02_De Rios-1.indd UDC 574.58:595.2(23.071:83) FIRST DESCRIPTIONS OF AQUATIC ARTHROPODS IN AN UNPOLLUTED NATIVE FOREST RELICT (RUCAMANQUE, 38° S, ARAUCANIA REGION, CHILE) P. De los Ríos-Escalante1,2, A. Espinosa3, P. Núñez3 1Universidad Católica de Temuco, Facultad de Recursos Naturales, Departamento de Ciencias Biológicas y Químicas, Casilla 15-D, Temuco, Chile E-mail: prios@uct.cl 2Núcleo de Estudios Ambientales, UC Temuco 3Universidad de la Frontera, Facultad de Ciencias Agropecuarias y Forestales, Departamento de Ciencias Forestales, Casilla 54-D, Temuco, Chile P. De los Rios-Escalante (https://orcid.org/0000-0001-5056-7003) First Descriptions of Aquatic Arthropods in an Unpolluted Native Forest Relict (Rucamanque, 38° S, Araucaria Region, Chile). De los Ríos-Escalante, P., Alejandro Espinosa, A., Núñez, P. — Th e Araucania region (38° S, Chile) originally had native perennial forest in middle valleys regions, that was gradually replaced by towns and agricultural zones during the last century, nevertheless there is some relicts of these native forests that are preserved, one of these relicts is Rucamanque, a protected area in the surrounding of Temuco town. Th e aim of the present study was a fi rst aquatic Arthropoda description in a stream of this protected area using species co-occurrence and niche overlap null models. Th e results of species co-occurrence null model revealed that species associations are random, whereas the results of niche sharing revealed that species reported have diff erent ecological niches, and in consequence there is not interspecifi c competence. Th e exposed results revealed the presence of aquatic fauna representative for unpolluted streams; similar descriptions were found for other similar inland water ecosystems in Argentinean and Chilean Patagonia. K e y w o r d s : aquatic insects, crustaceans, community, null models, Patagonia, relict forest. Introduction Th e inland water fauna in Chile is characterized by their marked endemism (Jara et al., 2006; Domínguez & Fernández, 2009; De los Ríos-Escalante et al., 2013; Jara, 2013; Rudoplh, 2013), that is enhanced at small spatial scales, such as small valleys (Jara, 2013; Rudolph, 2013). In this context, there are many species poorly studied or endangered by habitat reduction because during the last century it has a marked replace of native perennial forest by diff erent kind of human activities, such as towns or agricultural zones (Jara, 2013; Rudolph, 2013). Zoodiversity, 55(3): 195–200, 2021 DOI 10.15407/zoo2021.03.195 196 P. De los Ríos-Escalante, A. Espinosa, P. Núñez In this context, in northern Chilean Patagonia (38–42° S), there are many protected areas with native perennial forest with many kind of unpolluted water bodies such as wetlands, streams and small lakes associated, that are poorly studied in their aquatic fauna (Correa-Araneda et al., 2017). Also, other important risk for invertebrate native species conservation is the presence of introduced salmonids that are very invasive species that has a strong predator against native benthic fauna, specifi cally insects and crustaceans (Soto et al., 2006, 2007; Encina et al., 2017). In this context, the main component of benthic fauna in aquatic streams are larvae of aquatic insects, and decapods (Valdovinos et al., 2010), being some of these groups very sensitive to aquatic pollution, being a potential bio-indicator species (Figueroa et al., 2003, 2007; Correa-Araneda et al., 2010; De los Ríos-Escalante et al., 2020 a; Figueroa & De los Ríos-Escalante, in press). In this context, it would have species present only in unpolluted zones, such as native forest zones as protected areas, that are located in mountain zones with long mountain paths and access diffi cult (De los Ríos-Escalante et al., 2013). One of these sites is the called Rucamanque, that is a zone located in mountains (400 m a. s. l.) in middle valley in the surrounding of Temuco town, this site is a relict of perennial native forest, that would be the original vegetation before Chilean occupation and colonization of Araucania region (Salas, 2002, Fierro et al., 2011). Th is site is unpolluted with presence of small pristine streams (Barra & Riquelme, 2017; Riquelme & Barra, 2017). Th e aim of the present study is do a fi rst community description of aquatic Arthropoda, collected in a stream of Rucamanque forest, using null models in ecology for determine the presence or absence or structured patterns. Material and methods Study area: Rucamanque forest (38°39´ S; 72°35´ W, fi g. 1) is a relict of native forest located in the surroundings of Temuco town with 435.1 Ha, this site has native forest with Aetoxicon punctatum Ruiz et Pav., Nothofagus obliqua (mirb) Oerst., Eucryphia cordifolia Cav., Laurelia sempervirens Ruiz et Pav, Persea lingue Ruiz et Pav., Lauereliopsis philipiana (Looser) Schode and Weinmannia trichosperma Cav. (Salas, 2002; Fierro et al., 2011). Th is site has numerous mountain paths with small streams with access diffi cult, the studied site was a small stream located inside the park aft er walking a long mountain paths (Riquelme & Barra, 2017). Th e site was visited at April and May 2017, that corresponded to southern autumn, when the stream is present, because it has low fl ow in summer due dry season the stream is located in mountain slope with native forest. Benthic samples were taken using 50 x 50 cm Surber net randomly of 500 m2 mesh size, fi ve samples at April, and three samples at May. Collected specimens were fi xed in absolute ethanol, quantifi ed and identifi ed in according to literature descriptions (Dominguez & Fernandez, 2009). A species presence/absence matrix was constructed, with the species in rows and the sites in columns. Th irdly we calculated a Checkerboard score (“C-score”), which is a quantitative index of occurrence that measures Fig. 1. Map of studied site (adapted from Fierro et al., 2011). 197First Descriptions of Aquatic Arthropods in an Unpolluted Native Forest Relict... the extent to which species co-occur less frequently than expected by chance (Gotelli, 2000). A community is structured by competition when the C-score is signifi cantly larger than expected by chance (Gotelli, 2000; Tondoh, 2006; Tiho & Josens, 2007). Th irdly we compared co-occurrence patterns with null expectations via simulation. Gotelli & Ellison (2013) suggested the as statistical null models Fixed-Fixed: in this model the row and column sums of the matrix are preserved. Th us, each random community contains the same number of species as the original community (fi xed column), and each species occurs with the same frequency as in the original community (fi xed row). Th e null model analyses were performed using the soft ware R (R Development Core Team, 2009) and the package EcosimR (Gotelli & Ellison, 2013; Carvajal-Quintero et al., 2015). For niche overlap analysis was built an individual matrix in which rows and columns represented species and sites respectively and it was tested if niche overlap signifi cantly diff ered from the corresponding value under the null hypothesis (in example random assemblage), it was applied for data of the second fi eld period. It used Pianka index. Th is model is based in median table that show the probability in that the niche sharing is compared with the niche overlap of the community simulated (Gotelli & Ellison, 2013). Th e niche amplitude can be retained or reshuffl ed, when it is retained it preserves the specialization of each species, whereas when it is reshuffl ed normally it used a wide utilization gradient and in fact, it will occur a wide niche overlap in the simulated community in comparison to the real community. Also, the zero states are retained or simulated the zero participation in the observed matrix is maintained or not in each simulated matrix. In the present study it used the algorithm RA3 (Gotelli & Ellison, 2013; Carvajal-Quintero et al., 2015). Th e model RA3 retains the amplitude and reshuffl ed the zero conditions (Gotelli & Ellison, 2013). Th is null model analysis was carried out using the soft ware R (R Development Core Team, 2009) and the package EcosimR (Gotelli & Ellison, 2013; Carvajal-Quintero et al., 2015). Results and discussion Th e results revealed the presence of low species number and abundances for two sampled periods, being the sample of May with high species number and high individual abundances (table 1), the species reported corresponded mainly to aquatic insect (Ephemeroptera, Plecoptera and Trichoptera) and the decapod Aegla manni that are representative of unpolluted streams. Th e results of null models revealed fi rst that species associations are random, or without structuration for two sampled periods and for total data (table 2), whereas the niche sharing revealed niche sharing due absence of interspecifi c competition absence for both sampled periods and total data (table 2). Th e exposed results agree with observations for unpolluted central and north Patagonian rivers (36–40° S), where the observed groups are dominant under low or null human intervention (Figueroa et al., 2003, 2007), similar result has been observed T a b l e 1 . Macroinvertebrate abundances (in ind/m2) obtained in study site (38°39´41˝ S; 72° 35´57˝ W) Taxon April May 1 2 3 4 5 1 2 3 Oligochaeta 0 4 0 0 0 0 0 0 Insecta Ephemeroptera Chiloporter sp. Lestage 1831 0 0 0 0 0 8 4 0 Asthenopus sp. Eaton, 1871 8 0 0 0 0 0 0 0 Plecoptera Diamphipnoa sp. Gerstaecker, 1873 0 0 0 0 0 4 0 0 Diamphanopsis sp. Illies, 1960 0 0 0 0 0 8 0 0 Perlidae indet. 0 0 4 0 0 0 0 0 Trichoptera Plectromacronema sp. Ulmer, 1906 0 8 0 8 0 4 0 0 Anamalopsychidae indet. 0 0 0 4 0 0 0 0 Trichoptera indet. 0 0 0 8 0 0 0 0 Crustacea Malacostraca Decapoda Aegla manni Jara, 1980 8 4 0 0 1 0 0 8 198 P. De los Ríos-Escalante, A. Espinosa, P. Núñez for pristine rivers and streams in central Patagonian rivers (44–46° S), and mountain rivers in Araucania region (De los Ríos-Escalante et al., 2020 a; Solís-Lufí et al., 2021; Figueroa & De los Ríos-Escalante, in press) where both groups are markedly dominant (Oyanedel et al., 2008; Moya et al., 2009; Valdovinos et al., 2010). In this context, the presence of aquatic insect larvae and decapods is interesting on the biogeographical view point, because insects in comparison to crustaceans have more dispersion capacity by fl ying adult stages that can be colonize new habitats, whereas decapods, do not have this dispersion capacity, but they can stay permanently in water bodies (Valdovinos et al., 2010). Th ese results would agree with fi rst crustacean descriptions for Rucamanque, where was found A. manni and Parastacus sp. breathers (Riquelme & Barra, 2017), and also it was observed the presence of a Samastacus spinifrons adult specimen (fi g. 2, personal observations). Th e presence of decapods, are representative also in inland water bodies of Chilean Patagonia (Jara, 2013), and they are an important component in benthic communities (Encina et al., 2017; Vega et al., 2017; Solis-Lufí et al., 2022; De los Ríos-Escalante et al., 2020 b; Figueroa & De los Ríos-Escalante, In press). In this context, the decapods and aquatic insect larvae reported in the present study are important as shredders, because they would feed on vegetable matter that are very important component in unpolluted zones in streams (Schmid-Araya et al., 2012; Encina et al., 2017; Vega et al., 2017; Figueroa & De los Ríos-Escalante, in press). Th e reported site has not fi sh populations, and in this context, the reported fauna would agree with descriptions of Encina et al. (2017). Th e results of null models, agree with literature descriptions for Chilean inland waters, where it was found non-structured patterns in species associations, due few species with many species repeated by sites, but niche sharing revealed niche sharing due absence of interspecifi c competition absence for both sampled periods and total data that is similar to observed for mountains streams (De los Ríos- Escalante et al., 2020 a), but markedly opposite to other inland water ecosystems such as north Patagonian lakes (De los Ríos-Escalante & Woelfl , 2017). Th ese results would agree with literature about benthic fauna in Chilean T a b l e 2 . Results of null models for corrected data Species co-occurrence Mean index Observed index Variance P Total 1.577 1.536 0.005 0.323 April 1.142 1.157 0.006 0.642 May 0.500 0.532 0.008 0.999 Niche sharing Mean index Observed index Variance P Total 0.173 0.177 0.002 0.412 April 0.253 0.227 0.006 0.555 May 0.382 0.568 0.018 0.145 Fig. 2. Photograph of Samastacus spinifrons (Phillippi, 1882) collected in Rucamanque stream. 199First Descriptions of Aquatic Arthropods in an Unpolluted Native Forest Relict... rivers, where it is possible found many repeated species and ecological specialization among a wide geographical gradient (Figueroa et al., 2003, 2007; Palma et al., 2013). Th e exposed results would indicate that would be necessary more systematic ecological study for understand structure and function of aquatic invertebrate in unpolluted sites, and the importance as source role for conservation biology. Th e present study was founded by project MECESUP UCT 0804, and Universidad de la Frontera (Forestal Sciences Department), also the author express his gratitude to M. I., and S. M. A. for their valuable comments for improve the manuscript. References Barra, V., Riquelme, J. 2017. Aquatic crustaceans in Maquehue stream. Sustainability, Agri, Food and Environmental Research, 5 (3), 46–47. Carvajal-Quintero, J. D., Escobar, F., Alvarado, F., Villa-Navarro, F. A., Jaramillo-Villa, U., Maldonado- Ocampo, J. A. 2015. Variation in freshwater fi sh assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecology and Evolution, 5 (13), 2608–2620. Correa-Araneda, F., Contreras, A., De los Ríos, P. 2010. Amphipoda and Decapoda as potential bioindicators of water quality in an urban stream (38°S, Temuco, Chile). Crustaceana, 83 (8), 897–902 Correa-Araneda, F., De los Ríos-Escalante, P., Figueroa, R., Parra-Coloma, L. 2017. Temporal distribution of crustaceans in forested freshwater wetlands: responses to changes in the hydroperiod. Crustaceana, 90 (6), 721–734. De los Ríos-Escalante, P., Meruane, J., Morales, M. C., Rudolph, E., Fuentealba, C., Boxshall, G. 2013. Zoogeography of Chilean inland water crustaceans. Latin American Journal of Aquatic Research, 41 (5), 846–853. De los Ríos-Escalante, P., Woelfl , S., 2017. Use of null models to explain crustacean zooplankton assemblages in north Patagonian lakes with presence or absence of mixotrophic ciliates. Crustaceana, 90 (3), 311–319. De los Ríos-Escalante, P., Esse, C., Santander-Massa, R., Saavedra, P., Encina-Montoya, F., 2020 a. Benthic macroinvertebrate communities in sites with native forest presence and absence in north Patagonia. Iheringia serie Zoologia, 110: e2020014 De los Ríos-Escalante, P., Solis-Lufi , K., Rodríguez-Ortiz, R., Farías, J. 2020 b. First report on seasonal abundance of malacostracans in the Allipen river (38º51’ S, North Patagonia, Araucania region, Chile). Crustaceana, 93 (6), 653–659. Dominguez, E., Fernandez, H. R., eds. 2009. Macroinvertebrados bentónicos sudamericanos. Sistemática y Biología. Fundación Miguel Lillo Tucuman, Argentina, 1–656. Encina, F., Vega, R., Lara, G., De Los Ríos-Escalante, P. 2017. Ecological role of benthic crustaceans in Chilean North Patagonian lakes and rivers (Araucania region, 39° S). Crustaceana, 90 (4), 437–447. Figueroa, D., De los Ríos-Escalante, P., in press. Macrozoobenthos in al altitudinal gradient in North Patagonian Cautin river (Araucania Region, Chile). Brazilian Journal of Biology. Figueroa, R., Palma, A., Ruiz, V., Niell, X. 2007. Análisis comparativo de índices bióticos utilizados en la evaluación de la calidad de aguas en un río mediterráneo de Chile, río Chillán, VIII región. Revista Chilena de Historia Natural, 80 (2), 225–242. Figueroa, R., Valdovinos, C., Araya, E., Parra, O., 2003. Macroinvertebrados bentónicos como indicadores de calidad de agua de ríos del sur de Chile. Revista Chilena de Historia Natural, 76 (2), 275–285. Fierro, A., Zúñiga, A., Aguilera, P., Rebolledo, R. 2011. Carábidos (Coleoptera: Carabidae) presentes en un relicto vegetacional del llano central de la Araucanía. Idesia, 29 (3), 87–94. Gotelli, N. J. 2000. Null model analysis of species co-occurrence patterns. Ecology, 81 (9), 2606–2621. Gotelli, N. J, Ellison, A. M. 2013. EcoSimR 1.00. Available at: http://www.uvm.edu/~ngotelli/EcoSim/EcoSim. html [Accessed: 03th August 2018] Jara, C. 2013. A checklist of the Chilean species of the genus Aegla (Decapoda, Anomura, Aeglidae). Crusta- ceana, 86 (12), 1433–1440. Jara, C., Rudolph, E. H., Gonzalez, E. R. 2006. Estados de conocimiento de los malacostracos dulceacuícolas. Gayana, 70 (1), 40–49. Moya, C., Valdovinos, C., Moraga, A., Romero, F., Debels, P., Oyanedel, A. 2009. Patrones de distribución es- pacial de ensambles de macroinvertebrados bentónicos de un sistema fluvial Andino Patagónico. Revista Chilena Historia Natural, 82 (3), 425–442. Oyanedel, A., Valdovinos, C., Azocar, M., Moya, C., Mancilla, G., Pedreros, P., Figueroa, R. 2008. Patrones de distribución espacial de los macroinvertebrados bentónicos de la cuenca del río Aysen (Patagonia Chile- na). Gayana, 72 (2), 241–257. Palma, A., González-Barrientos, J., Reyes, C. A., Ramos-Jiliberto, R. 2013. Biodiversidad y estructura mediter- ránea de ríos en las zonas árida, semiárida y mediterránea-norte de Chile. Revista Chilena de Historia Natural, 86 (1), 1–14. 200 P. De los Ríos-Escalante, A. Espinosa, P. Núñez R Development Core Team, 2009. R: A language and environment for statistical computing. (R foundation for statistical computing, Vienna). Riquelme, J., Barra, V. 2017. Crustáceos acuáticos en Arroyo Rucamanque. Sustainability, Agri, Food and En- vironmental Research, 5 (3), 48–49. Rudolph, E. H., 2013. A checklist of Chilean Parastacidae (Decapoda, Astacidea). Crustaceana, 86 (12), 1468– 1510. Salas, C. 2002. Ajuste y validación de ecuaciones de volumen para un relicto del bosque de Roble-Laurel-Lingue. Bosque, 23 (2), 81–92. Schmid-Araya, J. M., Figueroa, D., Schmid, P. E., Drouot, C. 2012. Algivory in food webs of three temperate Andean rivers. Austral Ecology, 37 (4), 440–451. Solís-Lufi , K., Suazo, M. J., Ávila-Salem, M. E., Maldonado-Murua, C., Aponte, H., Farías J., De los Ríos-Es- calante, P. 2021. Community structure of benthic invertebrates in the Allipén River basin, North Patago- nia, Araucania region (38° S, Chile). Brazilian Journal of Biology, 82: e232805 Soto, D., Arismendi I., Gonzalez, J., Sanzana, J., Jara, F., Jara, C., Guzman, E., Lara, A., 2006. Sur de Chile, país de truchas y salmones: patrones de invasión y amenazas para las especies nativas. Revista Chilena de His- toria Natural, 79 (1), 97–117. Soto, D., Arismendi, I., Prinzio, C., Jara, F. 2007. Establishment of Chinook salmon (Oncorhynchus tshawyts- cha) in Pacifi c basins of southern South America and its potential ecosystem implications. Revista Chilena de Historia Natural, 80 (1), 81–98. Tiho, S., Johens, G., 2007. Co-occurrence of earth worms in urban surroundings: a null model analysis of com- munity structure. European Journal of Soil Biology, 43 (2), 84–90. Tondoh, J. E. 2006. Seasonal changes in earthworm diversity and community structure in Central Côte d’Ivoire. European Journal of Soil Biology, 42, supplement, 1, s334-s340. Valdovinos, C., Kiessling, A., Mardones, M., Moya, C., Oyanedel, A., Salvo, J., Olmos, V., Parra, O., 2010. Dis- tribución de macroinvertebrados (Plecoptera y Aeglidae) en ecosistemas fl uviales de la Patagonia chilena: muestran señales biológicas de la evolución geomorfológica postglacial? Revista Chilena de Historia Natu- ral, 83 (2), 267–287. Vega, R., De Los Ríos-Escalante, P., Encina, F., Mardones, A., 2017. Ecology of benthic crustaceans in the Cau- tin river (38° S, Araucania region, Chile). Crustaceana, 90 (6), 709–719. Received 31 July 2020 Accepted 5 May 2021 << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA /BGR /CHS /CHT /CZE /DAN /DEU /ESP /ETI /FRA /GRE /HEB /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN /ITA /JPN /KOR /LTH /LVI /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR /POL /PTB /RUM /RUS /SKY /SLV /SUO /SVE /TUR /UKR /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice