGF response. However, both in the adult MHS rats and during the de- 
velopment of hypertension, the resetting of TGF sensitivity was impaired. Dur- 
ing volume expansion the high sensitivity was only slightly reduced, and was not 

reset to a lower level as it was in the MNS rats. We also found that the inter- 
stitial pressure was normal both under control conditions and during volume ex- 
pansion. A change in interstitial pressure could therefore not explain the im- 
paired TGF resetting. 

The mechanism of action, speculatively, seems to be as follows. There is an 
increased transmembrane electrolyte transport in red cells and proximal tubular 
cells of MHS rats. Many cells in the MHS rat appear to have this transport ab- 

normality (4). If the abnormal transport occurs also in the macula densa cells, 
an increase in chloride o r  sodium chloride transport may activate the feedback 
and explain the high sensitivity that develops in this situation. The impaired 

resetting during volume expansion will then keep GFR low and retain fluids and 

electrolytes even when there is a volume overload. The result will be a rise in 
arterial blood pressure. Both the volume expansion and the increase in blood 

pressure can then restore the TGF sensitivity to a normal level. Thus, in a 
limited sense it appears that the high arterial pressure in the MHS rats exists 
in order to prevent the kidney from retaining an even greater extracellular 

volume of fluid. These studies have convinced us that the TGF mechanism plays 

an 
in 

1. 

2 .  

3. 

4. 

178 

important r o l e  in the development and maintenance of arterial hypertension 
the MHS rats. 

REFERENCES 

Agerup, B .  & Persson, A.E.G.: Modulation of proximal tubular hydraulic 
conductivity by peritubular capillary oncotic pressure. Acta Physiol Scand 
115:355-359,1982. 
Bianchi, G., Fox, U., Difrancesco, C.F., Giovanetti, A.M. & Pagetti, D.: 
Blood pressure changes produced by kidney crosstransplantation between 
spontaneously hypertensive rats and normotensive rats. Clin Sci Mol Med 
47:435-448,1974. 
Bianchi, G., Baer, P.G., Fox, U., Duzzi, L . ,  Pagetti, D. & Giovanetti, 
D.M.: Changes in renin, water balance and sodium balance during develop- 
ment of high blood pressure in genetically hypertensive rats. Circ Res 
37:153-161,1975. 

Bianchi, G., Ferrari, P. & Barber, B.R.: The Milan hypertensive strain. 
In Handbook of Hypertension, vol. 4. Experimental and genetic models o f  



hypertension. Ed. de Jons. Elsevier Scient Pub1 1984. 
Boberg, U. & Persson, A.E.G.: Increased tubuloglomerular feedback activity 
in Milan hypertensive rats. Am J Physiol: Submitted. 
Brenner, B.M., Falchuk, K.H., Keimowitz, R.L. & Berliner, R.W.: The relat- 
ionship between capillary protein concentration and fluid reabsorption by 
the renal proximal tubule. J Clin Invest 48:1519-1531,1969. 
Ichikawa, I., Hoyer, J.R., Seiler, M.W. & Brenner,B.M.: Mechanism of 
glomerulotubular balance in the setting of heterogeneous glomerular in- 
jury. J Clin Invest 69:185-198,1982. 
Morgan,T. & Berliner, R.W.: A study by continuous microperfusion of water 
and electrolyte movements in the loop of Henle and distal tubule o f  the 
rat. Nephron 6:388-405,1969. 
Morgan, T. & Davis, J.M.: Renin secretion at the individual nephron level. 
Pflugers Arch 359:23-31,1975. 
Persson, A.E.G., Schnermann,J., Agerup, B. & Eriksson, N-E.: The hydraulic 
conductivity of the rat proximal tubular wall. Determinations with coll- 
oidal solution. Pflugers Arch 36095-44,1975. 

Persson, A.E.G., Boberg, U., Hahne,B., Muller-Suur, R., Norlhn, B-J. & 
Selen, G. Interstitial pressure as a modulator of the tubuloglomerular 
feedback control. Kidney Int 22:122-128,1982. 
Persson, A.E.G., Bianchi, G. & Boberg, U.: Evidence of defective tubulo- 
glornerular feedback control in rats of the Milan hypertensive strain (MHS). 
Acta Physiol Scand 122:217-219,1984. 
Persson, A.E.G., Bianchi, G. & Boberg, U.: Tubuloglomerular feedback in 
hypertensive rats of the Milan strain. Acta Physiol Scand 123:135-146,1985. 
Schnermann, J.: Microperfusion study of single short loop o f  Henle in rat 
kidney. Pflugers Arch 300:255-282,1968. 
Schnermann, J., Persson, A.E.G. & Agerup, 6 . :  Tubuloglomerular feedback: 
nonlinear relation between glomerular hydrostatic pressure and loop of 
Henle perfusion. J Clin Invest 58:862-869,1973. 
Selen,G. & Perssor1,A.E.G.: Hydrostatic and oncotic pressures in the inter- 
stitium of dehydrated and volume-expanded rats. Acta Physiol Scand 117: 

De Wardener, H.E. & MacGregor,G.A.: Dahl's hypothesis that a saluretic 
substance may be responsible for a sustained rise in arterial pressure: 
Its possible role in essential hypertension. Kidney Int 18:l-9,1980. 

Wolgast,M., Persson,E., Schnermann,J., Ulfendah1,H. & Wunderlich,P.: The 
colloid osmotic pressure of the subcapsular interstitial fluid of rat kid- 
neys during hydropenia and volume expansion. Pflugers Arch 340:123-131, 
1973. 
Wright, F.S. & Briggs, J.P.: Feedback control o f  glomerular blood flow, 
pressure and filtration rate. Physiol Rev 59:958-1006,1979. 
Wunderlich,P., Persson,E., Schnermann,J., Ulfendah1,H. & Wolgast,M.: Hy- 
drostatic pressure in the subcapsular interstitial space o f  rat and dog 
kidneys. Pflugers Arch 328:307-319,1971. 

75-81,1983. 

5. 

6. 

7. 

8 .  

9. 

10. 

11. 

1 2 .  

13. 

14. 

15. 

16. 

1 7 .  

18. 

19. 

20. 

Address for reprints 

A. Erik G. Persson 
Department of Urology 
University Hospital 
S-751 85 Uppsala 
Sweden 

179